Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Захватывающая аркада-лабиринт по мотивам культовой игры восьмидесятых. Управляйте желтым человечком, ешьте кексы и постарайтесь не попадаться на глаза призракам.

Пикман

Аркады, На ловкость, 2D

Играть

Топ прошлой недели

  • Oskanov Oskanov 9 постов
  • Animalrescueed Animalrescueed 44 поста
  • Antropogenez Antropogenez 18 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
5
Programma.Boinc
Programma.Boinc

Обнаружены гравитационные волны от слияния черной дыры и нейтронной звезды⁠⁠

6 лет назад

Обнаружены гравитационные волны от слияния черной дыры и нейтронной звезды

В ночь с 14 на 15 августа 2019 года детекторы гравитационно-волновых обсерваторий LIGO (Laser Interferometer Gravitational-Wave Observatory) и Virgo зафиксировали новое событие. Оно получило обозначение S190814bv. По мнению ученых, исходя из характера гравитационных волн, с вероятностью в 99% они были порождены слиянием нейтронной звезды и черной дыры звездной массы.https://www.nationalgeographic.com/science/2019/08/astronomers-probably-just-saw-black-hole-swallow-neutron-star/


Первая в истории регистрация гравитационных волн состоялась в сентябре 2015 г. С тех пор LIGO и Virgo зафиксировали несколько десятков подобных событий. Однако, все они были вызваны слияниями объектов одинакового класса — в подавляющем большинстве случаев, черных дыр звездной массы. Астрономам также удавалось зарегистрировать волны, образовавшиеся в результате столкновения двух нейтронных звезд.


Поэтому, 190814bv является важной вехой в истории гравитационно-волновой астрономии. Это первый случай, когда источником волн стало слияние двух принципиально разных объектов. Событие произошло в галактике, расположенной на расстоянии 900 миллионов световых лет от Земли на границе созвездий Кита и Скульптора.


Стоит отметить еще одну немаловажную деталь. Событие 190814bv стало первым прямым доказательством существования во Вселенной двойных систем, состоящих из черных дыр и нейтронных звезд. Безусловно, ранее астрономам были известны системы из нейтронных звезд или черных дыр. Однако в виду сложностей обнаружения, существование «промежуточных» вариантов до недавнего времени оставалось недоказанным. Таким образом, наблюдения 190814bv могут предоставить ученым бесценную информацию о том, как формируются подобные системы и о состоянии материи внутри нейтронной звезды.

Показать полностью 3
Космос Гравитационные волны Черная дыра Virgo Ligo Длиннопост
3
123
gjkol
gjkol
Наука | Научпоп

Об открытии гравитационных волн⁠⁠

6 лет назад

Эмиль Ахмедов рассказывает об открытии гравитационных волн очень интересно и доступно.

По этому поводу у меня есть вопрос

А заметит ли человек если через него пройдёт гравитационная волна достаточно большой амплитуды.
Будет ли разрушение твёрдых тел.

Под видео есть комментарий, что звучит просто.

Под это дело я вспомнил иллюстрацию открытия планет при прохождении через диск звёзды . Это сравнимо с ситуацией: в 10 км от вас стоит машина и светит фарой. Перед фарой пролетает комар. По падению яркости нужно определить вес комара.

И тут же придумал про гравитационные волны. В той же ситуации комар ударяет я в фару. По скачку фары нужно определить вес комара.

Все это очень сложно. И жутко интересно.

Показать полностью
[моё] Текст Астрофизика Гравитационные волны Вопрос Видео
29
578
Geekabu
Geekabu

Принцип работы детектора гравитационных волн LIGO⁠⁠

6 лет назад
Принцип работы детектора гравитационных волн LIGO

LIGO - обсерватория, позволяющая нам обнаруживать гравитационные волны, которые излучают такие события, как слияние черных дыр в миллиардах световых лет от Земли. Она работает так:


1. Лазер выпускает луч в полупрозрачное зеркало, которое пропускает половину луча и отражает вторую половину под прямым углом.

2. Каждый из лучей отражается от дальнейших зеркал, и они возвращаются обратно ровно в анти-фазе по отношению друг к другу, тем самым полностью исключая друг друга.

3. Когда через лазерные лучи проходит гравитационная волна, она искажает пространство, тем самым чуть-чуть удлиняя или укорачивая длину волны каждого из лазеров.

4. Поскольку лазеры в этот момент имеют разную частоту, они не находятся в полной анти-фазе, и друг друга полностью не исключают.

5. Таким образом, в момент прохождения гравитационной волны, после слияния лазеров обратно в призме остается сигнал который засекается детектором. По частоте, силе, и времени этого сигнала можно определить характеристики гравитационных волн, а тем самым и характеристики событий, их излучивших.

Показать полностью
Ligo Наука Гравитация Гравитационные волны Астрономия Лазер Черная дыра Гифка Космос
88
1063
Malholand
Malholand
Исследователи космоса

Математики подтвердили возможность передачи данных через гравитационные волны⁠⁠

7 лет назад
Математики подтвердили возможность передачи данных через гравитационные волны

Математики проанализировали свойства гравитационных волн в обобщенном аффинно-метрическом пространстве (алгебраической конструкции, действующей на понятиях вектора и точки), аналогично свойствам электромагнитных волн в пространстве-времени Минковского. Они сообщают о возможности передачи информации с помощью неметрических волн пространственно без искажений. Это открытие может привести к новым средствам передачи данных в пространстве, например, между космическими станциями. Их результаты опубликованы в «Классической и квантовой гравитации» (Classical and Quantum Gravity).


Гравитационные волны — это волны кривизны в пространстве-времени, которые, согласно Общей теории относительности, полностью определяются самим пространством-временем. В настоящее время есть основания считать пространство-время более сложной структурой с дополнительными геометрическими характеристиками, такими как кручение и неметричность. В этом случае геометрически говоря, пространство-время превращается из риманова пространства, предусмотренного Общей теорией относительности (ГР), в обобщенное аффинно-метрическое пространство. Соответствующие уравнения гравитационного поля, обобщенное уравнением Эйнштейна, показывают, что кручение и неметричность могут также распространяться в виде волн, в частности, плоских волн на большом расстоянии от их источников.


Для описания гравитационных волн исследователи использовали математическую абстракцию — аффинное пространство, то есть, обычное векторное пространство, но без начала координат. Они доказали, что в таком математическом представлении гравитационных волн существуют функции, которые остаются неизменными в процессе распределения волн. Можно установить произвольную функцию для кодирования любой информации примерно так же, как электромагнитные волны передают радиосигнал.


Если ученые смогут разработать метод включения этих конструкций в источник волн, то они без каких-либо изменений будут в состоянии достигать любой точки пространства. Таким образом, гравитационные волны могут использоваться для передачи данных. Исследование состояло из трех этапов. Во-первых, математики вычислили производную Ли-функции (Lie derivative), связывающую свойства тел в двух разных пространствах: аффинное пространство и пространство Минковского. Это позволило им перейти от описания волн в реальном пространстве к их математической интерпретации.


На втором этапе исследователи определили пять произвольных функций времени, то есть, конструкций, которые не меняются по мере распространения волны. С их помощью характеристики волны могут быть установлены в источнике, таким образом, кодируя любую информацию. В другой точке пространства эта информация может быть расшифрована, что обеспечивает возможность передачи информации. На третьем этапе исследователи доказали теорему о строении плоской неметричности в гравитационных волнах. Оказалось, что из четырех измерений волны (трех пространственных и одного временного измерения) три могут быть использованы для кодирования информационного сигнала с использованием только одной функции, а в четвертом измерении — с использованием двух функций.


«Мы обнаружили, что волны неравномерности способны передавать данные аналогично недавно обнаруженным кривизны, поскольку их описание содержит произвольные функции отложенного времени, которые могут быть закодированы в источнике таких волн (в идеальной аналогии с электромагнитными волнами)», — сказала по этому поводу Нина Маркова (Nina V. Markova), соавтор работы, кандидат физико-математических наук, доцент кафедры математики имени С.М. Никольского.

Источник: "Важные новости".

Показать полностью
Математика Информация Гравитационные волны
392
408
DELETED
Наука | Научпоп

Является ли гравитация квантовой?⁠⁠

7 лет назад

Перевод статьи с портала Scientific American.

Ссылки, по возможности, русифицированы.


Продолжающийся поиск гравитона – предполагаемой фундаментальной частицы, несущей гравитационную силу – это ключевой шаг физиков в долгом путешествии к «теории всего».

Художественное представление гравитационных волн, создаваемых сливающимися нейтронными звездами. Ранняя Вселенная является еще одним источником гравитационных волн, которые, если их обнаружить, смогут помочь физикам разработать квантовую теорию гравитации. Р. Херт, Caltech-JPL.


Все фундаментальные силы Вселенной, как известно, следуют законам квантовой механики, кроме одной: гравитация. Открытие способа, позволяющего соотнести гравитацию с квантовой механикой, позволило бы ученым ближе подобраться к «теории всего», которая могла бы полностью объяснить работу космоса с самых основ. Важным первым шагом в этих поисках является обнаружение давно постулируемой элементарной частицы гравитации, гравитона. В поисках гравитона физики теперь обращаются к экспериментам с участием микроскопических сверхпроводников, свободно падающих кристаллов и послесвечения Большого взрыва – [реликтового излучения, прим. перев.].

Квантовая механика предполагает, что все сделано из квантов или порций энергии, которые могут вести себя и как частица, и как волна — например кванты света, называемые фотонами. Обнаружение гравитонов, гипотетических квантов гравитации, докажет, что гравитация является квантовой. Проблема заключает в том, что гравитация необычайно слаба. Чтобы непосредственно наблюдать мельчайшее воздействие гравитона на материю, здорово подметил физик Фримен Дайсон, детектор гравитона должен быть массивным настолько, что самостоятельно коллапсирует, образовав черную дыру.

«Одна из проблем всех теорий квантовой гравитации заключается в том, что их предсказания, как правило, практически невозможно экспериментально проверить», - говорит квантовый физик Ричард Норте из Делфтского технического университета в Нидерландах. «Это основная причина, по которой существует столько конкурирующих теорий и почему нам пока не удалось понять, как все на самом деле работает».

В 2015 году, однако, физик-теоретик Джеймс Квош на этот раз в Аделаидском университете в Австралии, предложил способ обнаружить гравитоны, воспользовавшись их квантовой природой. Квантовая механика предполагает, что вселенная по своей природе неопределенная, например, никогда нельзя точно знать положение и импульс частицы одновременно. Одним из следствий этой неопределенности является то, что вакуум никогда не бывает полностью пустым, а вместо этого гудит с «квантовой пеной» так называемых виртуальных частиц, которые постоянно появляются и исчезают. Эти призрачные сущности могут быть любыми квантами, включая гравитоны.

Десятилетия назад ученые обнаружили, что виртуальные частицы могут создавать силы, которые можно обнаружить. Например, эффект Казимира — притяжение или отталкивание между двумя зеркалами, расположенными близко друг к другу в вакууме. Эти отражающие поверхности движутся под действием силы, создаваемой виртуальными фотонами, мигающими и выходящими из существования. Предыдущие исследования показали, что сверхпроводники могут отражать гравитоны сильнее, чем нормальная материя, поэтому Квош вычислил, что поиск взаимодействия между двумя тонкими сверхпроводящими листами в вакууме может выявить гравитационный эффект Казимира. Результирующая сила должна быть примерно в 10 раз сильнее, чем ожидается от стандартного эффекта Казимира на основе виртуального фотона.

Недавно Норте и его коллеги разработали микрочип для проведения этого эксперимента. Этот чип содержал две микроскопические пластины с алюминиевым покрытием, которые охлаждались почти до абсолютного нуля, становясь сверхпроводящими. Одна пластина была прикреплена к подвижному зеркалу, после чего зеркало обстреливали лазером. Если бы пластины перемещались из-за гравитационного эффекта Казимира, частота света, отражающегося от зеркала, заметно бы изменялась. Как подробно описано 20 июля в журнале Physical Review Letters, ученые не смогли увидеть никакого гравитационного эффекта Казимира. Этот нулевой результат не обязательно исключает существование гравитонов и, следовательно, квантовую природу гравитации. Это скорее может означать, что гравитоны не взаимодействуют с сверхпроводниками так сильно, как это оценивали в предыдущих работах, говорит квантовый физик и лауреат Нобелевской премии Фрэнк Вильчек из Массачусетского технологического института, который не участвовал в этом исследовании и не удивлен его нулевыми результатами. Несмотря на это, Квач говорит, что «это была смелая попытка обнаружить гравитоны».

Художественное представление эксперимента (Мориц Форш, Институт Нанонауки Кавли, Делфтский технический университет)

Хотя микрочип Норте не показал, является ли гравитация квантовой, другие ученые используют множество подходов к поиску гравитационных квантовых эффектов. Например, в 2017 году в двух независимых исследованиях было показано, что если гравитация является квантовой, то она может создавать связь, известную как «запутанность» между частицами, так, что одна частица мгновенно воздействует на другую, где бы она ни находилась в космосе. Маленький эксперимент с использованием лазерных лучей и микроскопических алмазов мог бы помочь в поиске такой гравитационной запутанности. Кристаллы содержались бы в вакууме, чтобы избежать столкновений с атомами, поэтому они могли бы взаимодействовать друг с другом только по гравитации. Ученые позволили бы этим алмазам одновременно падать, и, если гравитация является квантовой, то гравитационное притяжение, которое каждый кристалл оказывает на другого, может запутать их вместе.

Исследователи будут искать запутанность, направляя лазеры в сердце каждого алмаза после броска. Если частицы в центрах кристаллов будут вращаться в одну сторону, то они будут флуоресцировать, если же частицы будут вращаться в другую сторону, то флуоресценции не будет. Если вращения в обоих кристаллах синхронны чаще, чем предсказывает вероятность, то это говорит о запутанности. «Экспериментаторам всего мира любопытно принять вызов», - говорит исследователь квантовой гравитации Анупам Мазумдар из Гронингенского университета в Нидерландах, соавтор одного из исследований запутанности.

Другая стратегия поиска доказательств для квантовой гравитации — это взгляд на космическое микроволновое фоновое излучение, слабое послесвечение Большого Взрыва, утверждает космолог Алан Гут из M.I.T. Кванты, такие как гравитоны, флуктуируют подобно волнам, а самые короткие длины волн будут иметь наиболее интенсивные флуктуации. Когда космос колоссально расширился в размерах в течение секунды после Большого взрыва, в соответствии с широко поддерживаемой космологической моделью Гута, известной как инфляционная модель, эти короткие длины волн растянулись бы до более длинных по всей Вселенной. Такое свидетельство квантовой гравитации может быть увидено как завихрения в поляризации или выравнивании фотонов космического микроволнового фонового излучения - [также реликтового излучения, прим. перев].

Однако, интенсивность узоров этих завихрений, известных как B-моды, во многом зависит от энергии и времени инфляции. «Некоторые версии инфляции предсказывают, что эти B-моды должны быть найдены в ближайшее время, в то время как другие версии предсказывают, что B-моды настолько слабы, что никогда не будет никакой надежды обнаружить их», - говорит Гут. «Но, если они будут найдены, и свойства будут соответствовать ожиданиям от инфляции, это будет очень убедительным доказательством того, что гравитация квантована».

Еще один способ выяснить, является ли гравитация квантовой — смотреть прямо на квантовые флуктуации в гравитационных волнах, которые, как полагают, состоят из гравитонов, появившихся вскоре после Большого взрыва. Лазерно-интерферометрическая гравитационно-волновая обсерватория (LIGO) впервые обнаружила гравитационные волны в 2016 году, но она недостаточно чувствительна для обнаружения флуктуирующих гравитационных волн в ранней вселенной, инфляция которой растянулась до космических масштабов, утверждает Гут. Гравитационно-волновая обсерватория в космосе, такая как Лазерно-интерферометрическая космическая антенна (LISA), потенциально может обнаружить эти волны, добавляет Вильчек.

Художественное представление одного из спутников LISA

Однако в статье, недавно принятой журналом «Classical and Quantum Gravity», астрофизик Ричард Лиу из Университета Алабамы в Хантсвилле утверждает, что LIGO уже должна была обнаружить гравитоны, если они несут столько энергии, сколько предполагают некоторые современные модели физики частиц. Может быть, гравитон просто содержит меньше энергии, чем ожидалось, но Лиу предполагает, что это также может означать, что гравитона не существует. «Если гравитона вообще не существует, это будет хорошей новостью для большинства физиков, поскольку у нас при разработке теории квантовой гравитации было ужасное время», - говорит Лиу.

Тем не менее, разработка теорий, которые исключают гравитон, может быть не проще, чем разрабатывать теории, которые его учитывают. «С теоретической точки зрения, очень трудно представить себе, как гравитацию можно было бы квантовать», - говорит Гут. «Я не знаю никакой разумной теории о том, как классическая гравитация может взаимодействовать с квантовой материей, и я не могу себе представить, как такая теория может работать».

Показать полностью 3
Наука Гравитация Квантовая физика Квантовая механика Гравитационные волны Гравитон Длиннопост
136
10
Stembie
Stembie
Исследователи космоса

Гравитационные волны⁠⁠

7 лет назад

(Гравитационные волны – изображение художника)

Гравитационные волны — возмущения метрики пространства-времени, отрывающиеся от источника и распространяющиеся подобно волнам (так называемая «рябь пространства-времени»).

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

(Поляризованная гравитационная волна)

Гравитационные волны предсказываются общей теорией относительности (ОТО), многими другими теориями гравитации. Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами обсерватории LIGO, на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух чёрных дыр и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов — ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем двойных звёзд за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

В рамках ОТО гравитационные волны описываются решениями уравнений Эйнштейна волнового типа, представляющими собой движущееся со скоростью света (в линейном приближении) возмущение метрики пространства-времени. Проявлением этого возмущения должно быть, в частности, периодическое изменение расстояния между двумя свободно падающими (то есть не испытывающими влияния никаких сил) пробными массами. Амплитудой h гравитационной волны является безразмерная величина — относительное изменение расстояния.

Предсказываемые максимальные амплитуды гравитационных волн от астрофизических объектов (например, компактных двойных систем) и явлений (взрывов сверхновых, слияний нейтронных звёзд, захватов звёзд чёрными дырами и т. п.) при измерениях в Солнечной системе весьма малы (h=10^(−18)—10^(−23)). Слабая (линейная) гравитационная волна согласно общей теории относительности переносит энергию и импульс, двигается со скоростью света, является поперечной, квадрупольной и описывается двумя независимыми компонентами, расположенными под углом 45° друг к другу (имеет два направления поляризации).

Различные теории по-разному предсказывают скорость распространения гравитационных волн. В общей теории относительности она равна скорости света (в линейном приближении). В других теориях гравитации она может принимать любые значения, в том числе до бесконечности. По данным первой регистрации гравитационных волн их дисперсия оказалась совместимой с безмассовым гравитоном, а скорость оценена как равная скорости света.

Генерация гравитационных волн

Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением . Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора. Однако если некоторый объект движется ускоренно, то это означает, что на него действует некоторая сила со стороны другого объекта. В свою очередь, этот другой объект испытывает обратное действие (по 3-му закону Ньютона). Получается, что два объекта излучают гравитационные волны только в паре, причём в результате интерференции они взаимно гасятся почти полностью. Поэтому гравитационное излучение в общей теории относительности всегда носит по мультипольности характер как минимум квадрупольного излучения.

(Система из двух нейтронных звезд порождает рябь пространства-времени)

Наиболее сильными источниками гравитационных волн являются:

- сталкивающиеся галактики (гигантские массы, очень небольшие ускорения)

- гравитационный коллапс двойной системы компактных объектов (колоссальные ускорения при довольно большой массе). Как частный и наиболее интересный случай — слияние нейтронных звёзд. У такой системы гравитационно-волновая светимость близка к максимально возможной в природе планковской светимости.

Регистрация гравитационных волн

Регистрация гравитационных волн достаточно сложна ввиду слабости последних (малого искажения метрики). Приборами для их регистрации являются детекторы гравитационных волн. Попытки обнаружения гравитационных волн предпринимаются с конца 1960-х годов. Гравитационные волны детектируемой амплитуды рождаются при коллапсе двойного пульсара. Подобные события происходят в окрестностях нашей Галактики ориентировочно раз в десятилетие.

С другой стороны, общая теория относительности предсказывает ускорение взаимного вращения двойных звёзд из-за потери энергии на излучение гравитационных волн, и этот эффект надёжно зафиксирован в нескольких известных системах двойных компактных объектов (в частности, пульсаров с компактными компаньонами). В 1993 году «за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации» открывателям первого двойного пульсара PSR B1913+16 Расселу Халсу и Джозефу Тейлору мл. была присуждена Нобелевская премия по физике. Ускорение вращения, наблюдаемое в этой системе, полностью совпадает с предсказаниями ОТО на излучение гравитационных волн. Такое же явление зафиксировано ещё в нескольких случаях: для пульсаров PSR J0737-3039, PSR J0437-4715, SDSS J065133.338+284423.37 (обычно сокращённо J0651) и системы двойных белых карликов RX J0806. Например, расстояние между двумя компонентами A и B первой двойной звезды из двух пульсаров PSR J0737-3039 уменьшается примерно на 2,5 дюйма (6,35 см) в день из-за потерь энергии на гравитационные волны, причём это происходит в согласии с ОТО. Все эти данные интерпретируются как непрямые подтверждения существования гравитационных волн.

По оценкам наиболее сильными и достаточно частыми источниками гравитационных волн для гравитационных телескопов и антенн являются катастрофы, связанные с коллапсами двойных систем в ближайших галактиках. Ожидается, что в ближайшем будущем на усовершенствованных гравитационных детекторах будет регистрироваться несколько подобных событий в год, искажающих метрику в окрестности Земли на 10^(−21)—10^(−23). Первые наблюдения сигнала оптико-метрического параметрического резонанса, позволяющего обнаружить воздействие гравитационных волн от периодических источников типа тесной двойной на излучение космических мазеров, возможно, были получены на радиоастрономической обсерватории РАН, Пущино.

Ещё одной возможностью детектирования фона гравитационных волн, заполняющих Вселенную, является высокоточный тайминг удалённых пульсаров — анализ времени прихода их импульсов, которое характерным образом изменяется под действием проходящих через пространство между Землёй и пульсаром гравитационных волн. По оценкам на 2013 год, точность тайминга необходимо поднять примерно на один порядок, чтобы можно было задетектировать фоновые волны от множества источников в нашей Вселенной, и эта задача может быть решена до конца десятилетия.

Согласно современным представлениям, нашу Вселенную заполняют реликтовые гравитационные волны, появившиеся в первые моменты после Большого взрыва. Их регистрация позволит получить информацию о процессах в начале рождения Вселенной. 17 марта 2014 года в 20:00 по московскому времени в Гарвард-Смитсоновском центре астрофизики американской группой исследователей, работающей над проектом BICEP 2, было объявлено о детектировании по поляризации реликтового излучения ненулевых тензорных возмущений в ранней Вселенной, что также является открытием этих реликтовых гравитационных волн.

Однако почти сразу этот результат был оспорен, поскольку, как выяснилось, не был должным образом учтён вклад межзвёздной пыли. Один из авторов, Дж. М. Ковац ( Kovac J. M.), признал, что «с интерпретацией и освещением данных эксперимента BICEP2 участники эксперимента и научные журналисты немного поторопились».

(Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром» )

По материалам Wikipedia

Показать полностью 3
Космос Гравитация Гравитационные волны Гифка Длиннопост
4
77
invis.unicorn
invis.unicorn
Исследователи космоса

ESOcast: "Начало эры многоканальной астрономии"⁠⁠

7 лет назад

Видео от Европейской южной обсерватории, повествующее о том, как астрономы, используя мощь различных телескопов, впервые одновременно исследовали на самых разных длинах волн электромагнитного спектра (в том числе в оптическом диапазоне) источник гравитационных волн - килоновую, результат столкновения и слияния нейтронных звёзд.

[моё] Наука Космос Астрономия Астрофизика Гравитационные волны Нейтронные звезды Ligo Озвучка Видео
1
222
DELETED
Исследователи космоса

Гравитационные волны на пальцах⁠⁠

7 лет назад

То крылом волны касаясь,
то стрелой взмывая к тучам,
он кричит, и — тучи слышат
радость в смелом крике птицы.
М. Горький

Со школы все помнят - 400 лет назад Ньютону на голову упало яблоко и он объявил: "Все тела притягиваются друг к другу". Большинство наверняка не забыли, что тела притягиваются пропорционально массе и обратно пропорционально квадрату расстояния между ними. Т.е. чем массивнее предмет, тем больше гравитация (Земля притягивает сильней, чем, скажем, дом), но так же, чем дальше предмет, тем гравитация слабее. Не ахти какая наука, тут понятно всем, никто и не спорит, все довольно очевидно. У подобной "ньютоновской гравитации" не может быть никаких волн. Яблоко просто притягивается и падает на землю, без всяких волнений и колебаний. Планета словно какими-то невидимыми крюками тащит к себе яблоко и тому приходится падать вниз, потому что в другие стороны ничего не тащит, а вниз гравитация. Если яблоко мы бросили в сторону, оно полетит по дуге, как и любой снаряд, пуля или камень. Тоже интуитивно понятно почему. Бросили мы вперед, оно и летит вперед. Но гравитация же тянет вниз, вот оно и летит одновременно вперед и вниз, от того и дуга, от того рано или поздно таки упадет на землю.

Однако примерно 100 лет назад, в начале 20го века, другому не менее мозговитому ученому, Альберту Эйнштейну, на голову упал учебник геометрии и тому пригрезилась иная интерпретация законов гравитации. Ему взбрело выдвинуть идею, что гравитация всего-то искривление нашего пространства. Точнее, пришлось сначала объявить совершенно нетривиальную вещь, что нет никакого отдельного пространства и нет никакого независимого времени, а есть одно целое пространство-время, что время вроде как четвертая координата, в дополнении к трем пространственным, именно искривление этой четырехмерной штуки и есть гравитация.


Про единое пространство-время тоже наверняка многие слышали, на этой идее Эйнштейн построил свою Специальную Теорию Относительности (СТО), это такая облегченная версия теории относительности, которая занимается в основном путешествиями с околосветовыми скоростями, всякими замедлениями времени и парадоксами близнецов.


Специальную Теорию Относительности современные школьники проходят на физике в десятом классе. В ней нет ничего сложного, самая страшная формула выглядит как-то так.

Те, кто изучал СТО в институте знают, что не все там так уж и просто, даже один тензор в формулах затесался, но все равно, это детский лепет, ничего существенно объяснять не требуется, все и так весьма на пальцах™.


С Общей Теорией Относительности (ОТО), там, где появляется и вступает в свои права гравитация, дела гораздо сложнее. В расчетах сам черт ногу сломит. Не стал тащить весь этот ужас сюда, вот, например глава из учебника по теории относительности, так же как и у нас посвященная гравитационным волнам, только с выкладками и формулами. Обращаю ваше внимание, в тексте по ссылке идет речь об упрощенном и приближенном частном случае (см. заголовок - "weak field approximation") - когда интенсивность гравитации невелика, и большинством коэффициентов в формулах можно пренебречь, т.е. вовсе не включать их в расчеты, вот их и не включили, существенно подсократив объем матана. Полистали? Обратили внимание - чем дальше спускаешься вниз по странице, тем больше растет уверенность, что это какой-то хитрый обман, чтобы набрать классы? У нормального человека уже к середине глаза разбегаются, а мозг начинает плавиться и активно сопротивляться - не может быть так сложно, не может быть такого в природе, потому что не может быть никогда!


Не буду больше стращать формулами, обещаю. Принципы ОТО можно объяснить на пальцах™ и вряд ли их понадобится сильно больше пяти.


За доступным объяснением основ Общей Теории Относительности на пальцах™ рекомендую окунуться в соответствующую статью.


Согласно Эйнштейну присутствие массы (правильней использовать термин "тензор энергии-импульса", но мы продолжим по-простецки говорить "масса") искривляет и гнет пространство-время вокруг себя. Т.е. Земля никоим образом не притягивает яблоко, как это ни прозвучит абсурдно - брошенное яблоко по инерции продолжает лететь строго прямо. Однако само пространство-время искривлено, то есть прямая линия, по которой летит яблоко искривляется и упирается в поверхность Земли. Вот такая вот ментальная загогулина родилась в голове Эйнштейна, и он начал ее продвигать в народ.


Все это, конечно, хорошо, и интересно, и звучит красиво. Однако не стоит забывать, что в момент написания Эйнштейном вся эта относительность была не более чем "теорией". Математической абстракцией, рожденной в воспаленном мозгу гения. То есть он сначала из головы написал все эти формулы, а потом ученые стали проверять, соответствуют ли они процессам, реально проходящим в природе, или же это не более, чем разыгравшееся воображение сумасшедшего.


И вот что занимательно. В первом приближении сложная и замороченная теория гравитации Эйнштейна не так уж и сильно отличается от простой и элементарной теории Ньютона. Мы можем запускать ракеты на Марс даже не глядя в сторону Эйнштейна, старого доброго Ньютона, помноженного на законы небесной механики Кеплера вполне достаточно. Однако дьявол как обычно окопался в деталях.


Теория Относительности Эйнштейна предсказывает (читай "из формул прямо следует") множество башнесрывных феноменов и контринтуитивных парадоксов, которых не может существовать в ньютоновской теории и в которые невозможно поверить на слово, приходится ставить эксперименты и проверять. К примеру всяческие эффекты замедления времени в полях мощного тяготения. Помните, как в фильме "Интерстеллар" на планете, которая вращалась вокруг черной дыры, один час длился семь лет? Кстати, не забыть бы сами черные дыры - тоже следствие решений формул Эйнштейна, которые долгое время были "просто решениями", забавным математическим казусом. Т.е. давайте возьмем формулы, и подставим в одно из уравнений вместо некого коэффициента скорость света. Что получим? Получим неведомую зверушку, которая пожирает всю материю вокруг и ничего не выпускает из себя. Математики посчитали, поржали и забыли. То, что мы можем карандашом исправить в формуле один коэффициент на другой, совсем не означает, что природа будет делать то же самое в нашей с вами реальной реальности. Но нет, сегодня астрофизики обнаружили более тысячи черных дыр только в нашей галактике, не говоря уже о том, что мы все вместе с Землей, Луной, Солнцем и остальными планетами Солнечной Системы вращаемся вокруг сверхмассивной черной дыры Стрелец А*, которая расположена в самом галактическом ядре. И в ядрах почти всех обозримых галактик вокруг.


Теория Относительности Эйнштейна так же предсказывает, что вращающаяся масса буквальным образом "увлекает пространство за собой", заставляет его вращаться вместе, словно воронка некого гигантского водоворота. Разве могло такое присниться Ньютону? Ну представьте, падает яблоко на планету. Какая разница, вращается при этом планета или нет, все равно яблоко должно упасть строго вертикально вниз.

А вот Эйнштейн говорит, что вращающаяся планета тянет за собой (обратите внимание! не яблоко, не воздух вокруг себя, а само пространство-время, сквозь которое падает яблоко), от чего то упадет не строго вниз, а чуточку сместившись по направлению вращения. Сразу уточню - эффект мизерный. Ну, из-за невеликой массы Земли мизерный, с яблоком сильно не поэкспериментируешь. Но используя сверхточные приборы данное отклонение было зафиксировано. Хотите верьте, хотите не верьте, это экспериментально доказанный факт.


Или эффект гравитационного линзирования, когда пролетая мимо существенной массы, свет уже не путешествует по прямой. Точнее, как упоминалось выше, свет думает, что он летит по прямой, хотя реально эта прямая искривлена гравитацией, от чего казалось бы строгий и ровный луч света рисует забавные загогулины в космосе.

Есть и другие явления, вытекающие из теории относительности, например прецессия вращающихся планетарных систем, гравитационное красное смещение и проч., и что характерно, все эти предсказания были проверены непосредственно опытным путем. И какими бы странными они не были, все точно совпадает с теорией в которой гравитация это ни что иное как искривление пространства-времени.


И лишь единственный эффект, который прямо следует из формул, так и не был до сих пор экспериментально обнаружен. Как раз-таки те самые гравитационные волны. По всем расчетам они должны быть, но их никак не найдут.


Итак, что же это за "гравитационные волны"? Если с гравитацией после вступления (а это было только вступление!), я надеюсь, стало чуточку понятней, давайте разбираться, со второй частью, что же такое, собственно, "волны".


Море все видели (ну, хотя бы на картинке), в детстве "море волнуется раз..." все играли? На простом языке, без формул - волна, это некая хрень, которая появляется при движении какой-то фигни с ускорением.


В самом прямом смысле слова, это абсолютно точное описание волны. Мы привыкли думать об "ускорении", когда что-то ехало медленно, а потом поехало быстро. Но в этом случае, данное что-то уже уехало и все про него забыли. Здесь волна тоже рождается (ведь движение было с ускорением, это важно!), но формой будет далека от привычной всем синусоиды. Гораздо удобней никуда не ехать, а просто "дрыгаться на месте". Вперед-назад, вправо-влево или вверх-вниз. Это ведь тоже движение с ускорением, с переменным ускорением туда-сюда. Или по кругу.

Закиньте поплавок в воду, и начните дрыгать его вверх-вниз. Получите волны на поверхности пруда.


Натяните гитарную струну, и начните дрыгать ее вверх-вниз. Получите звук, то есть акустические волны воздуха.


Возьмите заряженную частицу, например, электрон и начните дрыгать его вверх-вниз. Получите электромагнитную волну. Самым натуральным образом - возьмите эбонитовую палочку, потрите ее о мех и начинайте яростно трясти заряженной палочкой в воздухе. Сосредоточьтесь на процессе, вы не просто выглядите как идиот, вы при этом еще и радиоволны излучаете. Конечно, учитывая невеликий заряд и невысокую частоту махания на стандартный радиоприемник эту передачу поймать будет затруднительно. Но она есть, ваши персональные радиоволны можно обнаружить, хоть и придется повозиться с аппаратурой.


Дальше все сложней и замороченней. Эбонитовая палочка плюс еще рука ведь что-то весят! Перемещая с ускорением массу в пространстве вы тем самым создаете гравитационные волны. Правило простое, перемещаем заряд - порождаем электромагнитную волну, перемещаем массу - имеем гравитационную.


Получается, что все мы суть генераторы гравитационных волн? Да, получается. Все дело лишь в интенсивности усилий.


Я уже говорил, что эбонитовой палочкой, еще и вручную, вы особых радиоволн не нагенерируете. Но что-то такое, на пределе аппаратных возможностей современными технологиями можно уловить. С гравитацией все хуже и серьезней. Гравитационное взаимодействие гораздо слабей электромагнитного. А значит построить прибор для детектирования гравитационных волн (гравитоприемник) гораздо сложней.


Насколько сложней? Видимо, как минимум, насколько слабей. А насколько слабей? Вот, скажем, есть у нас два электрона. Они висят в пространстве и оба имеют массу и электрический заряд. Наличие заряда, да еще и одноименного заставляет электроны отталкиваться, благодаря "электромагнитной силе" (хоть так говорить не совсем правильно), а наличие массы заставляет их притягиваться благодаря "силе взаимной гравитации". Какая сила перевесит, электромагнитная отталкивания или гравитационная притягивания?

Правильно, электромагнитная. Потому что она сильней. А во сколько раз? В 10000000000000000000000000000000000000000, вот во сколько. Не шучу, 10 додециллионов (прописью десять миллиардов миллиардов миллиардов триллионов), т.е. 10^40 раз. Во столько раз сложней построить гравитоприемник (детектор гравитационных волн) по сравнению с радиоприемником (детектором волн электромагнитных). Ну, или около того, в таких пределах. Потому-то в мире частиц и мире людей балом правит электромагнитное взаимодействие. Гравитацию частиц, людей и даже горных хребтов можно в расчеты не включать, додециллионы решают. И лишь в мире планет и звездных систем гравитация вступает в свои права. Редко встретишь электрически существенно заряженную звезду или планету, а масса есть у всех.


Именно по этому так сложно обнаружить гравитационные волны, они очень слабенькие. Очень-очень-очень-...(36 раз очень)...-очень слабенькие. Рукой трясти вообще бесполезно. Нужно сразу звездой трясти или черной дырой. По расчетам, лишь при взрыве сверхновой или слиянии двух черных дыр в космосе произойдет достаточная встряска пространства-времени, чтобы мы тут на Земле смогли что-то зафиксировать.

Источник- http://телегра.ф/Gravitacionnye-volny-na-palcah-02-04

Показать полностью 7
Гравитационные волны Космос Гифка Длиннопост
37
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии