Химия
21 пост
21 пост
Отборная стеклодувная эротика. Наслаждайтесь!
Приветствую!
Времени категорически не хватает, поэтому длиннопосты про науку будут ещё нескоро. Но тут нам пришло кой-какое химическое оборудование, и в том числе ротор (ротационный вакуумный испаритель), про который я рассказывал в этом посте. Я по ходу распаковки его фоткал (обычная практика, на случай повреждений, чтобы не было проблем с гарантией) и немного увлёкся. Ну и решил поделиться фотографиями с вами. Не буду устраивать реверансы на тему "реклама - не реклама", скажу сразу - это будет ротор Heidolph Hei-Vap Value.
Итак, поехали!
Приходит ротор в обрешетке. Понятное дело - стекло и дорогой прибор!
Снимаем обрешетку. Как же я задолбался без фомки, теперь я понимаю, почему Фримен постоянно с ней таскался. Внутри уложен прибор в собранном виде, но без стекла. Стекло в отдельной коробке.
Это шланги и хомутики, идут в комплекте. Шланги очень высокого качества, они толстостенные но гибкие и эластичные, держат вакуум до сотых долей милибара. Даже на ощупь приятные.
Вот он, наш герой. Я затупил, и не снял процесс сборки - каюсь. Но там всё просто. Этот ротор мы заказывали на остатки, скопившиеся к концу отчетного периода, поэтому пришлось взять модель без дисплея. Честно говоря, сейчас я об этом уже немного жалею.
Эти модные крутилки - органы управления. Слева - скорость вращения в rpm, справа - температура бани. Кнопки над ними - вкл и выкл. В бане может быть вода, а может быть и масло - если надо греть сотню или выше.
Вот такой вот интересный ракурс я взял просто по приколу. В это отверстие встанет стеклянный патрубок - элемент ротора, который вращается в сальнике (бежевая прокладка по центру) и герметизирует систему. Черная муфта стоит на резьбе и прижимает фланец холодильника к сальнику.
Вот так вот выглядит разъем, соединяющий ротор и баню. ХЗ зачем там столько контактов. Разъем имеет накидную гайку и крепится очень надежно. И влагозащищенно.
Это лапка - дополнительная точка крепления холодильника.
Ну и на десерт я оставил самое красивое - комплект стекла! Длинная дура по центру - холодильник. Холодильник вертикальный, поэтому фланец торчит сбоку (слева-сверху). В верхнем торце, который после установки станет нижним - шаровый шлиф.
Справа, в желтой сетке - патрубок. В новой модели роторов Heidolph наконец-то стали делать усиленные патрубки, из толстого стекла. Верхняя колба - просто перегонный куб на литр. Нижняя колба - приемник, с шаровым шлифом, цепляется на шаровый шлиф ротора. Нержавеющая штуковина слева сверху - это зажим, который удерживает подсоединенный на шаровом шлифе приемник.
Поверх всего этого безобразия - тефлоновые капилляры. На конце одного из них - перепускной клапан для сброса давления/закачки инертного газа/набора жидкости.
Вот он, наш герой. В сборе и полностью подключенный.
На сегодня всё! Комменты для минусов внизу. Честно. Вот прямо сейчас напишу, пока не забыл.
Приветствую!
В предыдущей части мы поговорили о ЯМР-спектроскопии, о том, как она работает и какую роль играет в работе химика-органика. Сегодня речь пойдет о других методах и приборах, помогающих химикам устанавливать строение молекул и материалов.
Я расскажу про молекулярную спектроскопию, а также некоторые методы элементного анализа. Это будет предпоследняя часть, посвященная оборудованию для синтетической лаборатории. Думал, будет последняя, но ещё методы анализа поверхности остались.
Итак, поехали!
1)Пожалуй, второй после ЯМР метод исследования строения и состава вещества - масс-спектрометрия. Принцип её таков - атомы или молекулы превращаются в заряженные частицы (ионизируются) и разгоняются в электрическом поле. Разогнанный пучок ионов далее подвергается действию магнитного поля, которое, как известно со времен Лоренца, отклоняет движущиеся заряженные частицы, причем так уж вышло, что при постоянной индукции поля угол отклонения зависит только от массы частицы, деленной на её заряд (m/z). А отсюда можно получить массу частицы (заряд однозначно определяется из величины изотопного сдвига). Если метод ионизации достаточно мягкий, и не разрывает молекулу на части, то из массы частицы можно получить молярную массу молекулы. А если использовать масс-спектрометрию высокого разрешения, то получится точная масса частицы, из которой можно однозначно вычислить брутто-формулу частицы, то есть её состав.
Есть также методы, подразумевающие фрагментацию молекул (например EI) и спектроскопия вторичных и даже третичных ионов. Во-первых эти методы дают абсолютно уникальные МС-паттерны веществ, что очень полезно при анализе смесей, а во-вторых, различные фрагментации, перегруппировки и вторичные ионы могут кое-что сказать о структуре знающему человеку.
Так выглядит типичный масс-спектр. Это спектр низкого разрешения, спектры высокого более информативны, но намного более "загруженные" и не такие наглядные.
Принципиально масс-спектрометр состоит из следующих частей:
-Ионизатор. Кэп сообщает, что ионизатор ионизирует. Способов ионизации - десятки под самые разные задачи. Наиболее популярными у органиков являются методы ESI и APPI, где раствор вещества с ионизирующей добавкой распыляется в высоком вакууме, и MALDI, в котором ионизация производится с помощью лазерных импульсов. Последнее время набирает популярность DART.
-Масс-анализатор. Он отвечает за "дифференциацию" частиц по величине m/z. В простейшем случае это просто катушка, наводящая постоянное магнитное поле. Сейчас такая схема почти не используется, анализаторы делают на основе времяпролетных камер TOF, квадрупольных систем или орбитальных анализаторов типа ORBITRAP или ион-циклотронного резонатора. Также применяют тандемные двойные и даже тройные анализаторы.
-Масс-детектор. Тут всё просто, если не залезать в ICR. Большинство детекторов работают либо как ФЭУ, либо детектируют ионный ток.
MALDI масс-спектрометры. Верхний похож на автомат с газировкой =) Нижний похож на пианино, но намного круче.
Популярная линейка времяпролетных и тандемных масс-спектрометров. Поддерживают несколько ионизаторов - ESI, APCI, APPI, сопрягаются с ВЭЖХ.
Для рутинных измерений пределом измеряемых масс считается 10 кДа для ESI/APPI и 20-30 кДа для MALDI. Однако в отдельных случаях поднимают молекулы массой в сотни тысяч дальтонов.
Плюсы метода:
-Высокая чувствительность. На масс-спектроскопию требуются даже не десятые - сотые доли миллиграмма. В таких количествах вещество даже глазами-то не увидишь. Мы кладем одну крупинку - этого всегда хватает.
-Высокое разрешение. HRMS по сути является методом элементного анализа отдельных молекул.
-Сейчас разработана целая куча методов ввода и ионизации пробы, позволяющих анализировать образцы любого вида - твердые, жидкие. Можно делать анализ прямо с пластины ТСХ. Можно подключить хроматограф.
-Экспрессность. В принципе, анализ идет 2-3 минуты.
Минусы:
-Низкая репрезентативность. Масс-спектрометрия может вытянуть какую-нибудь хорошо ионизирующуюся примесь, присутствующую на уровне миллионных долей, и в спектре она будет выглядеть основным компонентом
-Не всё и не всегда можно ионизировать. Тем более если доступен ограниченный набор методов ионизации.
-Структурной информации масс-спектр дает не очень много.
Стоимость приборов варьируется в широких пределах - от 1.5 млн.р. за спектрометр EI с квадрупольным детектором до 50-70 млн.р. за ион-циклотронный спектрометр (цена взята почти с потолка, если кто имеет инфу по ценам на ICR, поправьте). Наиболее ходовые ESI-TOF спектрометры, например те, что на картинке выше, идут от 5 до 10 млн.р, MALDI чуть подороже - от 10 до 15 млн.р.
2)Рентгеновская дифракция на монокристаллах. Часто называют рентгеноструктурным анализом или РСА. Метод заключается в том, что дифракционная картина, наблюдаемая при облучении монокристалла вещества рентгеновским излучением (по-старому лауэграмма), позволяет путем очень сильного колдунства определить координаты атомов (кроме атомов водорода) в ячейке кристалла.
Плюсы очевидны - на выходе ты получаешь набор координат атомов, то есть полную 3D модель молекулы. Почти полную, так как атомов водорода метод не видит. Их достраивают потом с помощью расчетов, но они не так и важны, главное - остов молекулы. Из этих данных можно извлечь массу полезной информации - длины связей, расстояния между атомами, межплоскостные расстояния, упаковку молекул в кристалле и т.д.
Когда речь идет об установлении структуры - против РСА не попрешь. Если данные ЯМР, МС и уж тем более ИК-спектроскопии являются, строго говоря, косвенными и допускают трактовку, то данные РСА, проведенного с кристалла надлежащего качества, оспорить уже не получится. Именно с помощью РСА были установлены структуры ДНК, его используют для изучения белков, рецепторов и других биологических объектов. Кроме того, как ни странно, метод довольно бюджетный. Прибор стоит сравнимо с масс-спектрометром и намного дешевле ЯМР, расходки тратится минимум. Плюс, ввиду простоты схемы прибор практически не устаревает морально, а простота конструкции обеспечивает надежность. Единственный, по сути, источник поломок - источник излучения.
Лауэграмма. Старая, записана на фотопластину. Сейчас получается примерно такое же, но на компьютере.
Минусы не так очевидны, но тем не менее существенны, и именно из-за них рентгеноструктурный анализ в настоящее время проигрывает ядерному магнитному резонансу.
-Самый главный минус - нужен кристалл. Далеко не все органические вещества стремятся образовывать кристалл. Многие из них существуют в виде масел, порошков, аморфных фаз. Причем, по закону подлости, чем сложнее структура вещества, тем сложнее из него вырастить кристалл. Причем кристалл нужен не абы какой - низкодеффектный, достаточно крупный (сотни микрон, причем по всем измерениям - пластинчатые и игольчатые кристаллы не подойдут). Есть РСА на синхротронном излучении, он позволяет провести структурный анализ значительно более мелких кристаллов, но синхротроны во всём мире по пальцам можно пересчитать. Существует больше десятка различных методов выращивания монокристаллов, и когда растят кристаллы сложных веществ на РСА, ставят одновременно по 10-20 образцов по разным методам, чтобы повысить вероятность успеха.
Вероятность, что вещество можно будет растворить в дейтерированном растворителе и сдать на ЯМР, намного, нет, НАМНОГО выше вероятности вырастить из него пригодный для РСА кристалл.
-Второй минус имеет схожую природу. Представьте себе такую ситуацию: химик Вася получил вещество. Насколько оно чистое? 90%? 95%? 98%? Вася не знает. И ставит Вася кристаллизацию. И вырастает у Васи кристалл, большой и красивый. Вася несет его на РСА, устанавливает структуру... А потом бац - и элементник-то не сходится. И ЯМР тоже другую структуру дает. А всё почему - потому, что примесь, зараза, оказалось очень хорошо кристаллизующейся. Вот это, примесный кристалл Вася-то и понес на РСА. Говоря языком химиков, репрезентативность хреновая оказалась.
-Третий минус - это минус, обусловленный человеческим фактором (сейчас будет минутка баттхерта). Не знаю, как и почему так сложилось, но в самых разных странах, институтах и научных группах специалисты по РСА обладают невероятно высоким ЧСВ. Даже не столько ЧСВ, это хрен бы с ним, сколько неуёмной публикационной жадностью. Где бы я ни работал, сколько бы ни общался с коллегами - везде одна и та же история: при публикации статьи рентгенщики требуют включения себя в список авторов за любое рутинное измерение. Доходило до смешного - у меня есть статья, в которой снят один-единственный абсолютно рядовой РСА, и для того, чтобы мне его сняли, мне пришлось включить в соавторы 3 (трех, Карл!) человек. В тот момент я находился на стажировке, был человеком полностью подневольным, я изложил начальнику ситуацию, он сказал, что придется их включить. Сейчас я бы в ответ на такой демарш предложил бы авторам идеи прогуляться на три буквы. Благо, специфика моей нынешней тематики практически исключает возможность использования РСА.
При этом я бы не сказал, что съемка и решение рутинных РСА отличается какой-то особенной трудоемкостью или сложностью. Съемка стандартного набора корреляционных ЯМР-спектров (COSY, NOESY, HMBC, HSQC) занимает куда больше времени, да и с точки зрения интеллектуальной нагрузки явно не проще. При этом я ни разу не видел, чтобы ЯМР-щики требовали включить их в авторы за рутинные спектры, пусть даже в статье их несколько сотен. Один из моих начальников, у которого я работал в Германии, даже купил за свои деньги подержанный дифрактометр и сам снимал РСА для своей научной группы, ибо условия, выдвигаемые местными рентгенщиками, были для него абсолютно неприемлемы. Есть такая народная примета - если видишь человека с явно неадекватным возрасту числом публикаций, причем по абсолютно разным темам - скорее всего перед тобой рентгенщик.
Монокристальный дифрактометр. Про него и говорить-то особо нечего.
Съемка РСА выглядит следующим образом - берем выращенные кристаллы (их всегда вырастает много) и идем под микроскоп. Визуально выбираем самый красивый - прозрачный, равномерно преломляющий, правильной формы. Вынимаем его в масло и переносим на холдер в капле масла или клея. Холдеры бывают разные, я работал с петельными холдерами. Далее монтируем холдер в прибор, устанавливаем с помощью камеры и лазерного прицела кристалл правильно, и делаем пробный скан - это три-пять минут. По этому скану видно, хороший кристалл или нет. Если хороший - термостатируем, запускаем запись дифрактограммы и идем пить чай - прибор всё сделает сам. Время записи варьируется от 20-30 минут до нескольких дней, однако на практике рентгенщики крайне редко соглашаются ставить кристалл больше, чем на ночь. Кристаллы органических веществ, ввиду большого количества водорода и конформационной подвижности молекул, обычно снимают при низких температурах. Чаще всего при 100К.
По окончании измерения прибор попытается решить дифрактограмму сам. С большой вероятностью у него это не получится или получится с плохой сходимостью, поэтому надо будет дорешать вручную. Ну, как вручную - в специальном софте ShelX или его немногочисленных аналогах. Иногда приходится делать более сложные телодвижения - оптимизировать структуры квантово-механическим расчетом, а потом коррелировать симулированную на основании этого дифрактограмму с экспериментальной. Но это приходится делать самому, рентгенщики скажут "кристалл не решается, давайте другой".
Отличия между разными моделями дифрактометров малы (рентгенщики, конечно, будут возражать, но по сравнению с бесконечным разнообразием, скажем, хроматографов или масс-спектрометров различия между дифрактометрами выглядят совершенно мизерными). Актуальных цен я не знаю, но полагаю, что речь идет о суммах в пределах 10 млн.р., если речь не идет о топовых приборах. Цен на синхротроны я не знаю, так как это уникальное оборудование и рынка этих приборов нет. Но суммы явно астрономические. Обычно если кому-то нужно сделать РСА на синхротроне, они просто едут туда, где он есть.
Ещё есть рентгенофазовый анализ, это дифракция рентгеновского излучения на поликристаллических порошках, но он дает совершенно другую инфу.
3)ИК-спектроскопия. Спектроскопия поглощения в области инфракрасного излучения. А также примкнувшая к ней спектроскопия комбинационного рассеяния ака Раман. Излучение ИК-диапазона - это в первую очередь тепловое излучение. Вы легко можете его почувствовать, скажем, сидя у камина - именно оно, а отнюдь не горячий воздух, является основным каналом переноса тепла в данном случае. Самая дефолтная для органиков ИК-спектроскопия производится в диапазоне 4000-400 см^-1. Исторически именно в таких извратных единицах, называемых волновыми числами, измеряется длина волны в ИК-спектроскопии.
Энергии фотонов, находящихся в диапазоне 4000-400 см-1 в основном соответствуют переходам между колебательными энергетическими уровнями молекулами. В переводе на человеческий язык - полосы поглощения в ИК-спектрах соответствуют в основном колебаниям длин химических связей и углов между ними. И всё бы было хорошо, но есть нюанс - связей в молекуле много, и все (почти) очень похожие. Поэтому область примерно от 1500 до 700 см-1 заполнена туевой хучей перекрывающихся полос и носит гордое название "область отпечатков пальцев". При желании там можно найти что угодно, даже парный носок. Область выше 2700 см-1 заполнена сигналами связей с атомами водорода, и тоже зачастую не особо информативна.
Самая мякотка начинается в области от 2500 до 1500 см-1. Там кучкуются сигналы функциональных групп - карбонильные, тиокарбонильные, иминные, нитрильные, нитро- и нитрозосоединения, всякие диазогруппы, различные цианиды-цианаты-изонитрилы, сульфоксиды. Поэтому главным образом ИК-спектроскопия используется именно для анализа функциональных групп. По идее, здесь ещё должны быть всякие двойные и тройные C-C связи, но из-за низкого их дипольного момента (обычно) они нифига не видны. Есть ещё область ниже 700 см-1, в которой видны различные полосы, характерные для комплексов переходных металлов, что тоже бывает полезно. Помимо диапазона 4000-400 см-1 есть приборы и под другие диапазоны ИК-области. Однако данные, получаемые из таких спектров, мало что дают в плане установления строения вещества.
Раман-спектроскопия выглядит немного по-другому: образец облучают видимым светом, который при рассеянии на веществе теряет немного энергии и возвращается обратно. Вот это самое "немного" и соответствует тем же энергиям, что и 4000-400 см-1 в ИК-спектроскопии, поэтому и валят Раман в одну кучу с ИК. Однако есть нюанс - в ИК чем больше дипольный момент колеблющейся связи, тем интенсивнее её поглощение. А в Рамане всё наоборот - чем меньше дипольный момент, тем интенсивнее поглощение (ах, простите, неупругое рассеяние). Поэтому эти методы неплохо дополняют друг друга. Плюс, в силу технических причин, Раман, а точнее, Рамановскую микроскопию, очень хорошо использовать для исследования поверхностей, но об этом в другой раз.
ИК-спектр диоктилфталата. Этот диоктилфталат повсюду - его используют как пластификатор во многих полимерах. В данном случае, по старой традиции, по оси ординат не поглощение, а пропускание.
ИК-спектры, аналогично ЯМР, сейчас снимают в импульсном режиме с последующим преобразованием Фурье. Раньше в ИК использовали солевую оптику - натурально, призмы и прочие элементы из здоровенных кристаллов солей, боящиеся влажности. Хранили их в специальных коробках с осушителями. Сейчас, к счастью, в серийных приборах от этого уже отказались. Образец можно снимать в газовой фазе растворе, в таблетке (берут вещество твердое или жидкое, растирают с ИК-прозрачным материалом таблетки, обычно это бромид калия, и формуют таблетку в прессе), в пленке. Но самый лучший и удобный вариант - НПВО или ATR - неполное внутреннее отражение. Для этого существует специальная приставка с призмой (обычно алмазной, так-то!), на призму просто капают или кладут кристаллик вещества и прижимают сверху. И всё, образец готов к съемке.
FTIR спектрометр. Как раз с ATR приставкой. Ручка - для прижимного устройства, под ним смонтирована алмазная призма.
Из плюсов метода - очень низкая цена анализа, особенно с ATR. Правда, приставка ATR стоит как пол-спектрометра, но оно того стоит. ATR дает и более важное преимущество - экспрессность, один анализ занимает минуту-две. Ну и прибор всеяден в плане агрегатного состояния образца - хоть жидкость, хоть порошок, хоть аморфная жвачка - снимет всё! Область отпечатков пальцев, кстати, не совсем бесполезна - это по сути довольно индивидуальная сигнатура вещества. Поэтому по ИК довольно удобно осуществлять контроль за содержанием и чистотой вещества, имея на руках известный спектр.
Минусы - спектр дает не так много структурной информации. Расшифровать строение сколько-нибудь сложной молекулы, имея на руках только ИК-спектр практически невозможно. ИК-спектроскопия скорее идет в дополнение к ЯМР и масс-спектрометрии, и служит для анализа функциональных групп, которые не всегда однозначно можно определить ЯМРом.
Стоимость самого прибора - 3-5 млн.
4)Напоследок расскажу про элементный анализ. Наиболее применимым для органических соединений является комбустионный C,H,N,(S, Hal) - анализ. Принцип работы прост как дрова - навеска вещества сжигается в кислороде в присутствии катализатора, в результате чего получаются газы - CO2 из углерода, H2O из водорода, N2 из азота, SO2 из серы и т.д. Дальше это всё поступает в газовый хроматограф, где с высокой точностью измеряются количества этих газов. Зная массу исходной навески и кол-ва газов, можно рассчитать содержание соответствующих элементов в навеске. Выдает просто цифири, например - С 37.42%, H 4.12%, N 6.11% ну и остальные...
Помимо этого метода есть ряд альтернативных деструктивных методов элементного анализа. Например, определение азота по Кьельдалю или Дюма, для определения галогенов тоже есть свои методы.
Современный CHN-анализатор. Так и не скажешь, что внутри происходит сжигание труповобразцов.
Помимо этого, есть ещё 1000 и 1 метод элементного анализа - ICP-MS, AES, AAS, XRF, XPS, EXFAS, Мёссбауэр и ещё 994 других, о которых я даже и не знаю. Они заточены под анализ ядер более тяжелых, чем водород, углерод, азот и кислород, составляющие большую часть органических соединений. Конечно, все эти элементы (кроме водорода) могут быть определены, скажем, тем же ICP или XRF, но точность будет на порядок, а то и на два ниже, чем у старого доброго CHN-анализатора.
Главное преимущество CHN метода состоит в том, что это валовый метод анализа. Это значит, что данные анализа абсолютно репрезентативны и отражают состав образца как единого целого, вне зависимости от того, какие вещества в него входят. В ЯМР не видно неорганики. В масс-спектре может быть не видно основной компонент или примесные пики по интенсивности могут быть на порядок больше основных. В ИК вообще может быть видно что угодно. А вот элементный анализ как штык - сколько атомов есть, столько и покажет.
Из минусов - метод капризный и довольно трудоемкий. К тому же, хоть сейчас и есть приборы, которым достаточно 0.5 мг на анализ, но рядовые приборы жрут по 5-10 мг, причем с концами - сжигают их. Если для середины прошлого века, когда получать меньше 100 мг вещества было моветоном, это и не было проблемой, то сейчас, когда 5 мг достаточно для всей спектроскопии, такие аппетиты неуместны. Кроме того, метод дает адекватную информацию только для очень чистых веществ. То есть 98% чистоты, которые считаются достаточными для применений, связанных с синтезом, дадут отвратительный элементник. И вот оно надо - тратить на доочистку под элементник больше времени, чем на синтез и спектроскопию, вместе взятые? Ну, и наконец, никакой информации о строении тут извлечь нельзя - только состав, только хардкор.
Стоит такой анализатор от 1-5 млн.р. в зависимости от бренда и опций.
Описанный выше набор приборов так или иначе необходим для полноценной работы органика-синтетика. Такие приборы редко покупают на группу, даже не столько в силу цены (ИК-спектрометр, скажем, или настольный ESI-MS, вполне доступен состоятельной научной группе), сколько из-за того, что одна группа вряд ли сможет предоставить приборам достаточную загрузку. Хотя, бывают и исключения - в одной из групп, где я работал, на 8 взрослых сотрудников был свой ИК, два масс-спектрометра, ESI/APPI и MALDI, и даже РСА. Но это скорее исключение из правил и заслуга завлаба, который умудрялся доставать эти приборы задешево абсолютно непостижимыми путями. В норме же такие приборы покупают на кафедру. Если покупают на институт, берут несколько приборов с различным оснащением.
Итак, сегодня мы разобрали приборы, необходимые для анализа строения органических веществ. Впереди у нас методы анализа поверхности и строения материалов. В этой теме я не так силен, поэтому рассказ будет довольно поверхностный.
На сегодня всё!
Баянометр выдаёт какую-то фигню. Абсолютно не понимаю, как он работает, толку с него ноль. Комменты для минусов внизу.
Заходил на днях к троюродной сестре, малой (старшей дочери сестры) принес мягкую игрушку - кота, задолжал за день рождения.
Сидим, чай пьем, и тут малая прям в гостинной развивает бурную деятельность - достает набор юного доктора, одевает халат, стетоскоп на шею, вся такая деловая. Кладет кота на журнальный столик, тыкает его игрушечным шприцем, берет ножницы и отрезает у кота бирку. Ну, ту, где написано кто его сшил и как его стирать. И приговаривает ласково так "не бойся, котя, щас мы тебя кастируем и будешь добрый и ласковый".
Фалломорфируем, сестра себе пряником чуть в глаз вместо рта не попала. И тут она вспоминает, что когда малая услышала про кастрацию их домашнего кота, начала канючить, ну ей папаша и объяснил с использованием плюшевых животных в качестве наглядных пособий.
Предлагали остаться на ночь - отказался, возникли серьезные опасения за сохранность собственной...бирки
Приветствую!
Когда я только начинал пилить посты на Пикабу, я решил, что не буду заниматься научпопом. Весь научпоп, который я читал\слушал\смотрел до этого, был либо не научным, либо не популярным.
Однако по мере написания постов серии "Сколько стоит лабу построить" мне волей-неволей пришлось ступить на эту скользкую дорожку, просто для того, чтобы читатели понимали, зачем мы покупаем очередную страхолюдную хреновину ценой в крыло от истребителя. В процессе же подготовки текста очередной части, дойдя до ЯМР-спектрометра, я понял, что рассказать о нём в двух словах просто-таки невозможно, такую большую роль он играет в работе органика-синтетика. Поэтому я выделяю рассказ о нём в отдельный пост, чтобы потом просто сослаться на него при перечислении.
Итак, поехали!
Для начала немного техноэротики. 900 МГц ЯМР фирмы Varian. Для понимания масштаба на прибор сверху поставлена девушка =)
Итак, спектроскопия ядерного магнитного резонанса, или ЯМР. Только за сам метод и его развитие было присуждено две Нобелевские премии - по физике за 1952 год и по химии за 1991 год. Плюсом к этому идут ещё две премии - химия за 2002 год, за филигранное использование метода для определения структуры биомолекул, и по физиологии и медицине за 2003 год - за МРТ. Сколько работ, получивших Нобелевскую премию, стали возможными благодаря ЯМР - не счесть!
Метод ЯМР не имеет конкурентов в деле установления структуры растворимых молекул. Даже рентгеновская дифракция на монокристаллах обладает куда более скромными возможностями - для неё нужен монокристалл, тогда как ЯМР работает с любыми растворами. Кроме того, ЯМР позволяет анализировать смеси, и даже дает информацию об их составе. Остальные же методы, будь то спектроскопия или что-то другое, безнадежно проигрывают ЯМР в этой области. Вдобавок, метод ЯМР можно использовать для изучения механизмов, кинетики и термодинамики реакций, для конформационного анализа, физико-химических экспериментов таких как измерение коэффициентов диффузии. Большинство журналов, посвященных органической химии, считают ЯМР самым надежным методом установления структуры и чистоты вещества.
В основе метода лежит тот факт, что многие атомные ядра обладают ненулевым собственным магнитным моментом μ. Магнитный момент, как и любой момент - величина векторная, тобишь имеет направление. Вектор μ может иметь несколько направлений, каждое из которых характеризуется проекцией на условную ось вращения ядра, и соответствующие им значения ядерного спина m. Значения эти равны косинусу угла между вектором μ и условной осью вращения. В сферическом ядре в вакууме эти направления вырождены, т.е. соответствующие им состояния неразличимы. Однако если мы наведем внешнее магнитное поле, то мы получим точку отсчета - вектор индукции, и вырождение снимется - мы сможем различать между собой состояния m. Далее для простоты изложения и восприятия я в качестве примера буду использовать протон - ядро 1Н, имеющее m = (+/-)1/2.
Энергетическая диаграмма спиновых состояний ядра 1Н. Как можно заметить, величина ΔE прямо пропорциональна B0.
Если есть два состояния, отличающихся по энергии - система может переходить между этими состояниями. Разумеется, не бесплатно - для того, чтобы попасть на более высокий уровень, система должна откуда-то взять энергию, а чтобы попасть на более низкий - кому-то эту энергию отдать. В том случае, когда эта энергия поглощается/излучается в виде электромагнитной волны, говорят о резонансном поглощении/испускании. При температурах записи ЯМР-спектров (редко превышающих 500 К) почти все ядра находятся в основном, самом низкоэнергетическом, состоянии. Доля возбужденных ядер крайне мала.
Энергия, а, следовательно, длина волны, соответствующая резонансному переходу в ЯМР, прямо пропорциональна величине индукции поля, и связана с ним посредством гиромагнитного отношения γ, которое является постоянной величиной для каждого ядра. Однако, говоря о ЯМР, принято оперировать не длинами волн, а частотами, благо они связаны друг с другом соотношением Планка. В итоге имеет место быть следующее соотношение между резонансной частотой поглощения/испускания:
ν = γB0/2π
Для ядер 1Н резонансная частота при индукции поля в 11.74 Тл составляет 500 МГц. Это довольно-таки типичные параметры для современного ЯМР-спектрометра.
Изначально спектры снимали очень просто - банально сканировали интересующий диапазон частот, записывая спектр поглощения (то есть зависимость доли поглощенной энергии от частоты). Были спектрометры, в которых меняли частоту при постоянном поле, потом перешли к более простой схеме - менять поле при постоянной наблюдаемой частоте. Однако оба этих варианта были далеки от идеала. Были проблемы и с чувствительностью, и с качеством спектров, и с временем съемки, и с количественными характеристиками спектра. Были даже проблемы, связанные с нагревом образца из-за постоянного облучения!
И тогда на помощь пришел Шарль Фурье, а точнее, его преобразования, позволяющие разложить сумму гармонических колебаний на спектр - совокупность частот и соответствующих им интенсивностей. Фурье-ЯМР выглядит так: сначала образец облучают коротким высокочастотным импульсом, покрывающим весь интересующий диапазон. Этот импульс частично поглощается ядрами, создавая определенную заселенность возбужденного уровня. А дальше возбужденные ядра начинают релаксировать - испускать излучение в радиочастотном диапазоне, переходя обратно в основное состояние. Записывая совокупный электромагнитный сигнал как функцию от времени, получают так называемый спад свободной индукции.
Схема ЯМР спектрометра. Жидкий азот и гелий нужны для работы сверхпроводящего магнита.
Вся электроника, содержащаяся в корпусе магнита, находится в самом низу прибора. А образец загружают через верх. На ампулу надевают специальную турбинку, и вставляют всё это в трубку сверху. Ампула поддерживается потоком воздуха. После нажатия на кнопку она опускается вниз, и благодаря турбинке, раскручивается сжатым воздухом (любые механические привода в этой зоне будут давать помехи). После окончания эксперимента образец поднимается наверх тем же сжатым воздухом. Помимо ручной загрузки образцов используют автосамплеры.
Современные ЯМР-спектрометры исследовательского класса создают в рабочей зоне поля в 10 Тл и выше, причем очень низкоградиентное в значительном объеме. Единственный способ обеспечить такое поле - использовать сверхпроводящий магнит. А это выливается в необходимость непрерывного обеспечения спектрометра жидким азотом и жидким гелием. И если небольшой генератор жидкого азота стоит, по сравнению с самим спектрометром, сущие гроши - 3-5 млн.р., то с жидким гелием могут возникнуть проблемы. Если провафлить заливку азота или гелия (азот нужен чтобы дорогой гелий медленнее испарялся) - прибор вырубается и попадаешь минимум на 100К. Столько стоит его повторный запуск. А может и поломаться, там суммы вообще труднопрогнозируемые.
Помимо сверхпроводящего магнита в самом корпусе магнита находятся излучатели и приемники радиочастотного диапазона, а также всякие вспомогательные приблуды - нагреватели\охладители, специальный пневматический привод для вращения образца и т.д. Кроме корпуса магнита есть ещё т.н. радиоблок - тумба, в которой находятся импульсные генераторы, детекторы и прочая электроника. Подключено это всё, естественно, к компьютеру, который после определенных манипуляций выдает FID.
Вот так выглядит FID - спад свободной индукции. По оси абсцисс - время, по оси ординат - интенсивность излучения.
Пропустив эту функцию через жернова преобразований Фурье мы получаем ЯМР-спектр в привычном нам виде, то есть в виде зависимости интенсивности от частоты.
Вот один из реальных спектров, который я снимал N лет назад. Так он выглядит после всей обработки, так он и был вставлен в статью.
Возникает логичный вопрос - а как всё это связано со строением молекулы? Дело в том, что в молекуле есть и другие частицы, имеющие магнитный момент - электроны. Электроны образуют в пространстве, занимаемом молекулой, неодородное магнитное поле, которое может слегка (на миллионные доли) изменять величину индукции магнитного поля в той или иной точке. А вместе с изменением поля меняется и резонансная частота. В итоге выходит, что резонансная частота того или иного ядра зависит от электронной плотности вокруг него. Ну а электронная плотность отражает строение молекулы.
Но этой информации явно маловато. Благо, из ЯМР-спектра на ядрах 1Н можно выжать ещё немало информации. Начнем с того, что в силу нашего сказочного везения ядра 1Н позволяют без особых ухищрений записывать спектры, отражающие количественную картину. То есть, интегральные интенсивности сигналов в спектре пропорциональны количеству резонирующих протонов. Скажем, в 1Н ЯМР спектре пропана, который содержит 6 эквивалентных метильных протонов и 2 эквивалетных метиленовых протона, мы увидим 2 сигнала с соотношением интенсивностей 6:2. Большинство остальных ядер не позволяет без танцев с бубном оценивать количество эквивалентных ядер, но и протонов хватает.
Кроме того, ядра, расположенные близко друг к другу, могут взаимодействовать друг с другом. Взаимодействие это, называемое спин-спиновым, передается по химическим связям, поэтому близость определяется числом связей, разделяющих ядра, а не кратчайшим расстоянием. Взаимодействуя, ядра образуют спиново-связанный ансамбль, который дает сигналы сложной формы, состоящие из нескольких пиков разной интенсивности. Анализируя формы этих сигналов, можно получать информацию о взаимном расположении ядер в молекуле.
Я не буду углубляться в специальные импульсные последовательности и тем более в 2D-ЯМР спектроскопию. Эти техники позволяют выжать из ЯМР-спектров молекулы ещё массу структурной информации, но их слишком много и они слишком сложны. Скажу только, что на сегодняшний день практически не осталось задач установления структуры органических веществ, которые бы не были разрешимы с помощью спектроскопии ЯМР.
Теперь о практической стороне вопроса. Для органиков ЯМР = жидкостный ЯМР, где образец анализируется в виде раствора в дейтерированном растворителе. Дейтерированный он должен быть, во-первых, чтобы протоны растворителя не подавляли сигналы растворенного вещества, а во-вторых, чтобы осуществлять дейтериевую коррекцию, позволяющую избежать уширения, связанного с дрейфом поля. Раствор должен быть гомогенным (никакой взвеси\пыли\эмульсии) и не содержать парамагнитных примесей. Раствор образца помещается в ЯМР-ампулу стандартного образца, изготовленную из специального стекла.
5 мм ЯМР-ампулы с крышками. Есть ещё 3 мм и, вроде, 7 мм. Чем более однороден и диамагнитен материал стекла, тем выше качество спектров.
Теперь о ценах. Цена спектрометра в первую очередь определяется его рабочей частотой (в разговорах всегда оперируют рабочей частотой на ядрах 1Н). Для 400 МГц приборов, оптимальных для рутинных задач, эта цена составляет около 15-20 млн. р. (очень приблизительно, я сам их никогда не покупал). Плюс, нормально оборудовать помещение под ЯМР стоит около 1 млн.р. Если разделить эту ношу, условно говоря, на 50 пользователей, выходит 300-400К на человека. Но эти приборы редко покупают за свои, обычно деньги на ЯМРы выделяет учреждение. Реже, но бывает, когда прибор покупает несколько групп, вскладчину. Правда, тогда пытаются найти БУ прибор подешевле. Кроме того, в прибор надо постоянно доливать охладители. Я боюсь соврать, но слышал, что за год один ЯМР на 400 МГц сжирает жидкого азота и гелия на 300-400К. Гелий стоит в районе 1К за литр (sic!), так что цифры реалистичные.
У нас стоит несколько приборов с частотами от 300 до 600 МГц. Кроме обычных, жидкостных ЯМРов есть твердотельный ЯМР, который работает не с растворами, а с твердыми образцами, и ЯКР-спектрометр, который вообще дичь творит. Число снятых за последние 5 лет спектров только на жидкостном ЯМР - около 150 000.
А вот так выглядит 500 МГц прибор, используемый для измерений чуть сложнее рутинных. Справа - магнит, слева - радиоблок. В этот прибор высокий человек ещё может засунуть образец без стремянки, но обычно к ним всё-таки ставят хотя бы приступку.
Далее расходка. ЯМР-ампулы стоят очень по-разному. Для рутины мы пользуемся бюджетными, которые с крышкой стоят около 100р\штука. На одного синтетика надо иметь хотя бы 50 шт или 5К. И наконец самое интересное - дейтерированные растворители. На один спектр нужно 0.5 мл растворителя. Активно работающий на ниве органического синтеза химик за год снимает ЯМР спектры около 500 образцов. Это 250 мл растворителей. Примерные цены на растворители:
D2O 2 руб\мл
CDCl3 30 руб\мл
ацетон-d6 120 руб\мл
ДМСО-d6 150 руб\мл
C6D6 200 руб\мл
MeCN-d3 200 руб\мл
ДМФ-d7 2000 руб\мл
Органика редко растворяется в воде, поэтому отскочить на D2O вряд ли получится. Есть люди, которые 99% спектров снимают или в CDCl3, или в смесях CCl4 или CS2 с 10% добавкой C6D6 или ацетона. В этом случае можно обойтись 7-10К в год. В среднем же расход на человека выходит около 20К в год.
Итого, если считать на 4 человека, на расходку выходит 100К в год. Вроде немного, но научная группа из 12 взрослых сотрудников (вполне средняя цифра) сжирает 300К каждый год! Это эквивалентно роторному испарителю, причем даже не в минималке.
А вот как выглядит бенчтоп-ЯМР на 80 МГц. Для понимания масштаба рядом инсулиновый шприц и стакан на 100 мл.
Кстати, в последнее время появилось много настольных ЯМР-спектрометров вроде того, что на картинке выше. Рабочая частота таких приборов - от 40 до 90 МГц, на постоянных магнитах без всякого жидкого гелия. По меркам современных исследовательских приборов это несерьезно, но продвинутая электроника и алгоритмы постобработки позволяют получать спектры на уровне старых 200 МГц-спектрометров, что достаточно для большинства рутинных спектров.
Помимо отсутствия жидкого гелия есть и ещё бонусы - малый объем пробы, возможность съемки без дейтерорастворителя, и, самое главное - возможность вводить образцы обычным шприцом или подключать прибор к жидкостному хроматографу. Стоит такая машинка 2-5 млн. р. Честно говоря, работать на таком пока не доводилось, но очень хочется.
Сегодня я попытался рассказать, что это за зверь - ядерный магнитный резонанс, и почему этот метод востребован и любим всеми органиками-синтетиками. Мой отпуск скоро заканчивается, и посты будут выходит намного реже. Но всё-таки я постараюсь добить хотя бы серию "Сколько стоит лабу построить" в разумные сроки.
На сегодня всё!
Баянометр выдаёт какую-то фигню. Комменты для минусов внизу.
Как-то внезапно пригорело с поста
https://pikabu.ru/story/kak_ne_nado_nanimat_menedzhera_po_pr...
Дело не в том, что я сочувствую фотографу из этой истории - нет. Он сам себе злобный буратино, потому что сам выбрал заведомо провальную схему. Подгорело у меня с того, как некий человек, не владея предметом спора, лезет учить жизни других. Я постараюсь разобрать пост по тезисам.
Рассмотрим же предложение автора о «работе мечты» подробнее:
1) Работа на час в день.
Хм.. Ну если продажник работает час в день, то первая продажа у него случится примерно через месяц, не раньше.
Самозанятый фотограф физически не может нанимать человека на ставку. У него не хватит ни денег на ЗП, ни возможности обрабатывать все поступающие заказы. Для самозанятых отдавать продажи на аутсорс - нормальная практика.
Поясню. При наличии клиентской базы за час девочка прозвонит 20 номеров. Из них не возьмут трубки 7, ещё 12 сразу пошлют ее на хер. 1 поговорит.
Заметьте - фотограф НИГДЕ не говорил, что нанимал девочку на тупой прозвон. Более того, как справедливо указали в комментариях - услуги свадебного фотографа бессмысленно продавать таким образом. Видимо, автор поста работает в прямых продажах, и искренне считают, что по-другому не бывает.
Как справедливо указали автору в комментариях, для продажи услуг свадебного фотографа нужен не прямой продажник, а маркетолог. Соцсети, реклама, продвижение сайта, "сарафанный менеджмент", работа через рестораны\свадебные ателье и т.д.
Как сказал автор, никакой клиентской базы нет.
А чем свадебному фотографу поможет клиентская база? "Здравствуйте, вы в прошлом году замуж выходили, может, опять выходите?". Так это себе автор представляет??? Свадебные фото - это услуга, которой человек пользуется 1-2-3 раза в жизни.
Исходя из вида деятельности, один из вариантов поиска (самый дешевый) - это проработка тематических пабликов, групп, форумов и тд. То есть работа посредством холодной переписки в интернете.
Здравая мысль. Но автор упорно педалит активные продажи, забывая, что это не единственный инструмент продаж.
Вернёмся к переписке. Здесь, чтобы менеджеру проконтактировать с 20 людьми, ему уже понадобится 2 часа, тк пока найдёшь, пока напишешь, на одного уйдёт около 6 мин.
Массовые рассылки? Не, не слышали... Менеджер, который тратит 6 минут на то, чтобы отправить ОДНОМУ адресату письмо по шаблону, подставив только имя? У меня письмо в деловой переписке с конкретным адресатом столько времени занимает!
Кроме того, соотношение 7-12-1 на профильных ресурсах не работает. Это для холодных продаж, а на форумы люди приходят с сформировавшейся потребностью. С дальнейшей калькуляцией тоже беда - автор упорно пытается оценивать горячие продажи по статистике холодных. Естественно, в своих интересах...
Получается, девочке для 1 продажи нужно поработать 24- 40 часов. Т.е. 3 - 5 полных рабочих дня. Это не цифры с головы, а статистика воронки продаж начинающего менеджера, проверенная на практике, по которой анализируют потенциал выручки.
За такую говёную статистику даже из холодных продаж попереть могут. А уж для горячих это смехотворные цифры. Закономерный результат подтасовки данных...
То есть, чтобы получить 1500руб (5% от 30тыс., свадьба), нужно отработать от 3 до 5 рабочих дней. И не факт, что получить, вдруг вообще не получится ничего продать? (Для этого, как раз, у менеджера по продажам и должен быть оклад, хотя бы минимальный, чтобы не опускал руки и не забивал на работу после череды неудач).
Фриланс? Аутсорсинг? Не, не слышал...
Получается, 300-500руб за полный рабочий день. 6-10тыс в месяц. Кого вы ожидаете найти за такую зп?
Это НЕ зарплата. Потому, что это НЕ работа по найму. Это комиссионные, или договорные. И таких клиентов девочка может найти себе 3-5-10, в зависимости от скила. И из них и складывается её доход. И даже если у одного провал с работой - есть остальные.
Причем, хочу заметить - девочке нужно просто привлечь потенциального клиента! Ей не ставится задача довести его до договора, этим занимается уже фотограф!
3) процент от продаж. Автор предлагает инновационную систему мотивации: с мелких заказов 7-10%, свадьба (30тыс) 5%, больше 50тыс -3%. То есть, чем больше продаёшь, тем меньше получаешь.
Ещё одна здравая мысль. Действительно, регрессивная шкала комиссионных в данном случае - зло. Я было уж подумал, что автор хотя бы в экономике процесса соображает - но как же я ошибался.
И на счёт процента. Фотограф - это услуга. Ее себестоимость - это амортизация фототехники. 300 рублей. (Фототехника стоит 200тыс, срок службы 60месяцев, в месяц 10 заказов) 300рублей и всё. Меньше 1 %. То есть 99% с заказа - это чистая маржа.
Все ИП и самозанятые, готовьте огнетушители. Инновационная система оценки себестоимости от ogradaFamilya! Итак, как понизить себестоимость вашей услуги, без регистрации и СМС: не учитывайте свои трудозатраты. Работайте бесплатно - и будет Вам счастье. Вы снимали свадьбу 14 часов подряд? Зачем включать оплату Вашего труда в издержки? Вы сидели всю ночь, обрабатывали фото, чтобы у невесты не было видно мешков под глазами, а у жениха - кривых зубов? Пфуй, это недостойно оплаты!
Есть такой термин -вмененные издержки.
Вмененные издержки – это внутренние затраты, которые лично несет предприниматель, связанные непосредственно с его деятельностью.
Так вот, оплата труда самозанятого работника - это типичные вмененные издержки. И то, что работник "не работает на дядю" не значит, что он может не платить себе зарплату. Я уж не говорю о том, что на крупных мероприятиях ему скорее всего придется нанимать людей, хотя бы чтобы брать несколько ракурсов одновременно. А в ресторанах часто вообще несколько залов.
Начнем с того, что фотоаппарат - не единственный инструмент фотографа. Для фотосессий нужен как минимум свет. А как максимум - оборудованный угол. Для обработки фотографий нужен соответствующий компьютер. Ну, пусть даже с пиратским ПО - хотя сейчас делать ЛЮБОЙ бизнес на пиратках становится всё опаснее и опаснее. Нужна фотопечать.
Рассмотрим средненький заказ, на 30К. Это 12-14 часов съемочный день, потом ещё как минимум сколько же ретуши, ещё 2-3 часа - печать, запись на носители, отправка через интернет - в общем, упаковка товара. Плюс работа с заказчиком - согласование, формирование ТЗ (часто заказчики сами не понимают, чего хотят), после работы - надо получить свои деньги, отдать товар и т.д. - ещё 5-6 часов, и то если заказчик честный попадется. Итого на 30К мы имеем на один заказ около 40 человеко-часов. Сколько стоит человеко-час? У фотографа это не меньше 300 р - работа с одной стороны физически трудная, с другой стороны требует квалификации. Тем более смены 12 часов и больше - нехилая переработка. Итого, минимум 12т.р. вмененных издержек. Плюс печать и носители обходятся ещё в 2-5т.р. в зависимости от продвинутости клиента. Добавим к этому аммортизацию света, а при фотосессии в студии - аренду студии (тобишь угла со светом и драпировкой). Это мелочи, но ещё 1-2т.р. может набежать.
Итак, мы получили 15-18т.р. себестоимости, то есть с учетом 5% комисии продажнику - 35-45% маржи. Про налоги говорить не будем, это личное дело каждого. И это идеадьный вариант, без привлечения доп. фотографов, без проблем и попыток кидалова со стороны клиента. В среднем себестоимость такого заказа будет 20-22т.р., то есть около 25% итоговой маржи.
В продажах страхования менеджер получает 15-30% страховой премии. Себестоимость - примерно как с фотографом ~1%
Теперь очередь страховщиков расчехлять огнетушители! Интересно, откуда взята цифра в 1% для страхования? Полагаю, с потолка. Я честно скажу - инсайдерской инфы о маржинальности страхования и процентуале продавцов у меня нет. Однако есть кое-такие наблюдения.
Коммерческое МРЭО. Сидят две страховщицы, сидят весь день. За день через каждую проходит 40 человек. Выстреливают почти все. 95% продаж - ОСАГО. Есть немного КАСКО. Средний чек явно за десятку. Ну, пусть будет даже 10т.р. Если бы они имели даже 15% с продаж, за день каждая бы набирала 60 тысяч. ЗА ДЕНЬ. Реалистично?
Другой пример - офис одной крупной страховой компании. Напротив кафе, в котором я регулярно питаюсь, поэтому более-менее представляю проходимость. Место неплохое - за день проходит человек 25. Тут, конечно, процент успеха меньше, но и средний чек побольше. Пусть 15 т.р. и 50% успеха. Итого при 15% процентуале выходит примерно 25т.р. в день. Тоже хорошая сумма, да? Интересно, почему же эта девочка обедает салатами из гипермаркета и ездит на Солярисе? Шифруется, наверное...
Интересно было бы посмотреть реальную статистику. Кое-что я нашел. Согласно информационно-аналитической бюллетени ЦБ РФ №4 за 2016-й год, общая сумма страховых выплат составляет 46(+-5)% от общей суммы страховых премий. Так-то.
Мораль такова - обычно, когда люди считают деньги в чужом кармане, ошибаются почему-то в большую сторону...
Баянометр выдал исходный пост. Коменты для минусов ниже.
Приветствую!
В предыдущей части мы одним глазком посмотрели на испытательное оборудование, используемое в лаборатории органического синтеза. Точнее, на ту его малую часть, которую используем мы. Сегодня мы поговорим о хроматографическом оборудовании. Этот пост я пилил долго, т.к. хроматографию очень уважаю и хотел сделать пост максимально информативным, и при этом понятным.
Хроматография давно перестала быть рядовым физико-химическим методом анализа. Принцип хроматографического разделения, заключающийся в том, что различные вещества по разному сорбируются\десорбируются на границе раздела фаз, оказался крайне универсальным для создания как аналитических, так и препаративных методов разделения и очистки веществ.
Я не буду перечислять все возможные виды хроматографии, моя цель - рассказать о приборном парке, представляющем хроматографию в синтетической лаборатории. Также я не буду, по крайней мере в этой части, писать про ТСХ и атмосферную хроматографию, так как там о сколько-нибудь серьезном оборудовании речи нет. А расскажу я про ГХ, ВЭЖХ, ГПХ и флеш-хроматографии в применении её к органическому синтезу, синтезу полимеров и исследованию материалов.
Итак, поехали!
1)Газовая хроматография, ГХ. Принцип разделения - сорбция\десорбция из газовой фазы. Чем более летучее и менее сорбирующееся вещество, тем быстрее оно проделает путь по колонке и выйдет наружу - в детектор. В каком-то смысле газовая хроматография есть логическое продолжение идеи ректификации.
Схема простейшего газового хроматографа. На датском, ну и ладно. Пробы обычно жидкие, поэтому нужен инжекторный порт.
Вот так выглядит навороченный ГХ. С автосамплером и сопряженный с масс-спек детектором.
Стоит баллон гелия\аргона\водорода с редуктором. Газ заходит в хроматограф, на входе - прецизионный регулятор потока, чтобы устанавливать скорость потока газа-носителя через колонку. Далее инжекторный порт - образцы обычно жидкие, и их вкалывают прямо на испаритель. Но при необходимости есть много других способов ввода тведых, жидких и газообразных образцов. Также есть автосамплеры - системы автоматического вкола. Ставишь баночки в штатив, программируешь - а дальше вкалывают роботы, счастлив человек. Есть и более хитрые приблуды, например, для отбора проб из трубопровода и т.д.
На испарителе образец испаряется (часто не весь), доза получившихся паров попадает в колонку. Через колонку с определенной скоростью продувается газ-носитель. При ГХ-разделении ключевую роль играет температура колонки, часто разделение определяется именно температурной программой. Колонка всегда термостатирована! Чаще всего программируют повышение температуры в ходе разделения - по мере нагревания начинают выходить всё более и более тяжелые компоненты. Колонки греют, бывает, и до 400 С.
Капиллярная колонка. Реальный диаметр - сантиметров 25. Десятки витков - общая длина колонки может превышать 100 метров!
Колонки для ГХ очень длинные и тонкие. Насадочные колонки, почти не применяющиеся сейчас, составляют несколько метров в длину и несколько миллиметров в сечении, капиллярные - до сотни метров в длину, а в сечении - сотни или даже десятки микрон. Их приходится сворачивать в катушки, как на фото - благо огромное отношение длина\толщина нивелирует негативное влияние изгиба на эффективность разделения.
Колонки заполнены сорбентом, который ГХ-шники предпочитают называть стационарной фазой. Из-за высоких температур разделения сорбенты для ГХ должны быть очень химически стойкие и не способствовать разрушению анализируемых веществ. Обычно это относительно компактные оксиды - кварц, алюмина, различные цеолиты, кроме того часто используются углеводородные и полимерные фазы. Сорбенты бывают инертные - практически не способные к сорбции. В этом случае разделение регулируется температурой и очень похоже на "нано"ректификацию. Сорбирующие фазы делят по селективности - кто-то любит водородные связи, кто-то гидрофобные взаимодействия, а кто-то вообще работает по принципу молекулярных сит (имеет поры, подходящие по размеру к определенным молекулам).
После разделения компоненты смеси поочередно попадают в детектор. Детектором может служить любой прибор, который может дать количественный отклик на изменение состава газовой фазы. Детекторов в ГХ много, все и не упомнишь, расскажу про самые ходовые.
-Пламенно-ионизационный, работает за счет того, что разные газы при горении ионизуются в разной степени. И если при горении пропустить пламя через пластины под напряжением, потечет ток, величина которого зависит от количества и природы ионов в пламени. Плюсы: чувствует всю сгораемую органику, хороший диапазон линейности, дешевый и простой в эксплуатации. Минусы - отсутствие селективности.
-Катарометрический, тупо измеряет теплопроводность. Плюсы - чувствует всё, дешевый и простой. Минусы - неселективен, низкая чувствительность.
-Детектор электронного захвата. Принцип работы сложный, основан на равновесной ионизации образца свободными электронами. Плюсы - высокая чувствительность и линейность, плюс определенная селективность. Минусы - довольно сложный, не универсальный (например, углеводороды он детектирует плохо).
-Масс-спектрометрический. Колонка просто уходит в масс-спектрометр, обычно с ионизацией EI. Про принцип работы сейчас рассказывать не буду. Плюсы - высокая чувствительность, дает информацию о мольмассе и даже строении вещества (по фрагментации). Минусы - дорогой, низкий диапазон линейности, требует дополнительной квалификации, может создавать разрежение на выходе из колонки.
Сигнал детектора записывается с разверткой от времени, которое называют временем выхода Tr - это время, прошедшее от введения смеси в прибор до выхода компонента в детектор.
Хроматограмма ГХ с МС-детектором. Обратите внимание на количество пиков - и все разрешены! 54 компонента БЕЗ учета неидентифицированных.
Очень удобный вариант - двойное детектирование, например, ПИД и МС. ПИД дает количественную картину, а МС идентифицирует состав компонентов.
ГХ (за редким исключением) является исключительно аналитическим методом. Мы используем его в основном для исследования каталитических процессов, намного реже - для исследования кинетики реакций. Иногда определяем состав и примеси в растворителях. Вообще, ГХ очень удобен для потокового анализа и HTS.
Типичный прибор с ПИД и катарометром стоит около 1 млн. р. С МС-детектором - около 2 млн.р. Но это очень приблизительные цифры, разброс цен очень велик.
Плюсы:
1)Дешевизна. Прибор для ГХ может стоить меньше 300К, стоимость расходки также крайне невелика. От оператора не требуется высокой квалификации - экономия на зарплате.
2)От оператора требуется минимум квалификации и телодвижений (естественно, только пока анализ проводится по отработанной методике). У нас ГХ по необходимости делают все - 15-минутный инструктаж, и с прибором справится даже первокурсник.
3)Простота конструкции и дешевизна обслуживания. Это дает возможность при ограниченном финансировании спокойно брать китайские и отечественные приборы. А учитывая, что технологии и конструктив ГХ по сути не меняются уже десятки лет (кроме детектирования) - можно брать и сильно БУ приборы.
4)Высокая чувствительность. Метод позволяет определять пико- и даже субпикограммы. ГХ - наверное, самый чувствительный из доступных методов анализа. Точность тоже хорошая.
5)Широкие возможности интеграции и автоматизации. Но это скорее для промышленности.
Минусы:
1)Главный минус - анализирует только то, что можно испарить. Причем испарить при атмосферном давлении и температурах не выше 400-500 градусов. Это очень, очень сильно ограничивает спектр определяемых веществ. Немного расширить круг субстратов помогает дериватизация - химическое превращение аналита в более стабильную и\или летучую форму. Но именно немного, проблему это не решает. К тому же дериватизация сложных смесей - вещь непредсказуемая.
2)Малые объемы проб закрывают возможность препаративного (т.е. для того, чтобы разделить осязаемы количества и собрать их) использования метода. Раньше на больших насадочных колонках делали преп-ГХ, но разрешение у этих колонок - курам на смех, а возни много. Сейчас то же самое в 99% случаев проще поделить на ВЭЖХ.
3)Непредсказуемость химического поведения веществ. В условиях ГХ (высокая температура, сорбенты) часто происходит разложение, и, что ещё хуже, превращение веществ в другие. А потом сидишь, думаешь - то ли вещества в смеси нет, то ли оно просто сдохло. И ведь главное -стабильность вещества может определяться отсутствием или наличием примесей. Вроде есть метод, проверенный и аттестованный. А потом оказалась в образце примесь, которой у авторов метода не было - и всё, прости-прощай.
Когда-то у нашей лаборатории был свой хроматографический зал, с десятком ГХ - было много задач под них. Сейчас у нас стоит один умеренно старый ГХ с ПИД и катарометрическим детекторами. Изначально управлялся программой под Win95, после определенных танцев с бубном заработал под XP. Но сам прибор работает как часы, менять мы его не собираемся.
ВЭЖХ прибор фирмы Agilent. Единственное, чего я не понимаю - нахрена у них колонка горизонтально подвешена (на фото не видно)???
2)Высокоэффективная жидкостная хроматография, ВЭЖХ. Принцип разделения - сорбция\десорбция из жидкостной фазы на твердую. Отличие ВЭЖХ от других видов жидкостной хроматографии - высокое давление (50-200 бар) в магистрали. Это позволяет использовать сорбенты с очень развитой поверхностью и мелкими гранулами, что увеличивает эффективность разделения на порядки. Есть методы с ещё большим давлением - UPLC (до 1000 бар), но по сути это тот же ВЭЖХ.
Простое и наглядное видео, иллюстрирующее процесс хроматографического разделения смеси.
Эта схема справедлива для любой жидкостной хроматографии.
На входе стоят резервуары с растворителями. Они попадают в смеситель и дегазатор, превращаясь в подвижную фазу ака элюент. В жидкостной хроматографии растворитель очень сильно влияет на разделение веществ, поэтому выбор состава элюента очень важен. Широко используемых растворителей для ВЭЖХ около 10 штук, но при необходимости можно использовать и другие. Очень важно, чтобы элюент не был вязким - иначе его невозможно будет прокачать через систему. Для различных детекторов также имеются дополнительные требования к элюентам.
Для смешения растворителей и создания напора применяются разные схемы, но для пользователя это выглядит как несколько каналов (обычно 4), подачу из каждого можно регулировать независимо. Производительность насоса во многом определяет масштаб разделения, доступный на хроматографе.
Дегазирование необходимо потому, что при высоких потоках кавитация (образование пузыриков газа) может вызвать механические повреждения. В первую очередь страдает колонка, т.к. именно в ней происходит понижение давления. Насосы в хроматографах - поршневые, они способны обеспечивать достаточное давление и минимальные пульсации. Тем не менее, после насосов стоит дополнительный гаситель пульсаций давления. Естественно, насосы управляются по величине потока, давление зависит от вязкости элюента и гидродинамического сопротивления системы.
Система ввода Rheodyne. Железяка размером с сардельку (идиотское сравнение, но довольно точное) стоит порядка 50К.
После насоса стоит устройство ввода. Устроено оно сложнее, чем инжекторный порт в ГХ. Обычно это Rheodyne - специальный многоходовой кран высокого давления, снабженный петлей и портом для ввода жидкой пробы. Образец шприцем через порт закачивается в петлю - трубку из стального капилляра, служащую резервуаром. Далее кран поворачивается, и петля оказывается одним концом соединенной с насосом, а другим - с колонкой. Поток элюента вытесняет образец из петли в колонку. Здесь тоже используют автосамплеры. В ВЭЖХ они очень дорогие, могут стоить дороже, чем сам хроматограф.
Выглядят внушительно. Корпус - сталь, резьбовые фитинги.
Колонки для ВЭЖХ совершенно непохожи на ГХ-шные. Корпус из сверхпрочного пластика, нержавеющей стали или даже титана - чтобы держать сотни бар, длина от 10 до 25 см (обычно, бывают и исключения), внутреннее сечение - миллиметры или сантиметры, никаких изгибов. На входе и выходе - титановые сеточки. Для анализа обычно используются колонки с сечением до 2.5 мм. Всё, что толще, так или иначе служит для препаративного разделения.
Сорбентов для ВЭЖХ неисчислимое множество, и выбор сорбента очень важен. Есть три типа стационарной фазы - нормальная, обращенная и специальные. Нормально-фазовые сорбенты - силикагель, алюмина и прочие полярные вещества - элюируют менее полярными элюентами. Более полярные вещества лучше задерживаются на сорбенте. Обратно-фазовые сорбенты гидрофобные вещества, их элюируют водой и элюентами на её основе. Полярные вещества на таких сорбентах задерживаются хуже и выходят первыми. Специальные фазы - это всё, что нельзя однозначно отнести к нормальной или обращенной фазе, в том числе и сорбенты, способные к специфическим взаимодействиям.
У биологов, медиков и аналитиков в ходу обращенная фаза - их объекты обычно полярны. Кроме того, обращенная фаза дает большую эффективность при анализе. Для оргсинтеза чаще всего нужна нормальная фаза - синтезируемые молекулы обычно менее полярны, чаще всего гидрофобны, а порой и разлагаются водой. Специальными фазами пользуются все.
Среди специальных фаз можно выделить фазы для гель-проникающей хроматографии (ГПХ). Её обычно выделяют в отдельный метод, хотя инструментарий для неё ровно тот же. Принцип разделения - по размеру молекул. В сорбенте есть поры определенного размера. Чем меньше молекула, тем дольше она задерживается в порах и, как следствие, медленнее выходит. ГПХ используется в основном для анализа макромолекул.
В ВЭЖХ колонки также принято термостатировать. Обычно делят при температурах от комнатной до 60-70С. Однако при препаративном разделении их часто не термостатируют - эффект температуры невелик.
После колонки разделенные компоненты в виде раствора попадают в детектор. Детекторов в ВЭЖХ тоже немало, расскажу про некоторые:
-Фотометрический детектор. Представляет из себя маленький и сильно упрощенный проточный сепктрофотометр (см. часть 5). Видит любые вещества, поглощающие в видимом диапазоне и ближнем УФ, а это почти вся органика. Плюсы - дешевизна, универсальность, линейность. Минусы - относительно невысокая чувствительность, видит не всё. Требования к элюенту - чтобы не поглощал на измеряемой длине волны. Самый популярный, пожалуй, детектор для ВЭЖХ.
-Флуориметрический детектор. Опять же, маленький и упрощенный спектрофлуориметр. Видит только то, что люминесцирует. Плюсы - чувствительность. Минусы - многое не видит, на интенсивность люминесценции может влиять куча факторов вплоть до микропримесей. Требования к элюенту - не поглощать на волне возбуждения и не содержать люминесцентных примесей.
-Рефрактометрический детектор. Отслеживает изменение показателя преломления, поэтому видит всё, но плохо. Плюсы - дешевизна, универсальность. Минусы - очень низкая чувствительность, особенно если вещество не содержит тяжелых атомов. Однако для ГПХ часто используют именно его ввиду неэффективности остальных.
-Масс-спектрометрический детектор. Плюсы - видит почти всё, высокая чувствительность, дает информацию о составе и даже строении. Обычно используют МС с ионизацией ESI - для обратной фазы, или CI/APCI/APPI - для нормальной фазы. Стоят такие детекторы обычно куда дороже хроматографа, и тут ещё вопрос - то ли ВЭЖХ с МС-приставкой, то ли МС с ВЭЖХ-приставкой. Часто хроматограф просто подключают к уже имеющемуся исследовательскому масс-спектрометру.
Если прибор рассчитан на препаративное разделение, то после детектора (или в обход) стоит коллектор фракций - прибор, который собирает в разные емкости порции раствора (элюата) на выходе из хроматографа. Далее фракции можно собрать, удалить растворитель и получить чистые вещества.
Коллектор фракций. Собирает фракции в пробирки.
ВЭЖХ прибор с фотометрическим детектором стоит от 1 млн. р. - в минимальной комплектации под аналитику. Препаративный хроматограф с фотометрическим детектором, коллектором и автосамплером стоит от 3 млн.р. МС-детектор (только сам детектор!) для хроматографа с неразрушающей ионизацией стоит от 4 млн.р. и выше.
Плюсы:
1)Универсальность. Веществ, которые можно растворить, куда больше чем тех, которые можно испарить, отсюда куда более широкий спектр анализируемых объектов.
2)Репрезентативность. Если вколол однородный раствор - можешь быть более-менее уверен, что все низкомолекулярные компоненты смеси рано или поздно выйдут, в отличие от ГХ, где из 20 компонентов 15 может сдохнуть на испарителе, а из оставшихся пяти - два умрут в колонке, один изомеризуется а один декарбоксилируется.
3)Инертность. При аккуратной работе ВЭЖХ-разделение переживают даже очень нежные вещества. При необходимости можно подобрать абсолютно инертные стационарные и подвижные фазы, разделение можно проводить без контакта с воздухом.
4)Вариабельность. Много параметров, доступных для изменения, и позволяющих решать самые разные задачи. Вплоть до того, что на одном приборе можно решать как аналитические, так и препаративные задачи.
5)Возможность препаративного разделения. В принципе, на ВЭЖХ можно делить даже килограммы. Но это уже за гранью добра и зла, а вот 200-300 мг выделить - легко!
Минусы:
1)Большая стоимость анализа, и ещё большая - препаративного разделения. Уходит элюент (при препаративном разделении - литрами), дороже пробоподготовка, расходка, дороже сам прибор. Колонки живут меньше. Выше требования по квалификации оператора - больше затраты на ЗП.
2)Намного больше варьируемых параметров, и их влияние на результат огромно. И не так очевидно, как для ГХ. Если необходимо выходить за пределы литературных методик - требуется высокая квалификация и большой опыт. Без них можно месяцами тыкать пальцем в небо, но так и не найти рабочих условий.
3)Приборы сложнее - легче накосячить и даже сломать его, или запороть колонку. Плюс, дороже обслуживание. Ну, и покупка отечественного, китайского или БУ прибора - русская рулетка. Только для технически подкованных и опытных юзеров.
4)Чувствительность на несколько порядков ниже, чем у ГХ. То есть, анализировать ppm-ы и тем более ppb уже не получится.
У нас стоит один прибор, в довольно скромной комплектации. Хочется приобрести прибор покруче, но пока нет возможности.
3)Колоночная хроматография низкого давления. Для простоты буду называть её флеш - разница между этими терминами невелика. Принцип разделения тот же, что и у ВЭЖХ, но давление ниже - от нескольких миллибар до 20 бар. Это исторически первый тип хроматографии, разработан А. Цветом больше века назад. С незначительными изменениями он широко используется в лабораторной практике до сих пор.
Вот так выглядят колонки для флеш. Стекло, тефлоновые краны.
В колонку вносится сорбент (обычно силикагель) - сухой или в виде суспензии, уплотняется постукиванием по внешней стенке, а потом поверх сорбента простой пипеткой или шприцем наносится раствор с разделяемой смесью. Раствору дают впитаться, и наливают сверху элюент. Элюент течет самотеком или под небольшим давлением. Фракции собирают, просто подставляя вниз пробирки или стаканы. Далее фракции анализируют по ТСХ.
Это реальная фотография моей колонки (справа). Тут удобно - вещества окрашены. Но обычно колонка просто белая.
В какой-то момент технический прогресс и ленивые химики объединились, чтобы автоматизировать этот довольно долгий и нудный процесс (обычно разделение идет 2-3 часа, и это не считая подготовки). Плодом этого союза стал флеш-хроматограф.
Тадам! А вот и он. Наиболее интересный для оргсинтетика хроматограф.
Принципиально схема та же, что и у ВЭЖХ. Но есть и отличия:
-Низкие давления, поэтому фитинги не из стали, а из полипропилена или фторопласта. колонки кстати, тоже или полипропилен, или стекло
-Колонки не термостатируют - влияние температуры ничтожно
-Очень производительный насос, может выдавать сотни миллилитров в минуту
-Ввод образца не через Rheodyne, а шприцом прямо в колонку. Обычно есть ещё опция десорбции с носителя - т.н. сухое нанесение
Колонки, кстати, часто перенабиваемые. Вручную. Что сильно удешевляет разделение. Вообще, колонки для флеш - разговор особый. С одной стороны, флеш не дает таких давлений, как ВЭЖХ, а значит и эффективность разделения куда меньше. Зато колонки под флеш могут быть любого размера - от карандаша до бочки. Такие колонки не таскают вручную - они стоят в стойках на колёсиках. И если разделение сотни грамм вещества в ВЭЖХ - это десятки или даже сотни вколов, несколько дней работы, то на флеше это можно поделить зараз. Причем не на самой большой колонке - вполне сойдет колонка размером с двухлировую бутылку. На колонке размером с бочку за один вкол можно поделить килограмм.
Использовать флеш-хроматограф в аналитических целях конечно можно, но не нужно. Он создавался для препаративного разделения. Поэтому плюсы и минусы расписывать не буду - они аналогичны ВЭЖХ, только дешевле и ниже эффективность разделения.
Стоит такой прибор от 1 млн.р. до 5 млн.р. в полном фарше. Есть ещё высокопроизводительные системы, системы "флеш-ВЭЖХ", которые могут и то, и то, а также системы с МС-детектором. Они могут стоить и 10 млн.р.
У нас есть один прибор. Новый и в приличном фарше. Я им не очень доволен по ряду причин, но дареному коню в зубы не смотрят...
Итак, сегодня мы закончили говорить об оборудовании, которое +- обеспеченная лаборатория, занимающаяся органическим синтезом, может и хочет приобрести себе в единоличное пользование. У меня в загашнике есть ещё две темы. Первая - это дорогие и большие приборы, которое обычно покупаются на весь институт или в складчину на несколько научных групп. В основном это спектроскопия, но не только. Вторая тема - стекло для органического синтеза. Вот тут можно составить более-менее адекватную смету и понять, сколько нужно закупить стекла, чтобы четверо синтетиков работали, не испытывая дискомфорта. Писать про реактивы я не хочу - тут нет какого-то общего ассортимента, всё сугубо индивидуально.
На сегодня всё!
Баянометр выдаёт какую-то фигню. Комменты для минусов внизу.
З.Ы. У меня нежданно-негаданно набралось аж 55 подписчиков! Не ожидал, что эта тема будет настолько интересна. Специально для подписчиков - если вы хотите узнать что-то про работу химика-синтетика - пишите, постараюсь удовлетворить ваше любопытство комментарием или даже постом...
Предыдущий пост серии как-то хреново зашел. Будем надеяться, что это случайность, а не закономерность. Пишите в комментах, что вам нравится и не нравится в таком формате, что стоит поменять или добавить. Или может, вообще забить на это дело (нет)?
Спойлер:
Убедительная просьба - не надо, пожалуйста, писать мне "группа говно" или "а вот такую группу ты знаешь?". Если я делаю про группу пост - мне она нравится, недовольные - лесом. И групп я знаю много, а пост только про одну. Имейте терпение. Отнесение к тому или иному поджанру - вещь довольно субъективная, поэтому в этом вопросе я не претендую на истину в последней инстанции.
Если заметили какие-то неточности в описании - пишите. Я тоже человек и могу ошибаться. Но учтите - посты я могу редактировать только в первые N минут, дальше - что написано пером, не вырубишь топором. постараюсь не делать серьезных ошибок.
Итак, сегодня речь пойдет о коллективе W.A.S.P. Именно так, с точками. Появилась группа в 1982-м году в Калифорнии и играет, несмотря на почти полностью сменившийся состав, до сих пор. Точки, кстати, появились в названии не сразу.
Википедия называет их творчество глэм-металлом, но как по мне, несмотря на глэм-эпатаж, с музыкальной точки зрения они ближе к хэви. Визитная карточка группы - неповторимый голос бессменного фронтмена Blackie Lawless (в миру - Steven Edward Duren). Тексты песен содержат отборную отморозь с уклоном в БДСМ и прочие сексуальные перверсии. На этом фоне сильно выделяются тексты альбома The Crimson Idol, который по сути, является рок-оперой. Единственной по-настоящему тяжелой рок-оперой, по крайней мере, из известных мне.
Музыку в студию!
Helldorado. Адское дорадо. Рыбка такая...
Cocaine Cowboys. Кокаиновые ковбои. Была такая банда наркоторговцев в США.
Дальше я бы включил альбом The Crimson Idol. Весь, включая интро. Но боюсь, будет трудновато для восприятия, поэтому пихну самые лучшие песни.
The Titanic Overture. Не имеет никакого отношение к Титанику и всей этой ванильно-сопливой истории.
Arena of Pleasure. Арена наслаждения.
Chainsaw Charlie. Чарли - бензопила. Типичный начальник...
The Great Misconceptions of Me. Мои главные ошибки. Точнее, заблуждения. Великолепная песня.
Scream. Крик.
Love Machine. Секс-машина.
Cries in the Night. Крики в ночи.
Приятнного прослушивания, делитесь впечатлениями и воспоминаниями! Комменты для минусов внизу.