Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Отправься в мир мышек с забегами в реальном времени! Призывай духов, собирай команду для сражений, проходи кампанию, выполняй задания, наряжай персонажа и общайся с друзьями в веселом онлайн-приключении.

Мыши: Эволюция

Аркады, Приключения, Казуальные

Играть

Топ прошлой недели

  • solenakrivetka solenakrivetka 7 постов
  • Animalrescueed Animalrescueed 53 поста
  • ia.panorama ia.panorama 12 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
585
vectrovod
vectrovod
Автомобильное сообщество
Серия Двигатели внутреннего сгорания

ДВС и его виды. Часть 7. Механический впрыск, Common Rail.⁠⁠1

6 лет назад

Предыдущие посты из серии.

ДВС и его виды

ДВС и его виды. Часть 2

ДВС и его виды. Часть 3

ДВС и его виды. Часть 4.

ДВС и его виды Часть 4 (продолжение)

ДВС и его виды. Часть 5. Современные системы впрыска, применяемые датчики.

ДВС и его виды. Часть 6. Дизель



Всем привет, продолжим изучение дизелюк)


В прошлой части мы поговорили о двухтактных дизелях, применявшихся, как правило, в тяжелых машинах. Теперь опустимся к моторам автомобильным.

Дизельные моторы, работающие по четырехтактному циклу не особо по своей конструкции отличаются от бензиновых собратьев, если не вдаваться в подробности, однако если посмотреть внимательно, совпадают только лишь названия отдельных частей.

Кривошипно-шатунный механизм как правило отличается своей массивностью, дизели длинноходные, поэтому у них более массивный коленвал, с бОльшим плечем кривошипа, также у коленвала более широкие коренные и шатунные подшипники, так как крутящий момент больше, и он достигается на сравнительно низких оборотах, и дабы исключить продавливание масляного клина, особенно в условиях сниженного давления на низких оборотах, конструкторы увеличивают площадь шеек и соответственно вкладышей. Это не касается некоторых квазимод типа ЗМЗ 514, которые сделаны из бензинового мотора.


В бензинках , особенно V-образных, часто встречаются вот такие узкие шейки

Коленвал от ниссановского V6. Видим, какая ажурная конструкция, узкие шейки, тонкие щеки.


А вот типичный коленвал от дизеля

Видим,  что он более массивный. Однако, справедливости ради, у хороших бензинок часто встречаются очень суровые коленвалы, не меньше дизельных)


Шатуны точно также отличаются в сторону бОльшего веса, они длиннее и толще.

Вот шатун одного из современных японских бензиновых моторов

И такие "спички" встречаются все чаще)


А вот шатун одного из дизельвагов

Конструкция куда более монументальная, да и понятное дело, так как нагрузки многократно выше. И тут "очень похожие" детали у нас заканчиваются, так как коленчатые валы и шатуны одинаковых габаритов можно найти и в бензинке и в дизеле, а вот поршень в дизельном моторе отличается капитально.

Если в бензиновых моторах инженеры стараются максимально облегчить поршень, сделать его Т-образным, уменьшают толщину колец, диаметр поршневого пальца, толщину пальца, уменьшают жаровой пояс (расстояние от днища поршня до первого компрессионного кольца, то в дизельных моторах поршень сильно не облегчишь, и они как были, так и остаются большими и тяжелыми, с толстыми кольцами, широкими юбками, толстым днищем, и объяснение этому будет далее. А пока можем сравнить поршни бензинового мотора из 80х и 2010х


Первый. Из 80х, с мощностью 33 лошадиные силы на цилиндр

Этот поршень можно даже спутать с дизельным. Толстое дно, широкий жаровой пояс, широко расставленные толстые кольца, большая юбка


А вот современный мотор того-же производителя, с мощностью в 35 лс на цилиндр

Видим, что юбки уже почти не осталось, жарового пояса нет, кольца сбиты в кучу, широким осталось только первое компрессионное кольцо. Расплата за снижение потерь. Такие поршни очень любят вытирать пятно на стенке цилиндра.


А теперь аналогично сравним дизельные поршни.

Первый из 80х, с мощностью в 26лс на цилиндр

Видим огромного размера жаровой пояс, кольца, юбку, толстенное днище.


А теперь современный мотор с мощностью 50 лс на цилиндр

И тут мы видим, что поршень за 30 лет не изменился, переехала только вихревая камера из головки блока в днище поршня, так как впрыск стал непосредственным. Именно поэтому "низ" современных дизельных моторов ходит также долго, как и в старые добрые времена, за исключением случаев, когда производители пытаются уменьшить подшипники, сделать алюминиевым блок и тд.


С блоком разобрались, подходим к головке. И тут у нас начинаются большие отличия от бензина.

Как мы помним, в дизеле воспламенение обеспечивается нагревом воздуха от сжатия.


(Тут маленькое отступление. Многие в комментах говорили, что как так, солярка загорается от 400-600 градусов,  не может такого быть. Так конечно не может, и не загорится, и при 800 не всегда загорится. А все потому, что вы упускаете важный момент - давление, которое в конце такта сжатия переваливает за отметку в 20 атмосфер, соответственно молекулы топлива и кислорода становятся гораздо ближе друг к другу и температура, необходимая для начала реакции окисления очень сильно снижается, бензин так вообще умудряется начать реакцию при 200 градусах и давлении в 14 атмосфер, неконтролируемо детонируя в цилиндре. Это если максимально упростить, на самом деле там происходят весьма сложные и интересные процессы).


Дизельные моторы бывают форкамерными и вихрекамерными. Форкамера всегда размещается в головке, а вихревая камера может размещаться как в головке, так и в днище поршня при непосредственном впрыске.


На изображении слева головка с вихревой камерой, справа головка с форкамерой.

Также у этих типов моторов различается форма днища поршня

Форкамерные моторы в 99% тихоходные и атмосферные. Камера в головке блока цилиндров соединена с цилиндром воздушным каналом с жиклером, через который во время такта сжатия в камеру проникает воздух с очень большой скоростью, так как жиклер имеет небольшое сечение. Благодаря этому воздушный заряд активно перемешивается с впрыскиваемым топливом при воспламенении, после чего цилиндр плавно наполняется горячими расширяющимися газами через этот-же жиклер. Благодаря такой конструкции мотор работает достаточно плавно, имеет высокие тяговые показатели на низких оборотах, нетребователен к качеству топлива.


Второй тип моторов - с вихревой камерой. Отличие от форкамерной схемы заключается в том, что сама форма камеры немного иная и канал между ней и цилиндром довольно широкий. Процесс сгорания топлива в них происходит быстрее, эти моторы более быстроходные. Но схема эта также сильно устарела и используется в основном в моторах старых конструкций на легковых автомобилях и легких грузовиках. Их характерной особенностью является боле шумная работа по сравнению с форкамерными моторами.


На фото головка блока цилиндров, на которой видна крышка вихревой камеры.

Ну и последний, и самый популярный тип компоновки - с непосредственным впрыском. В таких моторах также присутствует вихревая камера, но находится она в массивном днище поршня.

В таких моторах необходимые вихревые потоки добываются сразу несколькими способами. На компоновках с одним впускным клапаном на цилиндр, впускной канал делается спиралевидным, для придания завихрения воздушному потоку. По такому-же принципу иногда изготавливаются каналы в бензиновых моторах.

Второй этап завихрения происходит при подходе поршня к верхней мертвой точке, в момент осуществления впрыска топлива. Зазор между днищем поршня и поверхностью головки минимален и воздух резко вытесняется из этого зазора в центр камеры сгорания, непосредственно на распылитель форсунки.

В результате такого перемешивания и расположения вихревой камеры с конусообразным выступом в днище поршня, сгорание топлива происходит с максимальной скоростью и давление в цилиндре растет без задержек вызванных перепуском газов по узкому каналу. В моторах с двумя впускными клапанами на цилиндр, на низких оборотах, когда скорость воздушного потока низкая, для создания вихревых потоков в цилиндре используют вихревые заслонки, перекрывающие один из впускных каналов.

Данные заслонки присутствуют на подавляющем количестве современных дизельных моторов и являются попоболью для их владельцев, так как благодаря системе ЕГР, впуск вместе с заслонками очень быстро становится похож на это

Далее, чтобы топливо попало в цилиндр, да еще и качественно там распылилось, нам нужна топливная аппаратура, это как правило самый дорогой компонент дизельного мотора.

Один из самых важных компонентов системы - топливная форсунка. Они бывают механическими и электромагнитными, вторые применяются в системах с электронным управлением впрыском.

Рассмотрим механическую форсунку, на этой картинке очень наглядно изображен принцип ее действия.

Такие форсунки настраиваются на определенное давление открытия, при котором топливо приподнимает запорную иглу, освобождая себе путь к распылителю, игла держится открытой, пока давление топлива не упадет, таким образом дозируется порция топлива. Давление открытия в таких системах обычно находится в пределах 300-400 атмосфер. Топливо, просочившееся через зазор плунжерной пары распылителя уходит в обратную топливную магистраль "обратку" и по количеству топлива в обратке можно косвенно судить об исправности и износе форсунки, чем больше там топлива - тем ближе ее смерть. Распыление топлива происходит через распылитель, который находится на самом кончике форсунки и имеющий несколько отверстий. Благодаря высокому давлению впрыска образуется очень мелкодисперсный топливный туман, почти пар.

Следы от струй распыляемого топлива часто можно обнаружить на поработавших поршнях

Форсунки внешне могут сильно различаться, но суть и принцип работы у них один.

Электромагнитные форсунки работают по несколько иному принципу. Они также открываются давлением топлива, но и запираются им-же. Это вызвано тем, что давление топлива, подающееся на электромагнитную форсунку постоянно. Топливо в закрытом положении давит на хвостовик плунжерной пары, уравновешивая открывающее усилие с другой стороны. При подаче напряжения на катушку электромагнита открывается перепускной канал, который сбрасывает давление на хвостовик плунжера, и игла открывается, при закрытии канала давление вырастает и закрывает иглу.

Так, с форсунками понятно, а откуда берется такое конское давление? А его создает второй, не менее значимый компонент - топливный насос высокого давления (ТНВД).

ТНВД может быть совмещенным, когда все плунжерные секции собраны в одном корпусе

Может быть раздельным, когда на каждую форсунку есть свой собственный ТНВД с одной плунжерной парой

И наконец, ТНВД может быть встроен прямо в форсунку! Такое мракобесие зовется насос-форсунка.

Самый популярный - первый вариант, на фото кстати ТНВД КамАЗ-740, второй по популярности - вариант номер два, он самый практичный, так как можно отдельно заменить один вышедший из строя элемент, что дешево и удобно. Такую схему, например очень любят ребята из Lombardini, ставят ее на все маленькие моторы для генераторов и на моторы побольше для тракторов

На фото хорошо видны индивидуальные ТНВД и форсунки.

Последний вариант любил пихать в моторы концерн VAG, и довольно быстро отказался от такой конструкции по причине затрудненной регулировки, подбора насос-форсунок по производительности и дороговизны производства и обслуживания.  В действие плунжерные секции приводятся либо распределительным валом ГРМ , на котором присутствуют отдельные кулачки, или своим собственным валом в случае с первым вариантом. Также есть еще несколько вариантов конструкции ТНВД поздних выпусков, отличающихся принципом действия. Регулировка опережения впрыска осуществляется либо отдельной муфтой опережения впрыска топлива, которая при увеличении скорости вращения доворачивает вал в ТНВД на опережение, либо фозовращателем на распределительном валу. Во всех механических системах впрыск происходит один раз за цикл. Также эти системы отличаются простотой, надежностью, неприхотливостью. В принципе не требуют электрооборудования в подавляющем большинстве, то есть мотор будет работать пока ему не перекроют топливо.


К сожалению, в очередной раз достигнуто ограничение длины поста, поэтому продолжение будет в следующей части. Спасибо за внимание!

Показать полностью 25
[моё] ДВС Двигатель Дизель Мотор Длиннопост Лень делать длиннопост
131
755
Prostoilogin
Prostoilogin

Полный привод⁠⁠

6 лет назад
Полный привод
Показать полностью 1
Полный привод Велосипед ДВС Самоделки
107
59
Rem55
Автомобильное сообщество

Эпоха ДВС заканчивается!...⁠⁠

6 лет назад

Руководитель отдела разработок Daimler Маркус Шафер заявил, что концерн прекратил разработку новых моторов на традиционном топливе. Семейство рядных шестицилиндровых модульных двигателей M256 может оказаться последней линейкой ДВС. Производитель сосредоточится на электрификации модельного ряда.

Мерседес не одинок в этом своем кардинальном решении.

Ранее об отказе от разработок новых линеек ДВС заявили Вольво и Фольксваген.

Все освободившиеся средства будут пущены на разработку моделей на электротяге.

Пруфы:

https://auto.rambler.ru/navigator/42861304-daimler-ostanovil...

https://yandex.ru/turbo?text=https%3A%2F%2Fwww.zakon.kz%2F49...

https://rg.ru/2018/12/05/volkswagen-otkazyvaetsia-ot-benzina...


Я думаю теперь даже самые убежденные сторонники ДВС согласятся что господство этой технологии подходит к своему финалу.

Да, они еще много лет будут колесить по дорогам, но это как эпоха динозавров - несмотря на абсолютное господство мы прекрасно помним, что для них все в итоге закончилось печально...)))

Показать полностью
ДВС Автомобили будущего Текст
169
902
vectrovod
vectrovod
Автомобильное сообщество
Серия Двигатели внутреннего сгорания

ДВС и его виды. Часть 6. Дизель⁠⁠

6 лет назад

Дизельный двигатель - двигатель, воспламенение рабочей смеси в котором обеспечивается от воздействия разогретого при сжатии воздуха. Первый двигатель, работающий по такому принципу, был построен в 1897 году Рудольфом Дизелем, чьим именем он и называется по сей день.
По основному конструктиву он имеет общие черты с бензиновым двигателем. Он тоже имеет блок цилиндров, головку блока цилиндров, может иметь распределительный вал, впускной и выпускной коллектора или патрубки. Также он может работать как по двухтактному, так и по четырехтактному циклу, но на этом сходства заканчиваются.

Первое, и главное отличие - отсутствие у дизельного двигателя системы зажигания, и вообще отсутствующая необходимость в каком-либо электрооборудовании. Воспламенение топлива происходит за счет сильного сжатия воздуха в цилиндре (в 14-20 раз), из-за чего его температура резко возрастает до 400-600 градусов по цельсию, и в этот момент в цилиндр впрыскивается топливо, которое воспламеняется от высокой температуры.  При чем процесс горения отличается от бензинового двигателя. В бензиновом двигателе рабочая смесь заполняет собой всю камеру сгорания (кроме систем с непосредственным впрыском), и после поджига происходит распространение фронта пламени, которое требует времени. Поэтому процесс горения может занимать продолжительное время и продолжаться даже на выпуске.

На гифке кстати нижнеклапанный мотор. Видим длительный процесс горения, из-за которого у нас есть непостоянство давления в цилиндре, и часть тепла улетает в трубу.

В дизельном двигателе процесс горения занимает время, необходимое для впрыска необходимой порции топлива. После впрыска происходит задержка воспламенения, вызванная процессом испарения распыленного топлива, после чего оно воспламеняется и горит пока происходит впрыск факела, факел в свою очередь вырываясь из камеры сгорания, равномерно прогревает не вступивший в реакцию воздух, благодаря чему рабочий процесс происходит при постоянном давлении. Добавляем к этому длинноходную геометрию и высокую степень сжатия и получаем большой крутящий момент. Бонусом мы получаем достаточно холодный выхлоп, так как более эффективно используем полученное тепло. Дизельные двигатели имеют наибольший КПД среди поршневых двигателей, достигающий 35-50%.
Однако в тоже время дизельное топливо горит довольно медленно, и для его воспламенения требуется определенное время, что в купе с длинноходностью не дает им развивать большие обороты, и на высоких частотах вращения топливо не успевает сгорать, из-за чего приходится уменьшать его количество, теряя производительность.

Изначально Рудольф Дизель подумывал кормить свое детище угольной пылью, однако высокие абразивные свойства такого топлива загубили идею на корню. Первые моторы использовали в качестве топлива различные растительные масла, мазут, и даже сырую нефть. Вообще дизельный мотор может съесть любое топливо, главное, чтобы оно горело, разумеется с определенными ограничениями.

В первых конструкциях впрыск топлива в камеру сгорания осуществлялся пневматическим способом, при помощи отдельного компрессора, что делало дизель очень тяжелым, габаритным и очень мешало его распространению. Рудольф Дизель поплыл на пароходе в Лондон  в 1913 году на открытие фабрики по производству моторов, и зачем-то утопился, а вот Роберт Бош сел, подумал, и в 20-х годах создал первую форсунку не требующую для работы сжатого воздуха, и модернизировал топливный насос высокого давления (ТНВД), после чего детище Дизеля начало свое победное шествие по миру.

Первое время они были тяжелыми и тихоходными, некоторые конструкции требовали долгого прогрева паяльной лампой перед пуском, правда такие моторы назывались калоризаторными, так как имели калильную камеру, которую необходимо было нагревать

Это двухтактный калоризаторный двигатель. Калориферная головка под номером 1.

Тут надо сделать ремарку, так как над дизелем работали не только в Германии.
Инженер Густав Тринклер (опять немцы), работавший на Путиловском заводе в Санктъ-Петербурге, аж в 1898 создал форкамерный дизель с гидравлической системой впрыска, опередив Роберта Боша на 20 лет. По сути он создал одну из современных вариаций мотора, однако под давлением патентных споров работы заставили свернуть в 1902 году, а жаль.

В 30-х годах двадцатого века дизель стал очень стремительно развиваться, применяясь в самых неожиданных местах и в самых разных вариациях. При чем в отличии от бензиновых моторов, двухтактная схема получила поистине огромное распространение, и самое смешное то, что самые большие дизельные моторы были как правило двухтактные!

Но двухтактная схема получила несколько иную реализацию, нежели в случае с бензином. Картерная продувка практически не использовалась, зато были две свои отдельные компоновки продувки:
1. Оконная или щелевая
2. Клапанно-щелевая

В первом варианте как впуск, так и выпуск осуществляется через окна в цилиндре, так как двухтактные моторы в подавляющем большинстве оснащаются компрессорами, продувка цилиндра осуществляется достаточно эффективно, однако при такой схеме очень тяжело организовать качественное итоговое наполнение цилиндра, так как впускные окна закрываются раньше выпускных в моторах с одним коленчатым валом, и эта фраза здесь не просто так.
Сумрачный немецкий гений придумал компоновку, сохраняющую качественную продувку без применения клапанов, да еще и прикрутил ее к самолету, мотор звали Junkers YUMO 205.
У этого мотора было 6 цилиндров, 12 поршней и два коленчатых вала, поршни двигались в цилиндрах навстречу друг другу, сжимая между собой воздух, в это пространство, посередине цилиндра и впрыскивалось топливо, одна группа поршней открывала выпускные окна, вторая группа открывала впускные окна, при этом выпускные окна закрывались раньше впускных, что позволяло создать избыточное давление на такте продувки и качественно очистить цилиндр от отработавших газов. Мотор отлично себя показал, развивая весьма большую мощность.

Нашим инженерам после войны тоже понравилась такая компоновка, и в 1953 году наши создали семейство двигателей Д100, которые долго ставили в тепловозы, а в 1956 году Харьковские конструкторы вывели компоновку в абсолют, создав двигатель 5ТД, в 1968 доработав его до 5ТДФА для танка Т64. При рабочем объеме всего в 13.6 литров он выдавал мощность до 1000 лс в некоторых модификациях, и в отличии от предков был сверхкомпактным и оппозитным.

Схема его работы была примерно такой

За характерный звук, танкисты прозвали его мотоциклом, а за характерный вид - чемоданом.
Однако его сложность и дороговизна его погубила, эти моторы часто выходили из строя по вине экипажа.

Впрочем наши от немцев старались не отставать, и в 1935 году тоже создали авиационный дизель, только четырехтактный, 12 цилиндровый, V-образный, с 4 клапанами на цилиндр, системой газораспределения DOHC с двумя распредвалами на головку и двойным турбонаддувом. Вы наверно уже знаете, о ком я) Это АН-1, который вскоре эволюционировал в АЧ-30

Параллельно с ними, по схожей концепции был создан легендарный танковый мотор В-2, который вы прекрасно знаете)

Также двухтактная компоновка не обошла стороной и самые большие на земле поршневые моторы, это судовые дизеля. Только сделаны они немного по другой схеме, называется она - крейцкопфная компоновка.

Слева. Крейцкопф (номер 10), представляет собой ползун, двигающийся по собственным направляющим, без воздействия высоких температур, с поршнем он соединен прямой штангой, и в такой конструкции поршень не испытывает боковых нагрузок, что позволяет сделать его площадь меньше и понизить потери на трение. Такая компоновка применяется только в очень больших дизелях из-за огромного хода поршня, достигающего трех метров.
И тут мы подошли ко второму виду двухтактных дизелей - с клапанно-щелевой продувкой.
Как видим, у таких машин в головке присутствует выпускной клапан, а впуск осуществляется через впускные окна, благодаря чему продувка осуществляется в идеальном направлении - снизу вверх.

Такая продувка использовалась не только на тихоходных судовых дизелях. Она попадалась и в довольно быстроходных моторах, таких как ЯАЗ-204 и ЯАЗ-206. С рабочего объема 4.6л получали до 160 лс, мотор был двухтактным, клапанно-щелевой продувки, с нагнетателем типа "Рутс".  В двигателе были применены индивидуальные ТНВД, что стало предтечей насос-форсунок.

Двухтактные дизельные моторы стремительно захватили мир, и стремительно его покинули. С 1960 годов их количество очень быстро падало, и они были вытеснены четырехтактными моторами. На данный момент двухтактная схема используется только в самых больших судовых дизелях мощностью от 20000 до 100000лс. Такие моторы как правило имеют прямой привод на гребной винт, и в двухтактной компоновке гораздо проще осуществить реверс для обратного хода.

Вот мы и узнали о становлении и возникновении всем известных дизельных моторов. В следующей серии разберем устройство некоторых узлов и перейдем поближе к современным конструкциям.

Выйдет следующая часть не скоро, времени совсем нет, пишу ночами, как видите, но я стараюсь) До встречи!

Показать полностью 16
[моё] ДВС Двигатель Мотор Длиннопост Гифка
113
278
vectrovod
vectrovod
Автомобильное сообщество
Серия Двигатели внутреннего сгорания

ДВС и его виды. Часть 5. Современные системы впрыска, применяемые датчики.⁠⁠

6 лет назад

Всем привет, продолжаем.

Хочу отдельно поблагодарить читателей, которым не лень поправлять меня в комментариях. В дискуссии всегда рождается истина)

Внесем правки в предыдущую тему.


1. Да, я ошибся с ВАЗовскими моторами. Впуск с изменяемой геометрией стали устанавливать на моторы 1.6. На моторы 1.8 установили фазовращатель на впускной распределительный вал, в связи с чем увеличили маслонасос и модернизировали головку блока.


2.  И снова про крутящий момент и мощность.

Ходил я тут дня три и думал) Большое спасибо товарищу @daxiaoriben  , за наиболее содержательную и доходчивую наводку.


Да, если быть кратким, мощность - главное. Чтобы было проще это осознать,  я придумал пример.

Возьмем два двигателя с разными характеристиками, для простоты возьмем все факторы (сопротивление воздуха, вес маховика, вес машин и тд) одинаковыми, передаточное отношение трансмиссии равно 1. На графике цветными полосами я пометил скорости вращения коленвала с интервалом в 1000 об\мин.


На этой картинке нас интересует черный график

На картинках у нас два разных мотора, с одинаковым максимальным крутящим моментом. Один мотор (второй), с турбонагнетателем, поэтому у него кривая момента представляет из себя "полку" с 1500 по 4000 об\мин. У первого мотора пик момента достигается на 4500 об\мин, так как он атмосферный.  Теперь посмотрим на то, как они будут разгоняться. Ускорение машины зависит от приложенной к ней силы тяги, то есть от крутящего момента на колесе. У нас он будет равным на моменту на маховике (трансмиссионные потери для простоты не учитываем).


1. 1500 об\мин. У первого мотора момент на колесе составляет около 145 Нм, у второго 200Нм, соответственно второй мотор ускоряется резвее, так как тяга больше, смотрим на МОЩНОСТЬ. У первого 25 кВт, у второго 30 кВт, итого, выигрывает мотор, выдающий бОльшую мощность.


2. 2500 об\мин. У первого мотора момент на колесе около 160 Нм, у второго 200 Нм. Соответственно второй мотор продолжает уезжать, так как тяга все еще больше. Но больше и мощность, 50 кВт против 45.


3. 3500 об\мин. У первого мотора момент около 180 Нм, у второго также 200 Нм. Второй мотор продолжает отрыв, сохраняя преимущество в мощности, 75 кВт против 60 с копейками.


4. 4500 об\мин.  У первого мотора 200Нм, у второго около 190 Нм, и первый мотор начинает уходить,  теперь он преобладает в мощности. 90 кВт против 85 кВт.


5. Последняя метка в 5500 об\мин. Первый мотор выдает около 180 Нм, второй 150 и мощности соответственно 110 против 85 кВт.


Как видим, ускорение напрямую зависит от выдаваемой мощности, равно как и от крутящего момента, за одним маленьким НО. И это но расставляет точки в споре, или почему дизеля не валят.


Все очень просто. Берем дизель, допустим работает он на 2000 об\мин, и выдает крутящий момент в 200 Нм и мощность в 40 кВт, и есть бензин, работающий на 4000 об\мин, выдающий те-же 200Нм и, внимание, 80 кВт. Едут машины с одной скоростью, у дизеля передаточное число 1, у бензина 2. Мощность механических потерь, сопротивления движению машины и тд, примем в 40 кВт. Итого получаем : дизель достиг своей максимальной скорости и не разгоняется, а бензиновый мотор, выдавая тот-же момент, бодро уходит вперед, ибо он выдает вдвое больше мощности.  И тут дотошный читатель задаст вопрос, а как-же так, как тяговое усилие? А тут мы вспомним про передаточное отношение и увидим, что в то время как у дизеля на колесе 200Нм, у бензина аж 400, вдвое больше, вот сюда-то и делся двукратный избыток мощности. Поэтому дизели и не едут.


Отсюда итог. Да, машину разгоняет мощность, но ноги ее растут из крутящего момента, и в него-же она и уходит. И чем выше крутящий момент и чем более высокие при этом обороты, тем выше мощность и тем лучше.  И главное преимущество дизеля - это экономичность, в виду высокой тяговой характеристики на низких оборотах и НИЗКОЙ выдаваемой мощности, ибо топлива ест меньше. На этом думаю спор можно закрыть)


Итак. 


Современные системы управления двигателем, или ЭСУД.


Наибольшее количество изменений ЭСУД претерпели с введением норм токсичности выхлопных газов Евро-3. По сравнению с предыдущими вариациями, у данных систем появился электронно-управляемый дроссель и второй датчик кислорода, устанавливаемый после каталитического нейтрализатора, плюс катализаторов в большинстве случаев стало два, один в непосредственной близости от выпускных окон в головке, второй на отдалении.

С этого момента водитель полностью потерял механическую связь с двигателем, остались только провода. Мотор полностью управлялся электронным блоком управления, на педаль газа установили датчик ее положения. Теперь водитель не управлял дросселем, а лишь указывал ЭБУ, что он хочет получить от мотора. Введение электронного дросселя обусловлено тем, что при управлении дроссельной заслонкой при помощи ноги, происходила некоторая инерционность в смесеобразовании в переменных режимах, например при резком открытии дросселя смесь кратковременно обеднялась, а при закрытии - обогащалась. Все это ухудшало средние показатели токсичности выхлопа, из-за чего управление дросселем отдали ЭБУ.  Катализатор перенесли к головке для ускорения его прогрева, ведь как известно, рабочая температура нейтрализатора составляет больше 300 градусов, поэтому холодный запуск, да еще на переобогащенной смеси, сильно вредил экологии, плюс ко всему, дабы не убить долго прогревающийся катализатор несгоревшим топливом, производители устанавливали системы подачи воздуха во впускной коллектор, эдакий пылесос, который в течении пяти минут после запуска задувал по специальному каналу в коллектор сильный поток воздуха, для того, чтобы несгоревшее топливо имело возможность догореть в коллекторе, а не на сотах катализатора.

Второй датчик кислорода предназначался для контроля исправности нейтрализатора и на работу мотора не влиял.

Система подачи воздуха в выпускные коллекторы.

Выпускные кат-коллекторы.


Также с этого поколения системы управления в большинстве случаев распрощались с высоковольтными проводами и вынесенными катушками зажигания. Их место заняли единые или дискретные модули зажигания, различающиеся тем, что в едином несколько модулей залиты в один корпус. В таких модулях на каждый цилиндр была своя собственная катушка зажигания, что позволило уменьшить помехи от работы высоковольтной системы и увеличить стабильность работы системы зажигания в целом.

Единый модуль зажигания

Дискретные модули, или индивидуальные катушки.


Также благодаря этим модулям, фазированному впрыску топлива и датчику детонации, удалось осуществить поцилиндровый контроль работы двигателя. ЭБУ может "увидеть" пропуски зажигания в отдельном цилиндре и отключить его с соответствующей ошибкой, что сильно упростило диагностику неисправностей. Также наряду с внедрением этих систем,  пошла в массовое использование шина CAN-bus (Control Area Network) или сеть контроллеров. Это высокоскоростной интерфейс, связывающий в единую сеть контроллеры разных устройств автомобиля. С ее помощью блоки могут обмениваться данными и исполнять различные команды. Воедино все компоненты связывались модулем управления автомобилем, у разных производителей это называлось по разному, у опеля например, CIM-модуль, часто располагавшийся в рулевой колонке.


Данные системы впрыска существуют и здравствуют по сей день, к ним только добавили дополнительные возможности, такие как управление фазовращателями, воздушными заслонками, турбонагнетателями, вентиляторами, термостатами и тому подобным.


Ну и такие блоки как правило стали исполняться в литом корпусе с открытым монтажем на керамической плате, залитой компаундом, что люто усложнило их ремонт, а в некоторых случаях сделало его невозможным.

Системы непосредственного впрыска топлива


Следующим шагом стало внедрение систем непосредственного впрыска (именно электронно-управляемых). Пионерами в принципе можно назвать компанию Mitsubishi с ее системой GDI (Gasoline Direct Injection, непосредственный впрыск бензина). У разных производителей эти системы назывались по разному, например FSI у фольксвагена, SIDI у опеля, и тд.


Эти системы кардинально изменили все принципы и возможности управления двигателем.

Для поднятия КПД, нужно было повышать степень сжатия, что при классической схеме, со сжатием готовой топливо-воздушной смеси, приводило к повышению вероятности возникновения неконтролируемого воспламенения, или детонации, которая разрушительно влияла на ЦПГ. И тут инженеры прикрутили к бензиновому мотору подобие коммон-рейла от дизеля.


В системе впрыска появился ТНВД (топливный насос высокого давления) и форсунки, установленные непосредственно в камеру сгорания. Давление в топливной рампе выросло до 100 и более атмосфер, что позволило осуществлять впрыск в очень короткое время, и качественно распылять топливо.  А главное, позволило безболезненно поднять степень сжатия до 12 и выше. Например мазда в своих моторах подняла степень сжатия до 14, а это уже показатель их-же дизельного мотора.


Также данные системы позволили улучшить экономичность за счет принципа послойного смесеобразования, благодаря чему моторы стали работать на переобедненных смесях, на которых воспламенение с традиционными системами невозможно. Действует это очень просто, в режиме малых нагрузок и холостого хода, поршень сжимает воздух, и непосредственно перед моментом искрообразования в область свечи зажигания подается порция топлива, создающая зону с нормальным составом смеси, в то время как средний состав получается очень бедным, но воспламенение в таком случае возможно, что позволяет сильно экономить, складывая это с высокой степенью сжатия, поднимающей эффективность сгорания.  В поршень в таких моторах, имеет очень хитрую форму днища

Поршень Skyactive от мазды.


Моторы также получили второй режим работы на обедненной гомогенной (однородной) смеси, когда первый впрыск топлива осуществляется на такте в пуска, формируя очень бедную смесь, а перед воспламенение в область свечи опять-же подается дополнительная порция топлива, обеспечивающая воспламенение, такой режим используется на частичных нагрузках.

Ну и в режимах полной мощности впрысков становится больше, для формирования богатой "мощностной" смеси.


Плюсом к этому стали применять тотальное облегчение деталей двигателя, масляные и водяные насосы переменной производительности, для уменьшения отбора мощности на привод вспомогательных агрегатов, позволив поднять эффективность моторов на высокий уровень.


Также данная схема используется на моторах с компрессорами, только с уменьшенной степенью сжатия.


Кроме того, Экологичность моторов удалось повысить с помощью системы рециркуляции отработавших газов EGR (Exhaust Gas Recirculation).


Система появилась еще на заре развития систем управления впрыском, и клапаны рециркуляции были с вакуумным приводом. Позже они стали электронными, что увеличило точность их работы.

Данная система призвана уменьшить содержание окислов азота в выхлопных газах, образующихся при высокой температуре и избытке кислорода, поэтому с целью эту самую температуру понизить, и уменьшить количество кислорода, поступающего в цилиндры, на впуск стали подавать часть выхлопных газов на малых и частичных нагрузках. На режимах холостого хода и полной мощности  рециркуляция не осуществляется. С остальными вредными углеродосодержащими веществами в выхлопе отлично справляется каталитический нейтрализатор.


Отдельной, но параллельной тропой шли моторы с наддувом. Конструкторы подумали, зачем париться со всеми этими хитрыми резонансами и заслонками, когда можно прикрутить к мотору насос и задувать столько воздуха, сколько влезет? И сработало. Технология позволила меньше ломать голову, делаем ЦПГ покрепче, дуем побольше и получаем профит.

Моторы с наддувом отличаются очень простым впускным и выпускным трактом, и пониженной степенью сжатия, для предотвращения возникновения детонации. Ну и конечно наличием воздушного компрессора, приводимого в действие либо от энергии выхлопных газов (турбокомпрессор)

Либо нагнетателем с приводом от коленчатого вала двигателя, как правило шнековым или роторным.

Если в случае с приводными компрессорами все ясно,  и все хорошо, кроме отбора мощности от коленвала двигателя (до 1000лс на дрэговых моторах), и высокой стоимости, то с турбокомпрессорами появился такой гадкий эффект, как турбояма.

Турбояма возникает, когда энергии выхлопных газов не хватает, чтобы раскрутить крыльчатку компрессор до номинальных оборотов, и к примеру до 2000 об\мин мотор вялый, "не тянет", после чего происходит резкий подхват. Для решения этой проблемы крыльчатки турбокомпрессоров уменьшают, смещая "спул" (момент раскрутки компрессора), в зону более низких оборотов, но в этом случае маленького компрессора перестает хватать на верхах, для избежания этой гадости стали устанавливать два компрессора, маленький и большой. Маленький работает в нижнем диапазоне оборотов, большой - в верхнем.

Однако системы опять-же, оказались дорогими, и в нижнем ценовом диапазоне их не встретить.

Системы наддува позволили начать стихийно понижать рабочий объем моторов, выдувая из них максимум мощности, правда долго жить такие моторы отказываются, так как физику не обманешь.


Назначение датчиков систем впрыска


Датчик положения коленчатого вала, ДПКВ

Дает показания об угле поворота коленчатого вала, основополагающий датчик многих систем.


Датчик положения распределительного вала ДПРВ

Дает данные об очередности фаз и положении распределительных валов. На некоторых системах в аварийном режиме может заменить ДПКВ.

При выходе из строя ДПРВ отключается режим фазированного впрыска.


Датчик положения дроссельной заслонки ДПДЗ

Датчик дает показания о нагрузке на двигатель по степени открытия дроссельной заслонки.  На системах с электронным дросселем этот датчик встроен в корпус дроссельной заслонки, также их там может быть два.


Датчик температуры охлаждающей жидкости ДТОЖ

Сообщает в ЭБУ данные о температуре охлаждающей жидкости. По этим данным осуществляется коррекция состава смеси при холодном запуске и в режиме прогрева.


Датчик массового расхода воздуха ДМРВ

Дает данные о массе поступающего в двигатель воздуха, очень важен и является ключевым, в качестве смесеобразования.


Датчик абсолютного давления ДАД

Дает аналогичные с ДМРВ данные, но менее точные, его данные косвенно говорят о текущем расходе воздуха. Иногда используется совместно с ДМРВ.


Датчик кислорода или лямбда-зонд. ДК

Устанавливается в выхлопном тракте и реагирует на наличие кислорода в выхлопных газах, играет важнейшую роль в контроле качества смесеобразования.

Бывает три типа:

1. На основе диоксида циркония.

2. На основе диоксида титана.

3. Широкополосные ДК.


Первые два не могут анализировать точный состав смеси, они работают как выключатель богатая-бедная. Рабочий диапазон сигнала зонда первого типа 0.1-0.9В, второго типа - 0.1 - 4.9В. Также у датчиков второго типа два сигнальных провода, так как они резистивные.

Датчики на основе диоксида титана применяются редко и стоят в три раза дороже циркониевых (владельцы Simtec-ов меня поймут).

Циркониевые датчики бывают:

однопроводные (без подогрева)

двухпроводные (с отдельной массой на сенсор)

трехпроводные (с подогревом с отдельным питанием)

четырехпроводные (с дополнительной массой на нагревательный элемент)


Широкополосные датчики позволяют получить точную информацию о составе смеси, широко используются в некоторых современных системах впрыска, настройщиками и  виде дополнительных приборов.


Это основной набор датчиков, без которого не обходится ни один более-менее современный мотор.


Думаю, этого достаточно в серии постов про бензиновые моторы. И пора переходить к дизельным. До встречи!

Показать полностью 18
[моё] ДВС Двигатель Мотор Длиннопост
201
560
vectrovod
vectrovod
Автомобильное сообщество
Серия Двигатели внутреннего сгорания

ДВС и его виды Часть 4 (продолжение)⁠⁠

6 лет назад

Ремарка.

Я не претендую на истину, говорю о том, что знаю, знать могу не верно, поэтому просьба, если видите ошибку, распишите человеческим языком, где она. Не нужно писать про школу, самоучек неграмотных. Я хочу научиться, научите, напишите в комментах, где я не прав. Все, что я пишу, я трогал руками, это мой опыт и заключения на основе него. У меня гуманитарное образование, и ни один человек никогда меня не учил тому, что я пишу, будьте снисходительнее.


Итак, продолжаем.

Закончили мы на системе изменения эффективной длины впускного тракта Dual Ram, которая появилась в 1989 году на моторах C30SE, С30XEI, C40SE, C26NE. Система соединила воедино сразу две конфигурации впускного тракта, длинную и короткую.

Во впускном коллекторе между двумя группами по три цилиндра установили воздушную заслонку с пневмоприводом, до 4000об\мин она закрыта, и коллектор имеет эффективную длину показанную красным цветом, на 4000 заслонка открывается и коллектор укорачивается до длины указанной зеленым цветом.

Как видим, резонансная частота увеличивется примерно вдвое. Интересно, а какой эффект? А вот такой

Весь подъем, выделенный красным, это выигрыш в крутящем моменте благодаря данной системе. Неплохо, для одной заслонки. Только зачем Немцы больше ста лет проектирующие моторы, гоняются за ненужным моментом, нипаняна.

Чуть позже данная система получила развитие, систему Multi RAM, на моторах V6, там уже было две заслонки, которые имитировали 4 длины впускного тракта.

На картинке черной линией нарисовал резонансную длину впускного тракта, которая добавляется к длине самих патрубков, ведущих от ресивера к головкам (около 15см).

В режиме холостого хода система находится с режиме сообщения двух камер ресивера. Система активируется в режиме полной мощности, на частичных нагрузках она "спит". При полностью открытом дросселе от холостых и до 3400 об\мин система переходит во второй режим, и максимально удлиняет коллектор, с 3400 до 4100 об\мин коллектор укорачивается вдвое, на оборотах более 4100 остаются только впускные патрубки, впуск максимально укорочен. Благодаря этой системе удалось поднять момент на низких оборотах без потери на верхних, сделать полку более ровной, без провалов. Сейчас такой коллектор стал популярным атрибутом на 4 цилиндровых моторах, у многих производителей, как недорогое дополнение к другим системам..

Это хонда

И даже автоваз соизволил прикрутить его к "новому" 1.8

есть еще всякие интересные системы, улучшающие смесеобразование на низких оборотах, когда скорость потока во впуске низкая, а вихревые потоки в цилиндре создавать надо, для более равномерного смешивания топливных паров и воздуха. Одна из таких систем - Twin Port, применяемая на моторах с 4 клапанами на цилиндр.

Суть проста, на низких оборотах заслонкой перекрывается один из каналов и у мотора из двух клапанов на впуске остается один, из-за чего в цилиндре создается завихрение, благодаря которому получаем более эффективное и полное сгорание.

Но помимо впуска у нас есть еще и выпуск, который так любят снабжать прямотоком без задней мысли. И резонансная характеристика выхлопа также важна ка и на впуске, хоть и дает меньший прирост в качестве наполнения цилиндров. С одноцилиндровыми моторами все просто, там одна труба, и главная ее задача - не создавать излишнего сопротивления и не возвращать волну к выпускному окну в режимах наиболее эффективной работы, на которые настроен впуск. Вообще впуск и выпуск настраиваются только сообща, так как есть такая весчь, как фазы газораспределения, в которых есть фаза перекрытия, это тот момент, при котором открыты оба клапана

Из диаграммы видим, что при прохождении поршнем верхней мертвой точки, на протяжении 46 градусов поворота коленвала, оба клапана приоткрыты и выпуск соединен с впуском, а в цилиндре сквозняк) В этот момент, нужно чтобы в приемной трубе присутствовало разряжение, а во впуске пришла резонансная волна, тогда выхлопная система в состоянии наиболее полно очистить цилиндр от остатков отработавших газов и помочь разогнать смесь во впуске.  Выпускные коллекторы, рассчитанные на низкий резонанс, имеют большую длину

Они лучше работают на низких оборотах, коллекторы для верхов короче

Сейчас производители можно сказать вообще не уделяют внимания на выхлоп в гражданском исполнении, ибо экологи прикрутили на всех катколлекторы, которые заставили забыть про настройку выхлопа.

Производители быстро наигрались изменением конфигурации впускного тракта, и надо было идти дальше. У тут началась эра изменяемых фаз газораспределения. Понапридумывали их также много, и все обозвали их своими именами. У BMW это VANOS, у хонды VTEC, у тойоты VVT-i и так далее. В основной массе эти системы представляют собой составные, гидравлически управляемые шкивы распределительных валов, которые позволяют проворачивать распредвал относительно шкива и изменять фазы газораспределения, для наиболее качественного наполнения цилиндров. В первых версиях данной системой оснащались только впускные распределительные валы, позже их стали ставить и на выпуск.

На фото тойотовская VVT, видно две части шкива, которые могут вращаться друг относительно друга при наполнении маслом одних или других полостей, также видно подпружиненный штифт, который блокирует движение механизма при отсутствии давления масла, например при запуске. Так для чего изменять фазы?

На низких оборотах клапан открыт продолжительное время и наполнение происходит хорошо, но для его улучшения нужно закрыть впускной клапан не через 64 градуса после нижней мертвой точки, как на диаграмме выше, а раньше, чтобы поршень не вытолкнул часть смеси обратно во впуск, а на высоких оборотах наоборот, нужно дольше держать клапан открытым, чтобы движущаяся с большой скоростью воздушная масса успела по инерции больше натрамбовать цилиндр. В купе с изменяемым впускным коллектором это дает большой эффект, а выпускным распредвалом регулируется фаза перекрытия, меньше на низких оборотах и больше на высоких.

Хонда пошла другим путем, со своей системой VTEC, у нее на распредвалах есть отдельный кулачек и отдельный рокер, эта система уникальна тем, что в двигателе одновременно присутствует по сути два комплекта разных распредвалов, низовые и верховые. Если системы изменения фаз газораспределения могут только смещать фазы, но не могу изменить их ширину и величину поднятия клапана, на системе VTEC можно одномоментно сменить всю конфигурацию механизма ГРМ, и это действительно уникальное изобретение

Как видим, при низкой частоте вращения коленчатого вала, задействованы кулачки с узкой фазой и небольшим подъемом клапана, третий кулачек и его рокер не связаны с системой. При достижении определенных оборотов, штифт соединяет все три рокера воедино, и управление на себя берет третий кулачек, с широкой фазой, по сути в двигателе меняется распредвал. Кто ездил на хондах с VTECом, чувствовали этот лютый подрыв, когда включается "втык". Благодаря ему, хондовцы создают моторы с хорошими низами и крутящиеся до бешеных оборотов. А систему свою запатентовали вдоль и поперек)

BMW тоже пошли своим путем, и помимо VANOS, создали систему управления высотой подъема клапанов, под названием Valvetronic, хитроумных ход позволил полностью избавиться от дроссельной заслонки, отныне наполнение регулируется только подъемом клапана

Хитроумная система с электроприводом, может пододвигать и отодвигать промежуточный рычаг к распредвалу, изменяя его диапазон перемещения, а вместе с ним и высоту поднятия клапана.

Ну, теперь можно перейти к системам управления двигателем.

Их рождение было довольно мучительным, полным поисков. Все началось с элементарной замены карбюратора на топливную форсунку, что обозвали моновпрыском. Только кто-то пошел по нормальному пути, создав электронную систему, а кто-то нагородил механических вундервафлей. Сейчас напугаю старых мерсофилов и ваговодов одним словом - KE-Jetronic! Сколько выпил крови этот унитаз у честных людей.

На фото распределенный джетроник.

Но не будем о механике, эта ветвь сразу оказалась тупиковой и никакого развития не получила. Зато неплохо пошел электронный моновпрыск, например Siemens Multec IEFI-6. В принципе полноценная система с датчиком положения коленчатого вала с полноценным реперным диском 60-2, датчиком абсолютного давления во впускном коллекторе, одной форсункой над дроссельной заслонкой и циркониевым датчиком кислорода. Система в одном блоке включала и систему управления зажиганием, В блоке не было силовых выходных каскадов, поэтому ЭБУ управлял катушкой зажигания через отдельный коммутатор.

Система включала в себя следующие датчики и устройства:

1. Датчик положения коленвала

2. Датчик абсолютного давления (MAP сенсор (Manifold Absolute Pressure))

3. Датчик кислорода

4. Датчик температуры охлаждающей жидкости

5. Датчик положения дроссельной заслонки

6. Шаговый мотор регулировки холостого хода

7. Датчик скорости машины.


Блок управления был единым, выполненным в одном корпусе и имел систему самодиагностики и шину связи К-Line

Система позволила полностью автоматизировать управление двигателем, точно регулировать опережение зажигания по нескольким картам, каждая для своего режима, а также точно регулировать состав рабочей смеси по отдельным топливным картам. Все функции карбюратора взял на себя корпус дроссельной заслонки с одной топливной форсункой, топливо к которой подавалось электрическим топливным насосом находящимся в баке, подающим топливо под давлением 0.75 атмосферы, давление регулировалось мембранным регулятором давления, и было постоянным, лишнее топливо по обратной магистрали сливалось в бак.

Карта опережения зажигания выглядит примерно так

Топливная карта выглядит так

Зная производительность топливной форсунки ЭБУ корректировал длительность ее открытия для точного дозирования количества впрыскиваемого топлива.

Датчик положения коленвала по реперному диску давал информацию в ЭБУ об угле поворота коленвала, это единственный жизненно необходимый датчик, при потере которого запуск и работа двигателя были невозможны. По датчику температуры охлаждающей жидкости ЭБУ корректировал состав смеси в сторону обогащения при запуске холодного двигателя, а также запускал и оканчивал прогревочный режим работы.

Датчик положения дроссельной заслонки отвечал за переключение эбу в режимы холостого хода, частичной и полной нагрузки, датчик абсолютного давления давал данные о расходе воздуха, шаговый мотор холостого хода регулировал подачу воздуха в режиме ХХ, на циркониевый датчик кислорода ЭБУ подавал опорное напряжение в 0.45В, при отсутствии кислорода в выхлопных газах датчик отклонял это напряжение в сторону 1В, что говорило о богатой смеси, при появлении кислорода датчик отклонял напряжение в сторону 0.1В, что говорило о бедной смеси, по данным датчика ЭБУ осуществлял коррекцию времени впрыска по фактическим данным, отклоняя ее туда-сюда, держа среднюю нормальную смесь. Система получилась удачной, простой и надежной, однако одна форсунка позволяла ставить ее только на малолитражные моторы и не давала точно контролировать состав смеси, плюс имела некоторую инерционность.

Вторым этапом были системы распределенного параллельного впрыска, яркий ее представитель - Bosh Motronic ML4.1. Эта система обзавелась индивидуальными форсунками на каждый цилиндр, выросло давление топлива до 2.7 атмосфер, которое при открытии дросселя автоматически поднималось до 3 атмосфер, что позволило готовить более качественную смесь, особенно после того как форсунки обзавелись двумя, а затем и четырьмя дюзами, что улучшало распыление топлива. Однако форсунки были запараллелеными и срабатывали одновременно. Датчик абсолютного давления уступил место датчику объемного расхода воздуха ДОРВ (VAF, Volume Airflow Sensor), в остальном система повторяла моновпрыск, за исключением того, что коммутатор переехал в блок управления двигателем.

ДОРВ

Датчик положения дроссельной заслонки был кастрированным, и по природе был выключателем на три положения - холостой ход, частичная нагрузка, полная нагрузка.


Третьим этапом были системы с попарно-параллельным впрыском, где форсунки группировались попарно или в две группы по три на 6 цилиндрах. Некоторые версии оснащались датчиками детонации, которые помогали вовремя распознать детонацию и сделать откат опережения угла зажигания. Датчик положения дросселя стал нормальным, резистивным. Датчик кислорода обзавелся подогревом и был перенесен в конец приемной трубы. Схемотехника блока стала новее и быстрее. Пример такой системы - Bosch Motronic 1.5

Далее все стало серьезнее, появился фазированный впрыск. То есть управление форсунками происходило индивидуально для каждого цилиндра, распределитель уступил место модулю зажигания с двумя или тремя катушками, ДОРВ уступил место более совершенному ДМРВ (MAF Mass Air Flow sensor) или датчик массового расхода воздуха с датчиком температуры впускного воздуха. Смесь то у нас считается в массовом соотношении, поэтому данные об объеме были не совсем актуальными, плюс ДМРВ не мешает воздушному потоку. Появился датчик фаз, по которому ЭБУ вычислял рабочий такт в первом цилиндре, это необходимо для фазированного впрыска. При выходе из строя ДПРВ, ЭБУ переходил на попарно-параллельный впрыск с соответствующей ошибкой. Эти системы сделали настоящий рывок и такой ее представитель, как Bosch Motronis 2.8, был лицензирован, обозван Январем 5.1-41, и еще долго колесил по нашим дорогам в чреве лад, а тюнингерам пришелся по душе за гибкость настроек. Такие системы позволили весьма точно управлять двигателем, и вплотную приблизились по возможностям к современным системам.


Систем впрыска на самом деле было великое множество, у каждого свои, но общие принципы были одни и те-же.


И снова подкрался лимит. Продолжение на следующей неделе. Надеюсь, вам все еще интересно. До встречи!

Показать полностью 23
[моё] ДВС Двигатель Длиннопост Мотор
79
381
vectrovod
vectrovod
Автомобильное сообщество
Серия Двигатели внутреннего сгорания

ДВС и его виды. Часть 4.⁠⁠

6 лет назад

В прошлой части мы изучили компоновку OHV, узнали о короткоходных и длинноходных компоновках, о механических и первых электронных системах зажигания и о карбюраторах. В этой теме мы изучим наиболее часто встречающуюся в современных моторах компоновку OHC, современные системы управления двигателем, и поговорим о фазах и резонансах, и способах заставить их работать на нас. Но сначала пару слов о наиболее часто задаваемых вопросах в прошлых темах, так как они важны для наиболее полного понимания процессов, протекающих в двигателе.

Первое, так давно мучающий многих вопрос - мощность или момент?

Думаю многие слышали поговорки типа "лошадиные силы продают автомобили, а крутящий момент выигрывает гонки". И вы знаете, эта поговорка весьма точно описывает природу данных показателей, но не все так просто. Главная, и самая важная характеристика выдаваемая двигателем, это крутящий момент, эта характеристика показывает именно вращающее усилие, которое способен развить двигатель на хвостовике коленчатого вала, это и есть та самая тяга, способность мотора тащить. Измеряется крутящий момент в международной системе в ньютонах на метр, у нас она измеряется в килограммах силы на метр. Для понятности рассмотрим пример, что означает крутящий момент в 200Нм.

200 Ньютонов примем равными двадцати килограммам. То есть если приделать к хвостовику коленвала метровую палку и на ее конец повесить гирю весом в 20кг, то двигатель сможет ее поднять. Это и есть крутящий момент, или то самое УСИЛИЕ. Это основная характеристика, от нее зависит максимальное усилие, развиваемое на колесах, то есть от крутящего момента зависит тяговая характеристика, но не разгон до сотни, хоть и на него тоже влияет. Мощность же, это величина чисто математическая, и она измеряется по формуле. Если объяснять максимально просто,  то чтобы вычислить мощность, нам надо крутящий момент умножить на обороты. Мощность, это РАБОТА, которую мотор способен выполнить за единицу времени. Как в электрике, мощность это произведение силы тока на напряжение, где сила тока играет роль крутящего момента, ибо СИЛА, а напряжение играет роль оборотов, ибо напряжение это характеристика "скорости". Мощность измеряется в Ваттах, а мощность двигателя мы привыкли измерять в лошадиных силах. Одна лошадиная сила равна 735 Ваттам, эту мощность необходимо развить, чтобы поднять груз весом в 75 кг на высоту 1 метр за одну секунду. Как видим, мощности всегда сопутствует время. Мощность это характеристика, которая характеризует способность преодолевать сопротивление, такие вот противоречия. От мощности зависит максимальная скорость автомобиля, а от момента то, как быстро достигнет автомобиль этой скорости.

Еще пример, для того, чтобы было проще осознать. Возьмем простейший образец очень длинноходного мотора с высоким крутящим моментом, но низкой мощностью. Знакомьтесь, велосипедист.

Посчитаем его характеристики. Длина рычага педального узла 170мм, или 0.17м, вес велосипедиста 80кг, или примерно 800 Ньютонов, итого, если велосипедист просто встанет на педаль своим весом, он разовьет момент около 136 Нм, это показатели неплохого бензинового автомобильного мотора рабочим объемом 1.6л, или показатель очень лютого спортбайка, только спортбайк валит, а велосипедист нет. А весь секрет в мощности. Максимальная скорость вращения "коленвала" велосипедиста - ну скажем 180 об\мин, причем на высоких скоростях крутящий момент стремительно падает, а спортбайк выдает данный крутящий момент на 11000 об\мин, и от того совершает огромное количество работы, и у него высокая мощность, он может эффективно сопротивляться сопротивлению воздуха, и у него высокая максимальная скорость, а велосипедист обладает отличными тяговыми характеристиками, он может спокойно тянуть свою массу на прямой передаче, и он быстро достигает своей максимальной скорости, которая не высока, ибо мощности не завезли.  Исходя из этого можно подумать, что идеальный мотор - длинноходный и оборотистый, крутящего момента море, а если еще и оборотов подкинуть, у него и мощность огромная будет, но тут хоба

Скорость поршня, будь она неладна.  Поэтому длинноходные моторы стараются делать низовыми и тяговитыми, машина с ним при грамотном подборе передаточных чисел будет отлично срываться с места, и таскать тяжелый прицеп в гору, однако максимальная скорость будет не высокой, ибо большие обороты не набрать, а без них не видать мощности.

Вот типичный график внешней скоростной характеристики низового мотора

Для красноречивости возьмем дизель. Момент конский, а мощности нет, Такой мотор будет отлично тащить на установившемся режиме, однако максимальная скорость машины будет низкой. Чтобы провести столько-же работы, сколько может провести двигатель мотоцикла

Ему надо гораздо больше времени.  Отсюда и выходит, что у мотоцикла момент в два раза меньше, а мощность в два раза больше, так как дизель кончается там, где бензин еще спит. Надеюсь, теперь стало немножко понятнее.


Второй вопрос, волнующий людей, это сбалансированность моторов. Сильно вдаваться не буду, опишу самое основное, так как вибрации это целая наука, и там легко можно диссертацию писать.

Сразу скажу, наиболее сбалансированные компоновки это R6, B6, R8, V12, В12, где R -рядный, В - оппозитный, V - V-образный.

Вот табличка

Как видим, два основных источника вибраций это:

1. Силы инерции

2. Моменты от сил инерции


Каждый из этих факторов имеет степень значимости, или порядок. То есть первый порядок наиболее сильный, второй порядок слабее, есть еще третий, четвертый и так далее, но ими пренебрегают, так как их можно растворить в подвеске силового агрегата.


Силы инерции, это силы, возникающие от частей, совершающих обратно-поступательные движения, то есть поршни, шатуны, клапаны, толкатели клапанов. Силы первого порядка, это силы создаваемые движением поршней. Поршень, разгоняясь в цилиндре, накапливает кинетическую энергию, и отдает ее при торможении, пытаясь утянуть за собой мотор за коленвал, эти силы в основном уравновешиваются другими поршнями, движущимися в противофазе, если мотор не одноцилиндровый. Это источник самой сильной вибрации, поэтому так важен одинаковый до грамма вес поршней.

Силы второго порядка, это силы инерции создаваемые центром массы шатуна, движущимся по сложной траектории, эти силы пытаются раскачать двигатель в поперечной плоскости, частота вибрации от сил инерции второго порядка в два раза превышает частоту вращения коленвала, поэтому ее чаще всего гасят уравновешивающим валом, вращающимся с удвоенной частотой, однако тут возникает момент инерции от самого балансирного вала, который приходится гасить вторым балансирным валом, вращающимся в противоположную сторону. Вообще любые силы можно задушить балансиром, только их придется навешать штук шесть, что вообще никак не выгодно, плюс они съедают часть мощности.


Но помимо сил инерции, есть еще моменты от сил инерции. Это когда под действием сил инерции мотор пытается развернуться вокруг своей оси,  если сила приложена не по центру.

На схеме обозначены направления моментов от сил инерции первого порядка, то есть от поршней.  Как видим, в рядной четверке эти силы взаимоуравновешиваются, как и моменты от сил инерции второго порядка, а вот в оппозите моменты от сил инерции второго порядка остаются свободными, и пытаются развернуть мотор.


В двигателе еще очень много факторов, влияющих на получаемую вибрацию, это и вспышки в цилиндрах, и отталкивание поршня от стенки цилиндра во время рабочего хода, когда мотор пытается и вверх подпрыгнуть и вокруг оси развернуться. Это довольно сложные процессы, и от них в поршневом ДВС никуда не деться.


Ну вроде с волнующими вопросами разобрались, поехали к изначальной теме.


Компоновка CIH хоть и выигрывала у OHV в некоторых моментах, но все-же имела свои недостатки, это и паразитный вес толкателей или гидрокомпенсаторов, и сложность изготовления, требующая внедрения распределительного вала в тело головки блока, и невозможность разнести впуск и выпуск по разные стороны головки, так как с одной стороны вдоль обитал распредвал. Поэтому параллельно CIH стала набирать обороты компоновка OHC Over Head Camshaft, распредвал НАД головкой)

И тут мне бы надо вставить наглядную схему, но дело в том, что компоновка ОНС, это самая резиновая компоновка, у которой есть огромнейшее количество вариаций.

Есть компоновка с рокерами и неподвижными регулировочными опорами, либо гидрокомпенсаторами.

Такая схема использовалась очень широко в различных восьмиклапанных моторах, а любители жигулей сразу увидели в картинке что-то родное) В данной компоновке получилось кардинально снизить вес подвижных частей ГРМ, остался только клапан с тарелкой, да половина рокера. И в производстве такая схема оказалась дешевле и проще, особенно по сравнению с CIH

Распределительный вал в такой компоновке как правило устанавливался в отдельную постель

Которая бутербродом прикручивалась к головке или сквозняком прямо к блоку цилиндров, как на C20NE и его модификациях

С противоположной стороны от клапана, рокер опирался либо на регулировочную опору, либо на гидрокомпенсатор.

Кстати про гидрики. Многие ведь слышали, как стучат мифические гидрики? Сейчас расскажу.

Так получилось, то металлы, да и не только, при нагревании расширяются, тоже самое происходит и с клапаном, его ножка при нагреве удлиняется. Не трудно догадаться, что если зазора в механизме привода клапана не будет,  при нагреве клапан приоткроется. В лучшем случае сильно нарушится герметичность камеры сгорания и мотор заглохнет, в худшем - продолжит работать со сниженной мощностью, так как клапан будет приоткрыт, и не будет плотно прилегать к седлу, в связи с чем быстро перегреется и в итоге прогорит. Для избежания такого сценария в механизме привода клапанов предусмотрен тепловой зазор.

При нагреве, ножка клапана удлиняется, выбирая этот зазор, и плотность прилегания тарелки клапана к седлу не нарушается. Зазор этот везде разный и зависит от конструктивных особенностей мотора. типичными для легковых автомобилей считаются зазоры в 0.15мм для впускных клапанов, и 0.25 для выпускных, но это средняя по палате температура, рекомендуемые зазоры могут гулять очень сильно в обе стороны. Зазор на впускном клапане меньше, так как он гораздо меньше греется. Моторы с такой системой имеют повышенную шумность работы на холодную, так как эти зазоры приводят к соударению элементов привода ГРМ, что и вызывает своеобразный стрекот. Данная конструкция очень надежна, однако требует сравнительно частой регулировки, что не очень-то радует автовладельца

Дабы избавить мотор от назойливых звуков и исключить из регламентных работ по ТО мотора лишнюю процедуру, конструкторы придумали гидравлический компенсатор клапанного зазора, в народе гидрик.

Он представляет собой подпружиненную плунжерную пару, которая под действием пружины раздвигается, засасывая в пространство под плунжером масло, которое не может покинуть это пространство из-за обратного шарикового клапана, таким образом гидрокомпенсатор полностью выбирает клапанный зазор и в то-же время не дает поджать клапан, так как масло медленно просачивается в зазор плунжерной пары и позволяет компенсатору медленно, но складываться при необходимости. Компенсаторов бывает много видов, в зависимости от конструкции мотора, но все они выполняют одну функцию.

Из-за того, что гидрокомпенсатор может складываться при продолжительном на него воздействии, мотор оборудованный ими, может издавать повышенный шум не более пяти секунд при холодном запуске, пока в системе смазки не поднимется давление, и компенсатор не раздвинется до необходимой длины, набрав масла в пару.


И так, к главному.

Компоновок OHC было много, да почти у каждого из вас под капотом ОНС мотор, только производители по разному подошли к такой компоновке. Бывают компоновки не с рокерами, а с коромыслами, некое подобие CIH, только лучше

В такой схеме коромысла со стороны распредвала могут иметь ролики, для снижения трения. Это схема с одним распредвалом, ее к примеру уважает Mitsubishi. SOHC(Single Over Head Camshaft)

Как видим тут очень хорошая схема с одним распредвалом, на котором присутствуют по три кулачка на цилиндр, роликовые коромысла с встроенными в них гидрокомпенсаторами. Мотор имеет по 4 клапана на цилиндр.


Ну и самая популярная схема, это схема с прямым приводом на толкатели клапанов, многие узнают свою

Вазовские переднеприводные восьмиклапанники, тьма фольксвагенов восьмиклапанных выполнена по такой схеме.

Ну и конечно DOHC (Double Over Head Camshaft) С двумя распредвалами.

Эта схема наверно вообще, самая популярная и самая современная. Хотя, постойте, кто это у нас тут возмущается?

V12, DOHC, 4 клапана на цилиндр... Неужто семерка БМВ? Бааа, да это-ж старичок В-2 с танка Т-34! То есть пока бОльшая часть мира сношалась с нижнеклапанными чудовищами и первыми OHV, наши деды давили немчуру на DOHC)) Вот поэтому не поворачивается язык называть то или иное современным, все уже давным давно придумали, просто некоторые решения раньше было нецелесообразно отдавать на массовое использование. Да и бензин еще был слишком хреновым, для внедрения такой компоновки, а вот дизелям - счастье.


Ну, с компоновками разобрались более-менее, теперь к не менее интересному.

Когда речь идет о создании мотора с четкими характеристиками, все хорошо и просто. Например нужен нам мотор с повышенной тяговой характеристикой на низких оборотах. Берем длинноходную компоновку, напяливаем на нее головку с двумя клапанами на цилиндр для экономии, ставим впускной коллектор с патрубками большой длины, и выпускной коллектор схемы 4-2-1 метровой длины для экономии опять-же, и получаем трактор

Или опелевский С20NE, видим пик момента на 3000 об\мин. Хорошая тяга с низов. А что будет, если подправить фазы газораспределения, поставить распределительный вал, с более широкими фазами, да еще поставить головку, с 4 клапанами на цилиндр, впускной коллектор с более короткими патрубками, и выпускной коллектор 4-1? Получим мы знаменитый С20ХЕ

Видим, куда уполз крутящий момент, ах на 5000 об\мин, и дошел почти до 200Нм, а был 165. Почему так происходит? Потому-то резонанс. Вспоминаем тему про двухтактники и их выхлоп, то как сильно влияет на мощность резонансная характеристика выхлопной системы. Так вот в четырехтактнике все тоже самое, только на впуске. Наша главная задача, как можно больше затолкать воздуха в цилиндр, а при высоких скоростях вращения коленчатого вала, воздух становится похожим на кисель, с инерцией и массой. Во время впуска, когда впускной клапан открыт, во впускном патрубке образуется разряжение, и после закрытия клапана, в патрубок устремляется свежая волна воздуха, фронт высокого давления, и для качественного наполнения, нам надо открыть впускной клапан как раз когда фронт достигнет его тарелки, чтобы воздушная масса не снижая скорости прошла в цилиндр, если не успеем, она отразится от закрытого клапана и пойдет обратно, сильно ухудшив наполнение. Чем длиннее впускной патрубок, тем ниже его резонансная частота, и наоборот, поэтому низкооборотистые моторы имеют большой впускной коллектор, с раннерами большой длины, с низкой резонансной частотой.

Это впускной коллектор ЗМЗ-409, с очень длинными каналами, для улучшения наполнения на низких оборотах.

А на высокооборотистых моторах коллектор вообще практически отсутствует

Вот весь впуск мотоцикла yamaha R1. Вся его суть направлена на высокую пропускную способность и высокую резонансную частоту.

Но с тяговитыми и гоночными моторами понятно, а как-же сделать универсальный мотор, ведь люди хотят чтоб и низы были, и на верхах мотор не кис. Выход есть, и инженеры придумали системы изменения эффективной длины впускного тракта, для изменения его резонансной характеристики. Рассмотрим опять-же на примере опеля, они активно занимались этими делами в свое время. Итак, система Dual RAM, конец 80х

Эта система впуска содержала в себе по сути два впускных тракта, переключаемых заслонкой.

О которой мне придется рассказать в другой части, так как пикабу напомнил о максимальной длине поста, я тут ни при чем, правда) До встречи!

Показать полностью 25
[моё] ДВС Мотор Длиннопост Двигатель
100
838
vectrovod
vectrovod
Автомобильное сообщество
Серия Двигатели внутреннего сгорания

ДВС и его виды. Часть 3⁠⁠

6 лет назад

Итак, продолжим. Не ожидал, что посты вызовут столько интереса, постараюсь не разочаровать целую гору подписчиков))


Время шло, менялись приоритеты, аппетиты автовладельцев росли, росло качество ГСМ. Совсем скоро автопроизводители уперлись в предел компоновки нижнеклапанного двигателя, Устройство с вихревой камерой, дававшее много преимуществ на низкооборотистых, тяговитых моторах, при попытке поднять частоту вращения коленвала давало одни минусы, низкая степень сжатия, связанное с этим вялое воспламенение рабочей смеси, привели конструкторов к мысли, что просто необходимо уменьшать камеру сгорания и улучшать газодинамические характеристики впускных каналов, так как с увеличением мощности росло и потребление воздуха, скорость воздушного потока во впускном тракте становилась все выше, а в нижневальном моторе поток как правило не меньше двух раз меняет направление своего движения на 180 градусов, что резко отрицательно сказывалось на пропускной способности впускного тракта

Вспомним картинку, и оценим, какой лютый зигзаг надо пройти воздуху на такте впуска. Помимо этого вокруг клапанов была огромная мертвая зона, которая преграждала путь воздуху, проходящему в щель между блоком и тарелкой открытого клапана.

На фото я обвел красным мертвую зону клапанов, зеленым - эффективную. Как видим, об эффективной продувке и пропускной способности можно и не мечтать. Передвинуть клапаны ближе к краю цилиндра конструктивно невозможно,  выпилить пространство по красной зоне нельзя, так как увеличится и так огромная камера сгорания, а степень сжатия давно уже пора было повышать, да и карбюраторы стали совершеннее, нужно было кардинально менять конструкцию мотора. Инженеры подумали, и создали самую массовую за всю историю компоновку, которая живет по сей день, это OHV (Over Head Valve), то есть клапаны над головкой, или верхнеклапанная компоновка, или в народе - нижневальный мотор.

Эта компоновка оказалась настолько простой, надежной и удачной, что сразу овладела миром, причем она позволяла создавать как моментные низкооборотистые грузовые моторы, так и мощные крутильные легковые. Распределительный вал по прежнему находился в блоке цилиндров и приводился от коленвала посредством цепной или шестеренчатой передачи. Кардинальные изменения произошли с головкой цилиндров и приводом клапанов. Головка стала изготавливаться преимущественно из алюминия, хотя было много и чугунных вариантов, привод клапанов от распредвала осуществлялся через полые алюминиевые штанги (на картинке №10), которые давили на коромысло 7 через регулировочный болт, коромысло в свою очередь воздействовало на торец клапана, который был установлен вертикально или под углом, в зависимости от конструкции. Клапан устанавливался в бронзовую или чугунную втулку-направляющую, запрессованную в головку блока (№3), также клапаны обзавелись сальниками, устанавливаемыми на направляющие втулки, сальники предотвращают попадание масла по стержню клапана во впускной или выпускной тракт, в народе зовутся маслосъемными колпачками. В камере сгорания, в тело алюминиевой головки запрессовывалось седло клапана из стали или чугуна. Выпускные клапаны в некоторых конструкциях стали полыми, внутреннее пространство стержня клапана заполнялось натрием для более эффективного отвода тепла от тарелки клапана в направляющую, технология встречается и сейчас, поэтому пилить болгаркой выпускные клапаны не стоит). Головка получила свой собственный маслоканал, который использовался для подачи масла на опору коромысел, места контакта наконечника штанги с регулировочным болтом и коромысла с торцом клапана, масло стекало из головки в поддон по отдельному дренажному каналу под действием силы тяжести.

Вот типичная схема смазки мотора OHV, на примере УМЗ 421, широко использовавшихся в уазиках и газелях. Шестеренчатый масляный насос, установленный в картере двигателя и приводимый в действие посредством червячной передачи от распределительного вала (№7), всасывал масло через фильтр грубой очистки (№8) из поддона и подавал его на фильтр тонкой очистки (№5).  В фильтре тонкой очистки расположен перепускной клапан, так как холодное масло не может проходить через бумажный фильтрующий элемент с достаточной скоростью, и данный клапан пропускал масло в обход масляного фильтра, мока масло не прогреется и не снизит вязкость, также этот клапан пропускал масло при сильном загрязнении фильтрующего элемента, дабы предотвратить масляное голодание подшипников скольжения. Именно поэтому стоит помнить, что холодный мотор работает без масляного фильтра. В корпусе масляного насоса стоит ограничительный клапан, который ограничивает максимальное давление в системе смазки, обычно на уровне 4.5-5 атмосфер. Далее, отфильтрованное мало поступает в главную масляную магистраль, откуда подается на коренные подшипники коленвала и на опорные подшипники распределительного вала, шатунные подшипники получают масло по каналам внутри коленвала от коренных подшипников, вторая масляная магистраль в блоке цилиндров смазывает посадочные места толкателей штанг и кулачки распределительного вала. Отдельная масляная магистраль идет в головку блока цилиндров, где масло подается во внутреннюю полость оси коромысел, откуда через отверстия попадает в подшипники коромысел и разбрызгиванием смазывает остальные детали ГРМ, находящиеся в головке, стенки цилиндров и шестерни привода распределительного вала смазываются масляным туманом, создающимся посредством разбрызгивания масла из шатунных подшипников. В конце масляной магистрали на этих моторах устанавливался ограничительный клапан масляного радиатора, он отключал масляный радиатор при низком давлении масла, для предотвращения падения давления масла до аварийного, также в холодное время года масляный радиатор отключался специальным краном на блоке двигателя.


Новая конструкция сильно развязала руки конструкторам, можно было повышать степень сжатия до любых показателей, впускной тракт стал гораздо прямее и теперь создавал гораздо меньшее сопротивление потоку воздуха, также появилась возможность кардинально уменьшить мертвые зоны вокруг седел клапанов. Сами тарелки клапанов стало возможно сделать очень большими, чем в несколько раз повысить качество наполнения цилиндров. Вот интересный пример, мотор Chrysler HEMI V8 из пятидесятых годов

Классическая компоновка OHV, два клапана на цилиндр, сферическая камера сгорания, сильно заваленные в сторону впускного клапаны, из-за чего вокруг тарелки клапана почти нет мертвых зон и поток минимально меняет направление во время впуска. 

А теперь посмотрим на современный HEMI V8

Ну как, нашли отличия? А их в общем-то и нет. Это тот самый случай, когда инженеры сразу достигли максимум компоновки, отличия заключаются только в более легких и прочных материалах, более качественных отливках, благодаря чему получилось максимально снизить вес кривошипно-шатунного механизма, максимально увеличить впускные и выпускные каналы. Все остальное - заслуга современных систем управления двигателем.


С момента появления OHV, мощности моторов стали стремительно расти, и у разных производителей сформировались различные стили конструирования. кто-то делал моментные длинноходные двигатели, кто-то крутильные и мощные короткоходы. На этом стоит задержаться. Вообще у поршневых моторов есть один очень важный параметр - геометрия.

Во время работы, в исправном моторе, поршень не касается стенок цилиндра, он скользит по масляной пленке, которая удерживается на стенках специальными насечками, называемыми хоном, название пошло от имени инструмента, с помощью которого производят хонинговку цилиндров.

У цилиндра ни в коем случае не должно быть зеркальной поверхности. Есть два вида хона - островершинный и плосковершинный, их схематичные профили на картинке

Первый вариант под буквой А давно устарел, это та самая вещь, из-за которой наши деды занимались обкаткой новых моторов, обкатка завершалась в тот момент, когда острые вершины счесывались до состояния Б, притирались друг к другу, естественно изнашиваясь и производя продукты износа. Таким способом давно никто не пользуется, сейчас сразу делают платохонингование цилиндров, после которого сразу получается вариант Б, такой мотор в принципе не требует никакой обкатки, ибо в исправном двигателе нет трущихся деталей, и обкатывать там нечего.


Так вот, поршень скользит на масляной пленке и у него есть линейная скорость перемещения, общепринятая максимальная линейная скорость поршня - 25 метров в секунду, при превышении данной скорости лавинообразно растет риск разрушения масляной пленки, которое приведет к контакту юбки поршня со стенкой цилиндра и мгновенному его перегреву, прихвату, обрыву  юбки и последующему Сталинграду в моторе. Дабы этого не допустить, производители стараются не превышать) Есть интересная табличка

В соответствии с этими данными, на этапе начала создания двигателя, конструкторы сначала определяются с ходом поршня. Например, если нужен тихоходный, но тяговитый мотор, максимальная проектная частота вращения коленвала которого не будет превышать 6000 оборотов,  ход поршня можно сделать хоть 10см, чем больше, тем более высокий крутящий момент на низких оборотах мы получим, так как с ростом хода поршня увеличивается длина плеча кривошипа у коленвала, а чем больше рычаг, тем большее усилие можно реализовать. А вот итоговый рабочий объем мотора в дальнейшем наращивают диаметром цилиндра, и само соотношение хода поршня к диаметру цилиндра называют геометрией мотора. Например, если ход поршня 60 мм, а его диаметр 80мм, такой мотор называют короткоходным, если диаметр 60мм, а ход 80мм - длинноходным, а 86 на 86мм зовут квадратным. Так вот, из этих данных можно уже заранее понять характер двигателя. Длинноходные моторы не любят высоких оборотов, они на них скисают, зато обладают тракторной тягой с низов, так любят делать малолитражные моторы японцы. Короткоходный мотор наоборот, будет иметь вялый нижний диапазон, слабую тягу на низких оборотах, зато будет иметь взрывной характер на высоких, так любят делать немцы, да и почти все гоночные моторы короткоходные. А квадратные моторы универсальны, и там и там успели, их любят все, так как они идеальны для стандартной повседневной эксплуатации.


Но компоновка OHV не лишена минусов, и самый весомый - вес механизма привода ГРМ. А именно длинные штанги, которые оказались в патовой ситуации, сильно облегчать их нельзя, так как она испытывают серьезные нагрузки, и упрочнять их нельзя, потому-что они должны быть легкими, данный фактор сильно ограничил максимальные обороты моторов OHV, после 6000 начинались разные паразитные явления, связанные с резонированием и изгибанием штанг, подвисанием клапанов и тому подобным. В единичных гоночных (дрэговых) моторах эти проблемы решались очень дорогими материалами, но в основном OHV остался тракторным, с могучими низами, мотором. Но не все производители смирились с этими недостатками, и разными способами они от них избавлялись.  Например, своим путем пошла компания Opel , которая раньше делала очень хорошие моторы и славилась своей любовью к высокооборотистым короткоходам. Так, они подумали и выкинули штанги, засунув распределительный вал с толкателями прямо в головку блока, которую изготавливали из чугуна, так появилась на свет компоновка CIH (Camshaft In Head, распределительный вал в головке).

Распредвал установили прямо под коромыслами, осуществив его привод от коленвала могучей двухрядной втулочно-роликовой цепью, которая могла пережить мотор при удачном стечении обстоятельств. Снизив вес ГРМ, инженеры смогли получить все плюсы короткоходной схемы, добывая довольно высокую литровую мощность. Линейка CIH выпускалась с 1966 года и дожила аж до 1995, последний ее представитель, 2.4 литровый C24NE встречался под капотом Opel Frontera. А так за долгую жизнь компоновки было выпущено очень много легендарных агрегатов, славившихся своей неубиваемостью и веселым характером.

В автоспорте использовались вариации этих моторов с 4 клапанами на цилиндр.

Но в отличии от CIH, компоновка OHV живее всех живых и сейчас, и еще очень долго будет использоваться как простая и надежная, особенно в таких тарантайках

Теперь вы знаете, что значат эти три таинственные буквы на моторе.


В завершение пробежимся по оставшимся в тени системам питания и зажигания. Правда их было такое лютое множество, что рассказать обо всем нереально, энциклопедия получится, поэтому пройдемся по основным принципам.

Итак, карбюратор.

Главная задача карбюратора - приготовление топливо-воздушной смеси в пропорции близкой к стехиометрической (стехиометрическое соотношение, это такое соотношение воздуха к топливу по массе, в котором происходит полное сгорание топлива без остатков непрореагировавшего кислорода, для бензо-воздушной смеси оно составляет примерно 14.7:1).  Вот довольно простая схема вертикального карбюратора с ниспадающим потоком

На нем видно, что карбюратор состоит из поплавковой камеры (11), где содержится запас бензина, уровень которого регулируется как в сливном бачке унитаза, главной дозирующей системы, состоящей из главного топливного жиклера 9 и эмульсионной трубки, и диффузора с дроссельной заслонкой. Основной принцип действия всех карбюраторов заключается в заужении проходного сечения основного воздушного канала, из-за чего увеличивается скорость потока и образуется зона пониженного давления, в которую выводится конец эмульсионной трубки, по которой по принципу эжекции высасывается бензин из поплавковой камеры, количество которого регулируется диаметром отверстия в главном топливном жиклере. Количество воздуха регулируется дроссельной заслонкой 7, а холодный запуск осуществляется системой обогащения смеси при холодном пуске, в народе "подсос", его главный элемент, это заслонка 5, при закрытии которой резко падает давление в диффузоре, так как мотор воздух всасывает, а заслонка его не пускает, в результате чего, резко увеличивается количество поступающего бензина через дозирующую систему. Обогащать смесь при пуске нужно для того, чтобы компенсировать низкую испаряемость топлива в камере сгорания и достичь необходимую для воспламенения концентрацию паров. Карбюраторы постоянно усложнялись, и это схема очень простого карбюратора

В них присутствовали отдельные системы холостого хода, основная и вспомогательная системы, ускорительные насосы, впрыскивавшие дополнительную порцию топлива при резком открытии дроссельной заслонки, экономайзеры принудительного холостого хода.. Под закат их жизни, были попытки сделать электронно-управляемые карбюраторы, типа Pierburg 2EE, но ничего хорошего из этого не вышло, так как вскоре подоспели системы впрыска. Также были горизонтальные карбюраторы различных конструкций, вот например карбюратор шиберного типа постоянного разряжения.

Если будет живой интерес, лучше создать отдельную тему по карбюраторам)


Системы зажигания, в отличии от всего остального, очень дого топтались на месте, преимущественно они были полностью механическими, в распределителе стоял механический прерыватель, который напрямую управлял катушкой зажигания

Регулировка опережения зажигания осуществлялась поворотом корпуса трамблера, а автоматический привод был вакуумным или центробежным и изменял угол опережения в зависимости от оборотов коленвала. Система была ненадежной, требовала частой чистки и регулировки зазора в паре контактов, да и всякими другими методами мучала голову водителя, пока контакты не догадались заменить на датчик, обычно на эффекте Холла, который давал сигнал на коммутатор, а тот в свою очередь управлял катушкой зажигания

Потом трамблер вообще всем надоел, и из него выкинули все потроха, оставив только бегунок, да крышку, с этих пор трамблер стал называться распределителем, и его задачей было только соединять катушку зажигания поочередно с каждой свечой.

А само управление зажиганием отдали электронному блоку, это был прорыв. У опеля эта система называлась MSTS-i, и появилась впервые в паре с тем самым карбюратором Pierburg 2EE, а все это сразу обозвали системой Ecotronic. Эффект был великолепен, даже учитывая убогость той системы. Система зажигания стала по настоящему надежной и наконец-то опережение зажигание стало изменяться по электронной карте зашитой в блок. На коленвал установили реперный диск, который тогда имел всего две метки и датчик положения коленчатого вала, также был установлен датчик положения дроссельной заслонки, ориентируясь на информацию от этих датчиков,  система очень гибко и эффективно управляла опережением, но жила данная система совсем не долго, ибо подошли 90-е годы и понеслась компьютерная эра, которая огромным пинком выкинула на обочину истории все эти устаревшие костыли. О чем мы и поговорим в следующей части. OHC, DOHC, современные системы впрыска, и о том, на чем нам приходится теперь ездить. До встречи!

Показать полностью 22
[моё] ДВС Двигатель Длиннопост Мотор Cih
131
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии