50

ИИволюция в науке случилась шесть лет назад

ИИволюция в биотехе случилась шесть лет назад via t.me/SantryBlog

В 2018 году DeepMind показала AlphaFold — алгоритм машинного обучения, берущий последовательность аминокислот и реконструирующий белок, который из них получится. К 2022 году эта компания смоделировала 200 миллионов всевозможных белков для открытой базы. Некоторые из них я даже использовал в опытах с молекулярной визуализацией.

ИИволюция в науке случилась шесть лет назад Исследования, Научпоп, Ученые, Будущее, Наука, Нейронные сети, Футурология, Цивилизация, Биотехнологии, Факты, Биология, Робот, Лаборатория, Длиннопост

Лихорадка Рифт-Валли глазами алгоритмов

Несмотря на громкие заголовки, in silico и in vivo не одно и то же. Предсказания AlphaFold приходится тщательно проверять, но тогда машинное обучение начало серьезно менять биологию. Теперь оно, вероятно, спасет человечество как минимум от одного экзистенциального риска — бактерий, устойчивых к антибиотикам.

ИИволюция в науке случилась шесть лет назад Исследования, Научпоп, Ученые, Будущее, Наука, Нейронные сети, Футурология, Цивилизация, Биотехнологии, Факты, Биология, Робот, Лаборатория, Длиннопост

На фото: метициллинрезистентный золотистый стафилококк, от которого точно стоит избавиться.

От таких бактерий умирает больше миллиона человек в год, к 2050 году эта цифра может достигнуть 10 миллионов. В то время как на открытие одного нового антибиотика уходит около десяти лет. Точнее, уходило.

Недавно биофизики рассказали, как при помощи машинного обучения проанализировали десятки тысяч микробных геномов из еще одной открытой базы данных. В результате алгоритм нашел более 800 тысяч фрагментов ДНК, которые кодируют потенциальные антимикробные соединения. Более 90% из них не были описаны прежде. Три из 100 соединений, синтезированных исследователями, действительно вылечили лабораторных мышей. Осталось проверить еще 799 900 — работы хватит на всю жизнь.

Машинное обучение позволило буквально перетряхнуть все известное микробное разнообразие в поисках нужных соединений, но самое удивительное, что мы не ограничены живущими сейчас организмами. Похожим образом антибиотики ищут, например, в иммунной системе неандертальцев.

Синтезом найденных соединений пока что занимаются люди, но Science уже пишет о создании шести автоматизированных лабораторий. Такие системы будут оперативно проверять результаты работы нейросетей. Этот подход уже используют для создания светоизлучающих материалов. Биотех и фармацевтика на очереди.

Помните, как выглядят исследования в стратегических компьютерных играх? Выбираете направление, тратите ресурсы, ждете и получаете гарантированный результат. Последнего обещать не могу, но автоматизация лабораторий приближает нас к похожему сценарию.

Суть автономной науки проста: компьютеры генерируют и анализируют гипотезы, а роботы проводят эксперименты. Майкл Бронштейн (Michael Bronstein) из DeepMind описывает эволюцию научного процесса от нулевого поколения (люди с пробирками), до четвертого поколения, в котором искусственный интеллект полностью управляет циклом научных открытий. Это стало возможным благодаря трем важным прорывам:

Во-первых, машинное обучение. Во-вторых, цены на роботизированные манипуляторы снизились с 30 тысяч до 500 долларов. В-третьих, появились технологии создания лабораторий на чипах.

Передовые лаборатории внедряют полуавтономные системы для медицинских исследований и синтеза новых материалов, но самые интересные сценарии вероятно реализуются там, где человеческих возможностей не хватает.

Представьте будущее где алгоритмы непрерывно берут пробы, анализируют патогены, отслеживают их эволюцию и синтезируют вакцины. Автономные подземные и космические лаборатории проводят эксперименты с альтернативной эволюцией. Роботы создают персональные лекарства, проверяя эффективность на клеточных культурах конкретного пациента.

Однажды исследования в этих замкнутых системах создадут петлю обратной связи: искусственный интеллект генерирует данные, эти данные улучшают его работу, а усовершенствованные модели находят неочевидные связи для новых прорывов.

Но что, если однажды эта петля затянется слишком сильно? Что скажете, готовы ли вы доверить науку машинам?

Наука | Научпоп

9.1K поста82.4K подписчиков

Правила сообщества

Основные условия публикации

- Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

- Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

- Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

- Видеоматериалы должны иметь описание.

- Названия должны отражать суть исследования.

- Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.


- Посты-ответы также должны самостоятельно (без привязки к оригинальному посту) удовлетворять всем вышеперечисленным условиям.

Не принимаются к публикации

- Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

- Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

- Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.


Наказывается баном

- Оскорбления, выраженные лично пользователю или категории пользователей.

- Попытки использовать сообщество для рекламы.

- Фальсификация фактов.

- Многократные попытки публикации материалов, не удовлетворяющих правилам.

- Троллинг, флейм.

- Нарушение правил сайта в целом.


Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество Пикабу.