Ученые рассказали об уничтожении раковых клеток протонами
Российские ученые успешно завершили эксперименты по уничтожению рака при помощи пучков протонов, доказав, что подобная методика работает быстрее и безопаснее обычной радиотерапии. Высокая эффективность действия протонов указывает, что лечение можно ограничить двумя или даже одной сессией терапии, что снизит ее стоимость, а также поможет безнадежным пациентам.
«Протонная терапия, мы надеемся, будет эффективна при лечении радиорезистентных видов рака, локализованных рядом с важными органами. К таковым относятся, прежде всего, опухоли в области шеи и головного мозга. Эти видом рака часто болеют дети», — пояснила Ольга Розанова из Института теоретической и экспериментальной биофизики РАН в Пущино.
Протоны, в отличие от электронов или гамма-излучения, действуют более «прицельно» и меньше поражают здоровые ткани при обработке опухоли, сообщает «РИА Новости» со ссылкой на журнал «Биофизика». Это позволяет применять их для борьбы с раком мозга, костей и других органов, к которым сложно подобраться хирургам.
Главной проблемой подхода является его высокая стоимость (нужен полноценный ускоритель частиц), а также отсутствие понимания того, когда нужно прекращать облучение протонами и насколько оно безопасно.
Российские ученые попытались найти ответы на эти вопросы. Они выяснили, что лучше всего работала протонная терапия, направленная на саму опухоль. В таких случаях свыше 80% подопытных мышей избавились от первичного рака. Избавление от первичного рака не спасло большую часть грызунов от рецидивов — у 60% вылеченных мышей через некоторое время возникли новые опухоли, однако они прожили дольше сородичей из второй группы. Во второй группе тела мышей облучали более широким пучком частиц: с опухолью смогли справиться лишь в 45% случаях. Животные, у которых рецидивов не возникло, прожили около двух лет (средняя продолжительность жизни здоровых мышей).
источник onliner.by
Просто о химии. Атом.
Химия - наука о веществах. Эта наука исследует строение, свойства и превращения веществ.
Для того что бы понимать химические процессы необходимо подробно знать строение атома.
Атом – (от греческого atomos - неделимый) наименьшая частица химического элемента, носитель его свойств.
Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов.
Ядро атома состоит из двух видов частиц: нейтронов, не имеющих заряда и положительно заряженных протонов, которые и определяют положительный заряд ядра.
Вокруг ядра атома вращаются отрицательно заряженные электроны, образующие электронное облако – совокупность всех электронов в атоме. О том, что такое электронное облако и электронное строение атома будет отдельная тема.
Число протонов равно числу электронов, поэтому атом – электронейтральная частица. Вспомните из школьного курса химии формулу: A = Z + N
Масса протонов и нейтронов приблизительно одинакова и равна ~ 1,67 * 10^(-27) кг. Масса электрона, в свою очередь, примерно равна 9,11 * 10^(-31) кг, поэтому основная масса атома сосредоточена в ядре.
Рассмотрим основные параметры, характеризующие атом
Атомный номер (порядковый номер) Z – номер химического элемента, определяемый по периодической системе элементов. Атомный номер элемента показывает количество протонов и электронов в элементе.
Атомная масса, а точнее относительная атомная масса – масса атома, выраженная в атомных единицах массы (а.е.м.). Она определяется как отношение массы данного атома к 1/12 массы нейтрального изотопа углерода 12С.
К понятию атомная масса близко понятие массовое число А – сумма чисел протонов и нейтронов (нуклонов) атома. Но численно оно равно только для изотопа углерода 12С, для остальных элементов массовое число – целочисленное значение, а относительная атомная масса нет. Например: массовое число изотопа водорода равно 1, а относительная атомная масса 1,00794 (см картинку)
А что такое изотопы?
Изотоп - атомы одного элемента, имеющие одинаковый заряд ядра (следовательно, и количество электронов), но различное число нейтронов (следовательно, различные массовые числа). Например, элемент водород имеет семь изотопов, но наиболее всем известны и чаще всего встречаются из них три: 1Н протий, 2Н дейтерий и 3Н тритий.
Электронная формула (конфигурация) – порядок заполнения электронов по различным электронным оболочкам.
Думаю, что на это стоит остановиться, ибо все в одном посте не охватишь.
Следующие посты будут посвящены электронному строению атома, истории открытия атома и развитию представлений о его строении.
Протоны не нужны: возможно, открыта частица из четырех нейтронов
Ученые очень хотят назвать тетранейтроном теоретическую частицу, существование которой пока не подтверждено. Так можно было бы сделать, будь она следствием из некоей существующей теоретической модели, предсказанной некоей теорией. Но тетранейтрон противоречит существующим теориям — он должен быть невозможным. На фоне всеобщего кипежа о гравитационных волнах, в мире науки проскочил эксперимент, предоставивший убедительное доказательство в пользу тетранейтрона. Это пока не полное подтверждение, но если выводы нового исследования найдут подтверждение, все будет очень и очень странно.
Итак, история
Проблемная частица, возможно, впервые появилась в 2001 году после десятилетий обсуждений и нескольких сомнительных экспериментов. Ученые выстреливали атомы бериллия-14 в углеродную мишень и наблюдали за получившимся хаосом частиц, такое делают весьма часто.
Бериллий-14 обладает так называемым ядерным ореолом, в отличие от множества простых атомов. Его «внутреннее ядро» обернуто в более широкое «внешнее ядро». Гало бериллия-14 состоит из четырех нейтронов, поэтому ученые ожидали увидеть, как это гало распадается и становится четырьмя отдельными нейтронами. Тогда зафиксировали бы четыре отдельных сигнала.
Вместо этого они наблюдали один большой сигнал, который подразумевал, что нейтроны непонятным образом слиплись в одну частицу, тетрайнейтрон (4n), который должен быть невозможным.
Тетранейтрон
Беда в том, что принцип Паули, свойство квантовой механики, которое утверждает, что два одинаковых фермиона не могут разделять одно и то же квантовое состояние (фермионы — это класс фундаментальных частиц, к которым принадлежат протоны и нейтроны). Протоны и нейтроны могут объединяться, поскольку обладают различными квантовыми состояниями. Но без каких-либо протонов, группа нейтронов не может быть в состоянии сформировать ядро из-за принципа исключения.
Таким образом, обнаружение подобного заставило ученых серьезно задуматься. Возможно, пора вернуться к школьной доске и пересмотреть базовые физические принципы?
Однако революцию в физике отложили, поскольку дальнейшие исследования не смогли воспроизвести результаты. Другие ученые обнаружили, что по крайней мере часть изначального исследования была скомпрометирована. Тетранейтрона, казалось, не существовало.
Впрочем, это не помешало ученым изучить теоретические последствия тетранейтронов, а также возможные пути их существования. Но из других теоретических работ следовало, что тетранейтрон просто невозможен в рамках наших текущих теорий.
Открытие?
Все это приводит нас в сегодняшний день к другому эксперименту, в рамках которого, похоже, тетранейтрон воспроизвели. Группа ученых из RIKEN в Вако, Япония, активно искали эту частицу. Для этого они выстреливали пучком ядер гелия в жидкую форму гелия.
Атомы гелия в пучке были тяжелым изотопом с двумя протонами и шестью нейтронами. Жидкая форма гелия имеет только по два каждого (самая распространенная форма гелия). Эту конкретную комбинацию ученые выбрали, поскольку столкновение происходит практически без отдачи. В других реакциях отдача могла бы отправить шок обратно в новообразованный тетранейтрон, разрушив его. Но эта конкретная настройка позволила бы ему сохраниться в течение короткого времени.
Когда ученые столкнули их вместе, в некоторых случаях был произведен бериллий, с четырьмя протонами и четырьмя нейтронами. Но из окончательного продукта таинственным образом исчезли четыре нейтрона. Что смешно, эксперимент последовательно воспроизвели четыре раза. Ученые оценили срок существования тетранейтрона в миллиардную или триллионную долю секунды до распада на другие частицы.
Это оставляет косвенный способ их обнаружения. Тетранейтрон не нашли сами по себе, но вывели из недостающей массы конечного продукта. Хотя это не является полным подтверждением существования тетранейтрона, ученые называют его лучшим из имеющихся доказательств, с уровнем значимости в 4,9 сигма. (Обычно, 5 сигма считают стандартом подтверждения).
Пока все кажется весьма убедительным, но что делать с принципом исключения, не совсем понятно. Необходимо провести дальнейшую работу и воспроизвести результат, а прямое обнаружение будет куда более веским доводом. Та же группа ученых ищет способ провести улучшенное исследование, которое повысит убедительность результата на пару порядков. Другие экспериментаторы надеются воссоздать частицу другими способами.
В случае подтверждения ученые вернутся к основам теоретической физики. Но в физике, вообще, возврат к основам чаще всего означает самый захватывающий исход. Так или иначе, грядут интересные вещи.