Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
#Круги добра
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Бесплатная браузерная игра «Слаймы Атакуют: Головоломка!» в жанре головоломка. Подходит для мальчиков и девочек, доступна без регистрации, на русском языке

Слаймы Атакуют: Головоломка!

Казуальные, Головоломки, Аркады

Играть

Топ прошлой недели

  • SpongeGod SpongeGod 1 пост
  • Uncleyogurt007 Uncleyogurt007 9 постов
  • ZaTaS ZaTaS 3 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
34
PNIPU
PNIPU
3 месяца назад
Наука | Научпоп

Ученые Пермского Политеха предложили решение по эффективной утилизации отходов угледобычи⁠⁠

Ученые Пермского Политеха предложили решение по эффективной утилизации отходов угледобычи ПНИПУ, Уголь, Террикон, Цемент, Научпоп, Длиннопост

Отвал горелого террикона в п. Шахта

В процессе добычи угля извлекается много пустой породы, которая со временем накапливается в виде крупных насыпей, достигающих десятки метров в высоту. Такие отвалы, хранящиеся на территории угольных бассейнов, называются терриконами. Из-за остатков угля они могут самовозгораться и гореть годами, выбрасывая в атмосферу большие концентрации угарного газа, сероводорода и других токсичных веществ. Только из одного горящего отвала за сутки в среднем в воздух выделяется 4-5 тонн оксидов углерода и от 600 до 1100 килограмм сернистого ангидрида. Такие выбросы усиливают парниковый эффект, загрязняют воздушную и водную среду региона, а также вредят здоровью людей. Использование отходов угледобычи в качестве сырья для производства строительных материалов может стать эффективным решением проблемы их утилизации. Ученые Пермского Политеха изучили возможность применения террикоников как минеральных добавок для цемента и материалов на его основе. Предлагаемый подход способен на 21% повысить прочность строительного раствора по сравнению с составом без добавок.

Статья опубликована в сборнике «Химия. Экология. Урбанистика», том 1, 2025. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Негативное влияние террикоников на окружающую среду снижают путем выравнивания искусственных холмов, озеленения и рекультивации земель, что требует больших финансовых затрат – рекультивация лишь одного террикона может стоить десятки миллионов рублей. Это зависит от целого ряда сложных технических, экологических и логистических факторов – от искусственного улучшения токсичной земли и борьбой с самовозгоранием, до доставки грунта, воды и техники на отдаленные шахтерские территории. Также реализовать такие методы возможно не на всех техногенных отвалах из-за плохой приживаемости растений.

Другим решением является применение отходов угледобычи в промышленности. Они представляют собой смесь глины с небольшим включением угля, алюминия, кремния и железа. Поэтому перспективно их вторичное использование с отделением полезных соединений и применением в сплавах, углеудобрениях, асфальте и различных строительных материалах.

Ученые Пермского Политеха предложили ранее неизученный подход по применению террикоников в качестве минеральной добавки для портландцементов и материалов на их основе, в частности, бетонов.

Такое решение эксперты проверяли на примере территории Кизеловского угольного бассейна, на которой объем техногенных отходов оценивается в 13 миллионов кубических метров.

Минеральные добавки в составе портландцемента и цементных бетонов придают материалам специальные свойства – повышают их прочность, водонепроницаемость, коррозионную стойкость и другие. А также позволяют сэкономить природное сырье и увеличить объем производства за счет разбавления основного состава. Применение террикоников в качестве минеральных добавок решит сразу два вопроса: экологическую проблему на территории угольных бассейнов и проблему ресурсо- и энергосбережения при производстве цемента.

Политехники отобрали пробы породы горелых и не горелых террикоников, изучили их химический и минералогический состав, а затем провели эксперимент по замене в составе раствора портландцемента террикоником в количестве 10, 20 и 30%.

– Химический состав террикоников мы определяли флуоресцентным рентгеноспектральным методом, а минералогический состав – методом экспрессного рентгенографического количественного фазового анализа. Результаты показали, что горелый терриконик состоит преимущественно из кварца, а не горелый из каолинита и кварца с включениями угля. Наличие в последнем каолинита говорит о возможности его использования в качестве активной минеральной добавки после предварительного обжига, так как при этом проявляется высокая пуццоланическая активность материала – способность реагировать с хорошо растворимыми щелочами, образующимися при твердении портландцемента, с последующим образованием плохо растворимых низкоосновных гидросиликатов кальция, – объясняет Степан Леонтьев, доцент кафедры «Строительный инжиниринг и материаловедение» ПНИПУ, кандидат технических наук.

Для получения минеральной добавки эксперты измельчали частицы до 0,08 мм. Не горелый терриконик после этого обжигали в лабораторной муфельной печи при температуре 700°С в течение 2 часов.

– Для оценки эффективности использования добавки терриконика мы приготовили цементный раствор, состоящий из одной части портландцемента типа ЦЕМ I 42,5Н и 3 частей монофракционного кварцевого песка. В итоге у нас получился 1 контрольный состав без терриконика и по 3 состава с горелым и не горелым террикоником, которых мы заменяли 10, 20 и 30% портландцемента. Из этих составов формовали образцы-балочки, которые затем твердели 28 суток в нормальных условиях, а также в условиях тепловлажностной обработки. После твердения образцы испытывали на изгиб и на сжатие, – рассказывает Степан Леонтьев.

Сравнивая прочность разных образцов политехники определили эффективность использования терриконика в качестве минеральной добавки, а также его оптимальную дозировку.

– Результаты показали, что замена до 30% цемента горелым террикоником совсем незначительно сказывается на его прочности. Тогда как замена 20% цемента не горелым террикоником на 21% повышает прочность раствора по сравнению с бездобавочным составом. Это говорит о принципиальной возможности использования отходов угледобычи в качестве минеральных добавок для цемента и материалов на его основе, – комментирует Степан Леонтьев.

Решение, предложенное учеными Пермского Политеха, позволит значительно уменьшить количество техногенных отвалов на территории угольных бассейнов, что снизит нагрузку на окружающую среду.

Показать полностью 1
ПНИПУ Уголь Террикон Цемент Научпоп Длиннопост
6
59
PNIPU
PNIPU
3 месяца назад
Наука | Научпоп

Ученые Пермского Политеха выявили новые особенности синтеза целлюлозы, получаемой с участием бактерий⁠⁠

Ученые Пермского Политеха выявили новые особенности синтеза целлюлозы, получаемой с участием бактерий ПНИПУ, Бактерии, Целлюлоза, Медицина, Научпоп

Fuseviews/Unsplash

В медицине и тканевой инженерии в качестве биоматериала для искусственной кожи и кровеносных сосудов активно используют бактериальную целлюлозу. Это продукт жизнедеятельности некоторых видов бактерий, которые синтезируют пленочную структуру в процессе ферментации. В отличие от растительного, этот материал отличается хорошей биосовместимостью, высокой степенью чистоты, прочностью и эластичностью. Ученые Пермского Политеха изучили, как температура и доступ кислорода влияют на количество целлюлозы, выработанной отдельными культурами микроорганизмов. Полученные результаты позволят улучшить процесс биосинтеза и повысить производительность особого материала для медицины и других отраслей.

Статья опубликована в сборнике «Химия. Экология. Урбанистика», том 1, 2025. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Помимо биомедицины, бактериальная целлюлоза применяется в косметической и пищевой промышленности, а также в материаловедении для получения биоразлагаемых пленок и композитных продуктов. Это перспективный материал с большими возможностями в науке и промышленности.

Обычно такую целлюлозу синтезируют бактерии рода Komagataeibacter. В питательной среде в процессе ферментации они вырабатывают биополимер, который позже очищается и обрабатывается для получения пленочной структуры.

Ученые Пермского Политеха изучили особенности биосинтеза бактериальной целлюлозы с использованием отдельных культур микроорганизмов, а именно штамма Acetobactеr xylinus и симбиотической культуры Мedusomyces чайного гриба, ранее выращенного в лабораторных условиях. В результате определили, какие факторы могут значительно повысить количество получаемого материала.

Количественный выход продукта биосинтеза во многом зависит от условий культивирования бактерий в питательной среде, в частности от температуры и доступа кислорода. Политехники провели эксперименты по получению целлюлозы в интервале температур 25-35 градусов и различным контактом образцов с воздухом. После образования пленок образцы очищали от клеток микроорганизмов, стерилизовали, сушили и взвешивали.

– Результаты показали, что температурный фактор существенно влияет на синтез продукта. Так, для штамма Acetobactеr xylinus оптимальна температура 30 градусов, ее увеличение, например, до 35 градусов уже сильно (до двух раз) снижает количество материала. Такая же зависимость характерна и для культуры чайного гриба, но в этом случае рост бактериальной целлюлозы более интенсивный, – рассказывает Николай Ходяшев, заведующий кафедрой «Химия и биотехнология» ПНИПУ, доктор технических наук.

Доступность кислорода к культурам клеток также влияет на массу получаемых образцов. Политехники отмечают, что эта разница кратна соотношению поверхностей контакта образцов с воздухом, то есть, например, если увеличить площадь контакта в 8 раз, то и пленочной бактериальной целлюлозы можно получить в 8 раз больше.

Таким образом, для максимального выхода перспективного биоматериала в процессе синтеза важно поддерживать температуру около 30 градусов и обеспечивать необходимый доступ кислорода в процессе биосинтеза. Полученные результаты исследований ученых Пермского Политеха позволяют дать рекомендации для увеличения производительности бактериальной целлюлозы пленочного типа.

Показать полностью
ПНИПУ Бактерии Целлюлоза Медицина Научпоп
4
PNIPU
PNIPU
3 месяца назад

Ученые Пермского Политеха усовершенствовали технологию «мокрый фасад», которая ускорит строительство зданий⁠⁠

Один из самых популярных методов утепления здания при строительстве – технология «мокрого фасада». Благодаря многослойной структуре и использованию современных утеплителей она обеспечивает надежную теплоизоляцию, препятствует проникновению холода зимой и перегреву летом. Поскольку утепленные панели сложно транспортировать, «мокрый фасад» изготавливается прямо на стройплощадке. Однако это неудобно, ведь качество теплоизоляции сильно зависит от погодных условий, а ошибки могут привести к ее отсыреванию и разрушению. Предложены  новые методы установки «мокрого фасада», которые позволят перенести до 60% работ из строительной площадки в заводские цеха (согласно технологической карте процесса). Это не только ускоряет процесс, но и значительно повышает качество утепления.

Ученые Пермского Политеха усовершенствовали технологию «мокрый фасад», которая ускорит строительство зданий ПНИПУ, Здание, Строительство, Утепление, Фасад, Длиннопост

Фото: Anthony Fomin, Unsplash

Статья опубликована в журнале «Химия. Экология. Урбанистика», том 3, 2025. Разработка выполнена в рамках программы стратегического академического лидерства «Приоритет 2030».

«Мокрый фасад» — это одна из самых популярных систем утепления зданий, и ее использование оказывает значительное влияние как на долговечность, так и на энергоэффективность дома. Ее главная функция — снижение теплопотерь здания, что позволяет существенно экономить на отоплении и кондиционировании. Кроме того, технология защищает стены от влаги, атмосферных воздействий, ультрафиолета и механических повреждений, что существенно продлевает срок эксплуатации несущих конструкций.

Название «мокрый» связано с использованием жидких строительных смесей – клеев, грунтовок, штукатурок. Сначала бетонные панели очищаются и выравниваются, затем на них наносится жидкая смесь и, наконец, сам теплоизоляционный материал. После конструкция покрывается армирующим слоем и декоративной штукатуркой. Важно, что все это происходит прямо на строительной площадке – это влечет за собой проблемы. Дело в том, что процесс требует соблюдения строгих условий: температура воздуха не должна опускаться ниже 5°C в сухую погоду, работы нужно проводить вертикально с использованием дополнительного оборудования, каждый этап требует контроля качества, поскольку «мокрый фасад» очень чувствителен к нарушению технологии монтажа. Все это увеличивает сроки строительства и затраты на него.

Эти условия гораздо проще контролировать еще в производственном цеху. Однако предприятия обычно не занимаются утеплением плит в стенах завода, поскольку тут возникает другая проблема: уже утепленные стеновые панели сложно аккуратно транспортировать на объект, ведь при повреждении утеплителя он уже не будет выполнять свои функции, а повредиться он может довольно легко – из-за недостаточного закрепления.

Преподаватели строительного факультета Пермского Политеха совместно со студентами предложили новые методы фиксации утеплителя на бетонных панелях еще в производственном цехе, что позволяет транспортировать утепленные блоки более аккуратно и надежно. Благодаря этому можно избежать многих проблем, связанных с погодными условиями и ручным трудом на стройплощадке.

– Первый метод основан на использовании пластиковой сетки с острыми выступами, которая втапливается в свежий бетон. После набора структурной прочности на эти выступы надевается утеплитель, который прочно фиксируется на поверхности бетона. Готовые панели транспортируются на объект уже утепленными. Для защиты утеплителя во время перевозки можно использовать рамные держатели или специальные упаковочные машины, – рассказывает Татьяна Белозерова, старший преподаватель кафедры строительного инжиниринга и материаловедения ПНИПУ.

Второй способ предполагает использование установки «Термостенд», часто используемой в производстве. Она представляет собой прогреваемую платформу, которую строительные компании применяют для формования и термообработки изделий.

– Обычно процесс происходит при температуре 50-60°C, бетон быстро набирает прочность, формируется адгезионный (липкий) слой, надежно фиксирующий утеплитель. Весь процесс занимает около 12 часов, после чего панели готовы к монтажу. Этот метод имеет свои недостатки, так как при прогреве теплоизоляция намокает. Мы предлагаем использовать тарельчатые дюбели – специальные крепежные элементы, которые до затвердевания втапливаются в бетонную смесь, а после набора прочности на изделие хорошо закрепляется утеплитель, – поясняет Егор Сенокосов, студент кафедры строительного инжиниринга и материаловедения ПНИПУ.

Перенос основных этапов утепления в цех имеет ряд значительных преимуществ. Работы можно проводить круглый год без ограничений по температуре или осадкам, исключаются многие ручные операции, такие как очистка панелей и монтаж утеплителя. Процесс контролируется квалифицированными специалистами в условиях цеха, что минимизирует производственные ошибки. Сокращаются затраты на оборудование и материалы для временных конструкций на стройплощадке. Уменьшается время монтажа и количество рабочих.

Исследователи отмечают, что дальнейшая работа может быть направлена на оптимизацию транспортировки утепленных панелей и разработку универсальных решений для разных типов строительных объектов. Данную технологию поддержали представители «СтройПанельКомплекс» (СПК).

Эффективность методов ученых Пермского Политеха подтверждена экспериментально на производстве. Они открывают новые возможности для строительной отрасли. Их внедрение позволит сократить сроки возведения зданий, снизить затраты и улучшить качество утепления. Особенно актуально это для регионов с суровым климатом, где традиционные методы часто сталкиваются с температурными ограничениями.

Показать полностью 1
ПНИПУ Здание Строительство Утепление Фасад Длиннопост
2
18
PNIPU
PNIPU
3 месяца назад
Наука | Научпоп

Совместная разработка ученых Пермского Политеха и Китая повысит качество добычи нефти и газа из труднодоступных месторождений⁠⁠

Совместная разработка ученых Пермского Политеха и Китая повысит качество добычи нефти и газа из труднодоступных месторождений ПНИПУ, Добыча нефти, Гидроразрыв пласта, Углекислый газ, Сланец, Научпоп, Длиннопост

Getty images, Артем Фомин

Нетрадиционные месторождения нефти и газа, такие как сланцевые, отличаются высокой плотностью и низкой проницаемостью, что осложняет добычу ресурсов. В такой ситуации широко используется метод гидроразрыва пласта, когда в скважину под сильным давлением закачивают жидкости со специальными добавками. За счет этого горная порода растрескивается и образуются трещины, через которые углеводороды проходят легче. Однако такая процедура нуждается в большом количестве энергии для поддержания давления, а также приводит к сильному расходу закачиваемой жидкости, закупорке пор и химическому загрязнению. Ученые Пермского Политеха совместно с коллегами из Китая разработали метод усиленного безводного гидроразрыва пласта с помощью сверхкритического диоксида углерода. Технология позволяет на 43% снизить давление и в 3,5 раза увеличить длину трещин по сравнению со стандартной методикой.

Статья с результатами опубликована в журнале «Geoenergy Science and Engineering», 2025.

Несмотря на свою эффективность в добыче труднодоступных сланцевых нефти и газа, гидроразрыв пласта вызывает множество технических и экологических проблем: большой расход воды, химическое загрязнение, повреждение пласта из-за закупорки пор, высокая вязкость. Все это приводит научное сообщество к поиску безводных способов повышения проницаемости горных пород, например, с использованием газа.

Наиболее перспективным считается сверхкритический диоксид углерода (SC-CO₂) – это углекислый газ, который находится в состоянии выше своих критических температуры и давления, что наделяет его уникальными физическими и химическими свойствами.

– По сравнению со стандартным методом, гидроразрыв ScCO₂ обладает более высокой смешиваемостью с углеводородами и уменьшает закупорку нефти и газа; устраняет проблемы набухания глины и загрязнения пласта; способствует образованию большой сети трещин; а также обладает потенциалом крупномасштабного хранения углекислого газа, что соответствует политике двойного использования углерода, – объясняет Владимир Поплыгин, директор Когалымского филиала ПНИПУ, кандидат технических наук.

Ученые Пермского Политеха, Китайского университета нефти и Китайской академии наук изучили, как сверхкритический диоксид углерода влияет на морфологию, длину, ширину и давление образовываемой трещины. В результате представили технологию усиленного гидроразрыва пласта, который позволяет снизить нагрузку на окружающую среду и повысить эффективность добычи ресурсов.

Методика состоит из трех этапов: сначала с помощью ScCO₂ образуются микротрещины вокруг ствола скважины (при этом порода не разрушается); затем насос, закачивающий газ, останавливается, и при поддерживающем давлении скважина насыщается CO₂, который, вступая в реакцию с минералами, ослабляет структуру горной породы, уменьшает ее прочность и плотность; и только в конце для создания трещин, увеличения их ширины и сложности используется гидравлический разрыв пласта – подача жидкости под высокой скоростью.

Исследователи экспериментально проверили эффективность технологии с помощью разработанной конструкции для проведения настоящего гидроразрыва пласта. Она состоит из системы закачки жидкости, сбора данных, электропитания и устройства трехосного гидроразрыва, то есть трехстороннего давления на образец. Испытания сланцевой породы проводили по традиционной и предлагаемой технологии.

– Результаты показали, что по сравнению с жидкостью на водной основе, усиленный гидроразрыв пласта с диоксидом углерода снижает давление на 43%, а общая длина трещин получается больше примерно в 3,48 раза и с множеством ответвлений. Образующиеся разрывы в породе по стандартной методике существуют только на поверхности сланца и не могут проникнуть внутрь, тогда как с ScCO₂ трещины распространяются вдоль плоскости напластования и, по сути, проходят через весь образец породы. Все это говорит о том, что наша усиленная технология повышения проницаемости пласта имеет большие преимущества и перспективы в добыче труднодоступных ресурсов, – рассказывает Владимир Поплыгин.

Разработанная методика сверхкритического гидроразрыва пласта с применением углекислого газа открывает новые возможности в разработке сланцевых месторождений. Способ эффективен для увеличения сложности трещин в пласте, расширения их ширины и снижения давления. Кроме того, он способствует геологическому хранению углекислого газа, что помогает решать проблемы глобального изменения климата.

Показать полностью
ПНИПУ Добыча нефти Гидроразрыв пласта Углекислый газ Сланец Научпоп Длиннопост
2
8
PNIPU
PNIPU
3 месяца назад

Удобрение ученых Пермского Политеха повысит урожайность корнеплодов на 20%⁠⁠

Современное сельское хозяйство сталкивается с множеством проблем: истощение почв, загрязнение окружающей среды и необходимость повышения урожайности для растущего населения. Эти проблемы могут решить биоорганические удобрения: они сочетают в себе природные компоненты и полезные микроорганизмы, что делает их экологически чистыми. Ученые Пермского Политеха разработали инновационное биоорганическое удобрение на основе бактерий сенной палочки, гуминовых кислот и кобальта. Благодаря новому составу оно не только безопасно для окружающей среды, но также способно значительно повысить урожайность сельскохозяйственных культур: в условиях эксперимента оно обеспечило максимальный прирост массы редиса на 22,64%.

Удобрение ученых Пермского Политеха повысит урожайность корнеплодов на 20% ПНИПУ, Бактерии, Овощи, Редиска, Удобрения, Урожай, Длиннопост

Фото: Caroline Attwood, Unsplash

Статья опубликована в журнале «Химия. Экология. Урбанистка», том 1, 2025. Разработка выполнена в рамках программы стратегического академического лидерства «Приоритет 2030».

Традиционно в сельском хозяйстве для выращивания растений используют химические удобрения из солей и минералов. Они поставляют требуемые для роста питательные вещества. Однако при накоплении в почве и воде такие удобрения могут вызывать загрязнение и токсический эффект для растений, возможно засоление почвы и повышение содержания в ней вредных примесей. Все это ухудшает качество земли, а, следовательно, и того, что на ней вырастает.

Эти проблемы могут решить биоорганические удобрения: они сочетают в себе природные компоненты и полезные микроорганизмы, что делает их экологически чистыми. Биоудобрения производят с использованием специально выращенных бактерий, которых сочетают с органическими и минеральными компонентами. В составе также есть витамины и аминокислоты – они поддерживают жизнедеятельность почвенных бактерий и дополнительно стимулируют рост растений.

Ученые Пермского Политеха разработали биоорганическое удобрение нового состава на основе гуминовых кислот, добываемых из торфа, ионов кобальта (II) и культуры полезных бактерий сенной палочки (Bacillus subtilis). Оно улучшает рост растений и повышает усвоение ими питательных микроэлементов.

Бактерия Bacillus subtilis давно используется в биотехнологии и сельском хозяйстве благодаря своим уникальным свойствам. Она способна подавлять развитие патогенных микроорганизмов и улучшать структуру почвы.

— Гуминовые кислоты — это природные соединения, образующиеся при разложении растительных остатков и других органических материалов. Они улучшают структуру почвы, повышают ее плодородие и способность удерживать воду. Кобальт же является важным микроэлементом, который участвует в синтезе витаминов, работе ферментов и положительно влияет на продуктивность растений. Особенно он ценен при производстве кормовых культур, поскольку его недостаток в почве может привести к дефициту этого элемента в организме животных, — поясняет Ольга Кривощекова, студентка кафедры химии и биотехнологии ПНИПУ.

Ученые выделили гуминовые кислоты из торфа, а бактерии Bacillus subtilis — из сена. Затем они провели серию экспериментов, чтобы изучить, как компоненты комплексного удобрения взаимодействуют друг с другом и влияют на рост сенной палочки. Исследователи добавляли в питательную среду для выращивания микроорганизмов ионы кобальта (25 мг/л), гуминовые кислоты (1 г/л) и их комбинацию.

— Результаты показали, что кобальт ускоряет рост бактерий: удельная скорость с ним составила 0,113 ч⁻¹, тогда как без него — только 0,078 ч⁻¹. При этом в средах, содержащих гуминовые кислоты, активное увеличение количества микроорганизмов наблюдалось вне зависимости от наличия кобальта. Это подтвердило, что оба компонента можно успешно использовать в составе удобрения, – рассказывает Анна Портнова, доцент кафедры химии и биотехнологии ПНИПУ, кандидат химических наук.

Эксперимент с выращиванием редиса показал, что комплексный препарат политехников обеспечивает максимальный прирост массы корнеплода на 22,64% по сравнению с контрольным опытом без удобрения.

В будущем политехники планируют детально описать все этапы изготовления предлагаемого продукта и определить затраты на сырье, материалы и оборудование. После этого он будет готов к запуску в производство и продажи.

Разработка ученых Пермского Политеха открывает новые возможности для устойчивого развития сельского хозяйства. В отличие от традиционных минеральных удобрений, новый препарат основан на натуральных компонентах и не загрязняет землю и воду. Гуминовые кислоты восстанавливают структуру и плодородие истощенных земель, бактерии сенной палочки оказывают защитный эффект, а ионы кобальта стимулируют рост растений – все вместе это повышает качество почв и их урожайность.

Показать полностью 1
ПНИПУ Бактерии Овощи Редиска Удобрения Урожай Длиннопост
5
71
PNIPU
PNIPU
3 месяца назад
Наука | Научпоп

Ученые Пермского Политеха разработали инновационный материал, способный защитить органы дыхания человека от бактерий⁠⁠

Ученые Пермского Политеха разработали инновационный материал, способный защитить органы дыхания человека от бактерий ПНИПУ, Фильтр, Бактерии, Медь, Уголь, Научпоп

Pasha Chusovitin/Unsplash

На многих биотехнологических производствах, в химических и медицинских лабораториях воздушная среда насыщена различными бактериями. Безвредные и патогенные микроорганизмы собираются на поверхностях в рабочих помещениях и могут попадать в организм персонала. Широко используемые средства индивидуальной защиты органов дыхания задерживают мелкие частицы, но не спасают от бактерий. Ученые Пермского Политеха разработали фильтрующий материал на основе угольной ткани и меди, способный обеспечить 98%-ную защиту от бактерий. Продукт предназначен для использования в респираторах или фильтрах-поглотителях и будет полезен медицинским учреждениям, химическим лабораториям и производствам с высокими требованиями к стерильности воздуха.

Статья опубликована в сборнике «Химия. Экология. Урбанистика», том 1, 2025. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Ранее ученые ПНИПУ представили антибактериальный сорбент на основе серебра и меди для очистки и обеззараживания воды. Сейчас разработали двухслойный фильтрующий материал на основе угольной ткани и меди с бактерицидными свойствами, перспективный для использования в средствах индивидуальной защиты органов дыхания. 

В качестве основы фильтра политехники использовали активную угольную ткань – это полотно саржевого плетения, отличающееся пористостью, низким сопротивлением воздушному потоку, термической и химической устойчивостью к воздействию агрессивных сред. Его небольшая толщина (3–5 мм) и вес (300–350 г/м2) позволяет создавать легкие и компактные изделия. Такой материал может быть применен в воздушных фильтрах для очистки газов и воздуха от загрязнений, но не обладает бактерицидными свойствами.

Чтобы угольная ткань могла спасать и от вредных микроорганизмов, ученые ПНИПУ модифицировали ее частицами меди, так как ионы этого металла обладают бактерицидными свойствами, то есть способны обезвреживать большинство микроорганизмов.

Эффективность полученного продукта проверяли двумя способами: сначала в лаборатории, где небольшие образцы материала помещали на засеянную микроорганизмами плотную питательную среду и фиксировали зоны гибели бактерий. Затем испытывали работу фильтра в динамическом режиме, пропуская через него поток зараженного воздуха. По окончании опыта в прошедшем воздухе определяли количество оставшихся клеток.

– Результаты испытаний показали, что разработанный фильтр эффективно задерживает микроорганизмы из поступающего потока воздуха, обеспечивая 98%-ную защиту. Это подтверждает возможность использования нашего продукта в средствах индивидуальной защиты органов дыхания и в качестве воздушного фильтра-поглотителя для обеззараживания среды, – рассказывает Елена Фарберова, доцент кафедры «Химия и биотехнология» ПНИПУ, кандидат химических наук.

Решение ученых Пермского Политеха позволяет не только фильтровать загрязненный воздух, но и обезвреживать микроорганизмы, содержащиеся в воздухе, тем самым предотвращая их попадание в организм персонала. Полученный материал с бактерицидными свойствами полезен для использования в респираторах и масках для защиты медицинских и лабораторных работников, а также в промышленных фильтрах на биотехнологических производствах, где критична стерильность воздуха.

Показать полностью
ПНИПУ Фильтр Бактерии Медь Уголь Научпоп
13
32
PNIPU
PNIPU
3 месяца назад
Наука | Научпоп

Ученые Пермского Политеха модернизировали систему охлаждения продуктов нефтепереработки⁠⁠

Ученые Пермского Политеха модернизировали систему охлаждения продуктов нефтепереработки ПНИПУ, Охлаждение, Нефть

Труба со стандартным оребрением и труба с лепестковым оребрением

В промышленности для охлаждения различных газов и жидкостей (воды, масел и растворов) до оптимальных температур применяют специальный аппарат, работающий за счет обдува воздухом. Особенно это востребовано при переработке сырой нефти, где такая система помогает поддерживать необходимые температуры и обеспечивать стабильную работу всего оборудования. Однако с каждым годом требования к выходу готовой нефтяной продукции растут, из-за чего нагрузка на аппарат воздушного охлаждения увеличивается. Ученые Пермского Политеха предложили способ модернизации конструкции, который улучшает процесс теплообмена на 17%. Идея позволяет снизить энергозатраты и адаптировать оборудование к возросшим производственным нагрузкам.

Статья опубликована в сборнике «Химия. Экология. Урбанистика», том 3, 2025. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Основной элемент аппарата воздушного охлаждения – это оребренные трубки, через которые проходит горячая жидкость. Вентиляторы создают поток воздуха и прогоняют его через ребра, тем самым забирая основное тепло. После чего охлажденное вещество возвращается обратно. Такая система позволяет снизить температуру нефтяного сырья до 5-50 градусов.

В стандартной конструкции аппарата трубы оснащены гладкими ребрами, которые расположены по всей длине и выполняют главную теплообменную функцию. Однако даже самое сильное оребрение труб не отличается достаточным коэффициентом теплоотдачи, обычно не превышающим 90 Вт/м2.

Ученые Пермского Политеха выяснили, что повысить теплоотдачу и скорость охлаждающего воздуха возможно за счет модернизации формы ребер. Политехники предложили использовать лепестковые охлаждающие элементы, выполненные в виде пространственной спирали с углом наклона 10 градусов.

Технологию исследовали на теоретически смоделированном аппарате воздушного охлаждения ЕС-101, установленном на оборудовании гидрокрекинга (процесса интенсивной очистки нефти). Сначала ученые рассчитали теплоотдачу на действующей конструкции с гладкими ребрами, она составила всего 64,6 Вт/м2, что недостаточно для текущих технологических требований. После их заменили на трубы с лепестковым оребрением и провели перерасчет.

– Наше решение выполнить ребра в виде спиралей позволяет сохранить рифление поверхности трубок, увеличивая площадь контакта теплоносителя с окружающей средой, а также создает турбулентный режим течения воздуха вдоль оси труб, тем самым повышая интенсивность теплообмена. Моделирование такого исполнения показало увеличение значений параметров теплоотдачи 17%, по сравнению с первоначальными. Это говорит об эффективности нашей идеи, – поделился Евгений Шестаков, старший преподаватель кафедры «Оборудование и автоматизация химических производств» ПНИПУ.

Улучшения, предложенные учеными Пермского Политеха, позволяют увеличить эффективность охлаждения продукта и приблизить работу аппарата к требуемым технологическим параметрам. Так внедрение особой лепестковой формы оребрения представляет собой перспективное решение для повышения производительности работы оборудования на нефтеперерабатывающих предприятиях.

Показать полностью 1
ПНИПУ Охлаждение Нефть
17
6
PNIPU
PNIPU
3 месяца назад

Модель ученых Пермского Политеха поможет изучать поведение клеток при заживлении ран и развитии рака⁠⁠

Эпителиальная ткань покрывает поверхности органов тела, защищая их от внешних воздействий. Для того, чтобы сохранить свою целостность при порезах, ссадинах и воспалительных процессах, ее клетки умеют менять форму и перестраиваться относительно друг друга – это играет важную роль в заживлении ран. Этот же механизм задействован в развитии рака, когда клетки начинают бесконтрольно делиться, тем самым образуя опухоли, и перемещаться, распространяя болезнь в другие органы. Согласно статистике ВОЗ, в 2022 г. во всем мире было зарегистрировано 20 млн новых случаев рака, а к 2050 г. эта цифра вырастет на 77% и достигнет 35 млн Поэтому изучение этих процессов является важным направлением исследований. Ученые Пермского Политеха разработали математическую модель, которая позволяет подробно рассмотреть, как именно клетки эпителия перестраиваются под воздействием механических нагрузок.

Модель ученых Пермского Политеха поможет изучать поведение клеток при заживлении ран и развитии рака ПНИПУ, Математическая модель, Рана, Эпителий, Длиннопост

Фото: Fayette A Reynolds M.S., Bioscience Image, Library by Fayette Reynolds

Статья опубликована в «Российском журнале биомеханики», Т. 29, № 1, 2025. Исследование выполнено при финансовой поддержке Российского научного фонда, грант № 23-71-01020.

Эпителиальные ткани постоянно подвергаются механическим воздействиям – растяжению или сжатию при ссадинах, порезах и воспалительных процессах. Для того, чтобы сохранить целостность и функциональность, тканевые элементы способны перестраиваться – этот процесс, который называется переупаковкой, помогает покровам восстанавливаться после повреждений, адаптироваться к изменениям. Работает это так: клетки меняют форму и расположение, чтобы равномерно распределить нагрузку, но остаются прочно связанны друг с другом благодаря специальным контактам – десмосомам. При повреждении кожного покрова (например, порезе) клетки на краю раны растягиваются, делятся и замещают погибшие, быстро восстанавливая защитный барьер. Так переупаковка играет ключевую роль в заживлении кожи.

Этот процесс также задействован в развитии рака. В здоровых тканях перестройка происходит аккуратно, но при онкологических заболеваниях этот механизм «ломается»: биологические элементы теряют связь с соседями и начинают бесконтрольно делиться, а вместо упорядоченной структуры образуется хаотичная масса – опухоль. Впоследствии она начинает пускать метастазы – это процесс, когда раковые клетки отделяются от своих «соседей», становятся подвижными и проникают в другие органы.

Международные исследования переупаковки сосредоточены на том, как клетки меняют свою форму и расположение во время роста органов и как взаимодействуют между собой, однако до сих пор многие аспекты остаются неясными из-за сложности биологических процессов. В живых организмах сложно следить за каждым этапом этого механизма в реальном времени, поскольку они могут быть скрыты глубоко внутри тканей. В условиях эксперимента же воспроизвести этот процесс трудно из-за необходимости контролировать очень много факторов. Клетки могут переупаковываться по-разному в зависимости от нагрузки, формы ткани и химических сигналов, поэтому предугадать результат процесса достаточно сложно.

Ученые Пермского Политеха разработали математическую модель, которая воспроизводит переупаковку и позволяет предсказывать, как клетки будут реагировать на различные внешние факторы.

Существующие модели не учитывают изменение формы и углов клеток, химические сигналы между ними, а также плохо адаптируются к разным типам тканей – иными словами, они слишком упрощены. Разработка политехников, напротив, принимает во внимание эти параметры, что делает ее точной и позволяет применять в исследованиях разных типов эпителиальных покровов.

— Мы использовали усовершенствованную вершинную модель, которая описывает клетки как многоугольники, соединенные между собой вершинами (точками) и способные изменять свою форму и размеры в зависимости от взаимодействия с соседями. Это совокупность уравнений, которые позволяют рассчитать эластичность биологических элементов, механические силы, которые на них действуют – например, растяжение ткани, – и химические сигналы, которыми они обмениваются, — рассказывает Максим Бузмаков, младший научный сотрудник кафедры «Прикладная физика» ПНИПУ.

Моделирование позволило получить наглядные данные о том, как в процессе переупаковки меняется форма клеток, их расположение и уровень энергии. Кроме того, авторы пронаблюдали, как они перемещаются внутри эпителия.

— Особое внимание стоит уделить интеркаляции — так называется способность тканевых элементов менять свое положение относительно соседей. Мы исследовали большой ряд значений этого параметра. Было установлено его самое оптимальное значение (dint = 0,40), при котором достигается наиболее устойчивое состояние эпителия, то есть ткань ведет себя наиболее естественно и устойчиво, как в здоровом организме, – поясняет Иван Красняков, доцент, научный сотрудник кафедры «Прикладная физика» ПНИПУ, кандидат физико-математических наук.

Модель ученых Пермского Политеха показывает, как клетки кожи или слизистых оболочек перемещаются и перестраиваются при повреждении. Она уже прошла апробацию на данных клинических исследований, доступных в литературе. Благодаря ей можно предсказывать, как будет вести себя ткань при различных воздействиях — например, во время хирургического вмешательства или ношения протезов. Это может помочь в разработке новых методов ускорения заживления и восстановления тканей. Разработанная модель универсальна, что позволяет применять ее для широкого круга биологических исследований – в частности, для изучения того, как раковые клетки теряют связь с соседями и начинают мигрировать по организму. Это важно для исследования механизмов развития онкологических заболеваний, в чем ученые и видят дальнейшие перспективы своего исследования.

Показать полностью 1
ПНИПУ Математическая модель Рана Эпителий Длиннопост
1
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии