yokling

yokling

На Пикабу
2031 рейтинг 30 подписчиков 10 подписок 28 постов 11 в горячем
Награды:
5 лет на Пикабу
7

Abell 1033 - столкновение скоплений галактик в форме звездолёта "Энтерпрайз"

С помощью рентгеновской обсерватории “Чандра” учёные изучили столкновения пучков газа, скрытые в далеком скоплении галактик, и поняли, что они чем-то напоминают космический аппарат “Энтерпрайз” из вселенной Звёздный Путь (Star Trek).


Скопления галактик — космические структуры, содержащие сотни или даже тысячи галактик. Они являются крупнейшими объектами во вселенной, удерживаемыми друг с другом посредством мощной гравитации. А пространство между отдельными галактиками скопления заполняет газ, разогретый до многих миллионов градусов. Масса этого горячего газа примерно в шесть раз больше суммы масс всех галактик скопления. Этот перегретый газ невидим для оптических телескопов, но очень ярко светит в рентгеновских лучах, поэтому для его изучения требуется рентгеновский телескоп, такой, например, как рентгеновская обсерватория “Чандра”.


Комбинируя рентгеновские с лучами других типов световой волны, например, с радиоволнами, можно получить более полную картину этих важных космических объектов. Новое сложное изображение скопления галактик Abell 1033 как раз и демонстрирует процесс такого объединения данных. Рентгеновские лучи от “Чандры” показаны фиолетовым, а радиоизлучение от сети низкочастотных массивов LOFAR в Нидерландах — синим. Здесь же показано и оптическое излучение от Слоановского Цифрового Обзора SDSS. Это скопление галактик расположено на расстоянии примерно 1.6 миллиарда световых лет от Земли.

Abell 1033 - столкновение скоплений галактик в форме звездолёта "Энтерпрайз" Космос, Интересное, Наука, Фотография, Длиннопост

Используя рентгеновские и радио данные, учёные установили, что Abell 1033, на самом деле, является двумя скоплениями галактик, находящимися в процессе столкновения. Это чрезвычайно мощное событие, оно протекает сверху вниз, если смотреть на изображение, вызвало турбулентность и ударные волны, которые похожие на звуковые ударные фронты, создаваемые самолетом, движущимся быстрее скорости звука.


В Abell 1033 столкновение породило другой энергетически сильный космический процесс — образование струй высокоскоростных частиц из материи, падающей в сверхмассивную чёрную дыру, в данном случае находящуюся в галактике в одном из кластеров. Эти струи выявляются по радиоизлучению с левой и правой сторон изображения. Радиоизлучение произведено электронами, закручивающимися в спираль вокруг линий магнитного поля. Такое излучение называется синхротронным.


Электроны в струях движутся со скоростью, очень близкой к скорости света. По мере того, как галактика и её черная дыра двигались к нижней части изображения, струя справа замедлялась, когда она врезалась в горячий газ в другом скоплении галактик. Струя слева не замедлилась, потому что она столкнулась с гораздо менее горячим газом. Именно из-за столкновений джеты имеют такой деформированный вид, а не прямую линию, как мы обычно привыкли.


Это изображение скопления Abell 1033 также является примером парейдолического эффекта — психологического феномена, при котором в случайных данных видны знакомые формы и узоры. В Abell 1033 структуры в данных создают сверхъестественное сходство со многими изображениями вымышленного звездолёта “Энтерпрайз” из вселенной Звёздный Путь (Star Trek).



Источник: http://www.theuniversetimes.ru/abell-1033-stolknovenie-skopl...

Показать полностью 1
29

Что такое «ничего»? Рассказывает астрофизик Мартин Рис.

Что такое «ничего»? Рассказывает астрофизик Мартин Рис. Интересное, Космос, Наука, Интервью, Длиннопост

Философы обсуждали природу «небытия», «ничего», «ничто», «пустоты» тысячи лет, но что может современная наука об этом рассказать? На этот вопрос ответит Мартин Рис, астроном Королевского общества и почетный профессор космологии и астрофизики Кембриджского университета. Он объясняет, что когда физики обсуждают «ничто», они имеют в виду пустое пространство (вакуум). Это может показаться вполне заурядным, но эксперименты показывают, что пустое пространство на самом деле не пустое — в нем скрывается загадочная энергия, которая может рассказать нам что-то о судьбе вселенной.


Интервью с Мартином Рисом представил журнал The Conversation.


Пустое пространство — то же самое, что ничего?


Пустое пространство кажется нам ничем. По аналогии, вода может казаться «ничем» для рыбы — именно она остается, когда вы убираете все остальное, что плавает в море. Точно так же и пустое пространство оказывается довольно сложным на поверку.


Мы знаем, что Вселенная очень пустая. Средняя плотность пространства составляет примерно один атом на каждые десять кубических метров — среда гораздо более разреженная, чем любой вакуум, который мы можем получить на Земле. Но даже если убрать всю материю, пространство обладает своего рода эластичностью, которая (как было недавно подтверждено), позволяет гравитационным волнам — ряби самого пространства — распространятся по нему. Более того, мы узнали, что в самом пустом пространстве есть экзотический вид энергии.


Впервые мы узнали об этой энергии вакуума в 20 веке с появлением квантовой механики, которая объясняет поведение атомов и частиц на мельчайших масштабах. Из нее следует, что пустое пространство состоит из поля флуктуаций фоновой энергии — которая дает жизнь волнам и виртуальным частицам, то и дело появляющимся и исчезающим в никуда. Они даже могут создать крошечную силу. Но как насчет пустого пространства на больших масштабах?


Тот факт, что пустое пространство создает крупномасштабную силу, был обнаружен 20 лет назад. Астрономы обнаружили, что расширение Вселенной ускоряется. Это был сюрприз. О расширении было известно более 50 лет, но все думали, что расширение будет замедляться из-за гравитационного притяжения, которое галактики и другие структуры оказывают друг на друга. Поэтому для всех стало большим сюрпризом то, что замедление вследствие гравитации было смещено чем-то, что «расталкивало» расширение. Оказалось, что в самом пустом пространстве присутствует энергия, которая создает своего рода отталкивание, которое перевешивает притяжение гравитации на этих больших масштабах. Это явление — темная энергия — самое невероятное проявление того факта, что пустое пространство не лишено морщин и не является пустым. Более того, этот факт определяет дальнейшую судьбу нашей Вселенной.


Существует ли предел тому, что мы можем узнать? В масштабах, в триллион триллионов раз меньше атома, квантовые флуктуации пространства-времени могут родить не только виртуальные частицы, но и виртуальные черные дыры. Это в пределах, которые мы наблюдать не можем и для понимания которых хотя бы гипотетического нам нужно совместить теории гравитации с квантовой механикой — а это невероятно сложно.


Существует несколько теорий, направленных на то, чтобы понять это, среди которых самая известная — это теория струн. Но ни одна из этих теорий пока не связана с реальным миром — поэтому они все еще являются беспочвенными. Я думаю, что практически каждый признает, что пространство само по себе обладает сложной структурой на крошечных масштабах, где встречаются гравитационные и квантовые эффекты.


Мы знаем, что у нашей Вселенной есть три пространственных измерения: вы можете двигаться налево и направо, вперед и назад, вверх и вниз. Время — это как бы четвертое измерение. Однако есть сильное подозрение, что если вы увеличите крошечную точку в пространстве до тех пор, пока не пощупаете этот крошечный масштаб, вы обнаружите, что она будет плотно сжатым оригами из пяти дополнительных измерений, которых мы не видим. Как если бы вы смотрели на шланг издалека и думали, что это просто линия. Подходя ближе, вы бы увидели, что одно измерение является по сути тремя. Теория струн включает сложную математику — так же как и конкурирующие теории. Но это именно та теория, которая нам понадобится, если мы захотим понять на самом глубоком уровне самое близкое к пустоте, что можно вообразить: пустое пространство, очевидно.


В рамках нашего нынешнего понимания, как мы можем объяснить, что вся наша вселенная расширяется из ничего? Неужели она могла начаться с небольшой флуктуации энергии вакуума?


Некоторые таинственные переходы или колебания могли внезапно привести к тому, что часть пространства начала расширяться — так полагают некоторые теоретики. Флуктуации, присущие квантовой теории, могли бы встряхнуть всю Вселенную, если бы она была сжата до достаточно малых масштабов. Это должно было произойти в течение примерно 10-44 секунд — это планковское время. На этих масштабах время и пространство переплетены, поэтому идея тикающих часов не имеет смысла. Мы можем экстраполировать нашу вселенную с высокой степенью уверенности обратно до наносекунды и с высокой долей вероятности вернемся ближе к планковскому времени. Но после этого наши догадки уже не имеют силы — физика на этом масштабе заменяется какой-то другой, более сложной теорией.


Если может ли быть так, что флуктуация в некой случайной части пустого пространства дала жизнь вселенной, почему то же самое не может произойти с другой частью пустого пространства — и дать жизнь параллельным вселенным в бесконечной мультивселенной?


Идея о том, что наш Большой Взрыв — не единственный, и что то, что мы видим в наши телескопы — это крошечная часть физической реальности, весьма популярна среди физиков. И существует много версий цикличной вселенной. Всего 50 лет назад появились мощные доказательства того, что Большой Взрыв вообще произошел. Но с тех пор ходят предположения, что он мог быть лишь эпизодом в цикличной вселенной. Также есть тенденция к пониманию того, что физическая реальность — это намного больше, чем объем пространства и времени, который мы можем пощупать, даже при помощи мощнейших телескопов.


Поэтому мы понятия не имеем, был Большой Взрыв один или их было много — существуют сценарии, предсказывающие множество Больших Взрывов, и сценарии, предсказывающие один. Думаю, мы должны изучить их все.


Какой конец ждет Вселенную?


Самый простой прогноз на далекое будущее — вселенная продолжит расширяться все быстрее и быстрее, становясь все более холодной и пустой. Частицы в ней могут распадаться, бесконечно растворяясь в пустоте. Мы можем оказаться в огромном объеме пространства, но оно будет даже более пустым, чем космос сейчас. Это один из сценариев. Есть и другие, которые прогнозируют «разворот» направления темной энергии, от отталкивания до притяжения, в результате которого нас ждет сжатие в плотную точку.


Есть еще идея Роджера Пенроуза о том, что вселенная продолжит расширяться, становясь все более разбавленной, но каким-то образом — когда в ней не будет ничего кроме фотонов, частиц света — объекты в ней перекалибруются и пространство станет в некотором роде генератором нового Большого Взрыва. Это будет весьма экзотическая версия старой цикличной вселенной — но, пожалуйста, не просите меня объяснять идеи Пенроуза.


Насколько вы уверены в том, что наука однажды раскроет тайну того, что такое это «ничто»? Даже если бы мы могли доказать, что Вселенная появилась из странной флуктуации в вакуумном поле, разве нам не стоило бы задать вопрос, откуда взялось это вакуумное поле?


Наука пытается дать ответы, но каждый раз, когда мы их находим, появляются новые вопросы — у нас никогда не будет полной картины. Когда я начал заниматься исследованиями в конце 1960-х, были сомнения в том, что Большой Взрыв вообще был. Теперь сомнений уже нет и мы можем сказать с точностью примерно в 2%, что вселенная была такой же все 13,8 миллиардов лет, до самой первой наносекунды. Это большой прогресс. Нелепо оптимистично полагать, что в следующие 50 лет мы разберемся в сложных вопросах о том, что происходит в квантовую или «инфляционную» эпоху.


Но, конечно, возникает другой вопрос: насколько наука будет постижима для человеческого мозга? Может оказаться так, что математика теории струн в некотором смысле является верным описанием реальности, но мы никогда не сможем понять ее достаточно хорошо, чтобы проверить на фоне любого подлинного наблюдения. Тогда нам, возможно, придется ждать появления каких-нибудь пост-людей, чтобы получить более полное понимание.


Источник https://hi-news.ru/space/chto-takoe-nichego-rasskazyvaet-ast...

Показать полностью
15

Как и почему взрываются звезды.

Как и почему взрываются звезды. Космос, Физика, Интересное, Наука, Сверхновая, Гифка, Длиннопост

На рисунке представлена Туманность Киля. (Остаток после взрыва сверхновой).

Обратимся к явлению сверхновой звезды — одному из самых грандиозных космических явлений. Коротко говоря, сверхновая — это настоящий взрыв звезды, когда большая часть ее массы (или даже вся) сбрасывается со скоростью до 10 тысяч км/с в пространство, а оставшаяся центральная часть схлопывается (коллапсирует) в сверхплотную нейтронную звезду или даже в Черную дыру. Сверхновые играют фундаментальную роль в эволюции звезд, являясь «финалом» жизни звезд с массами более 8-10 солнечных масс, рождая нейтронные звезды и Черные дыры и обогащая межзвездную среду тяжелыми химическими элементами (практически все химические элементы тяжелее кислорода когда-то образовались при взрыве какой-нибудь массивной звезды).

Как и почему взрываются звезды. Космос, Физика, Интересное, Наука, Сверхновая, Гифка, Длиннопост
Как и почему взрываются звезды. Космос, Физика, Интересное, Наука, Сверхновая, Гифка, Длиннопост

Не в этом ли разгадка извечной тяги человечества к звездам? Ведь в мельчайшей клетке живой материи есть атомы железа, каждый из которых был синтезирован при гибели массивной звезды, и в этом смысле люди сродни тому снеговику из сказки Г.-Х. Андерсена, который испытывал необъяснимую любовь к жаркой печке, потому что основой его была кочерга…). По своим наблюдаемым характеристикам сверхновые принято разделять на 2 широких класса — сверхновые 1-го и 2-го типа.


В спектрах сверхновых 1-го типа нет линий водорода, зависимость их блеска от времени (т.н. кривая блеска) почти не меняется от сверхновой к сверхновой, светимость в максимуме блеска примерно одинакова. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весьма разнообразны, блеск в максимуме сильно различается у разных сверхновых. Чтобы дополнить картину различий между этими типами сверхновых, укажем, что только сверхновые 1-го типа вспыхивают в эллиптических галактиках (т.е. галактиках без спиральной структуры с пониженным темпом звездообразования, основной состав которых — маломассивные красные звезды), в то время как в спиральных галактиках (к числу которых принадлежит и наша галактика Млечный Путь) встречаются оба типа сверхновых, причем установлено, что сверхновые 2-го типа концентрируются к спиральным рукавам галактик, где идет активный процесс звездообразования и много молодых массивных звезд.


Эти феноменологические особенности наводят на мысль о различной природе двух типов сверхновых. Сейчас надежно установлено, что при взрыве любой сверхновой освобождается всегда примерно одно и то же (гигантское!) количество энергии 1053 эрг, что соответствует энергии связи образующегося компактного остатка (напомним, что энергия связи звезды соответствует такому количеству энергии, которое нужно затратить, чтобы «распылить» вещество звезды на бесконечно удаленное расстояние). Основная энергия взрыва уносится не фотонами, а нейтрино — релятивистской частицей с очень малой массой или вообще без массы (этот вопрос активно исследуется последние 10-20 лет на самых мощных ускорителях элементарных частиц), так как большая плотность звездных недр не позволяет фотонам свободно покидать звезду, а нейтрино чрезвычайно слабо взаимодействуют с веществом (как говорят, имеют очень малое сечение взаимодействия) и для них недра звезды вполне «прозрачны».


Окончательной самосогласованной теории взрыва сверхновых с образованием компактного остатка и сбросом внешней оболочки не существует ввиду крайней сложности учета всех физических процессов, происходящих при вспышке сверхновой. Однако все данные говорят о том, что сверхновые 2-го типа являются следствием коллапса ядра звезды, в котором происходило термоядерное превращение сначала водорода в гелий, затем гелия в углерод и так далее до образования изотопов элементов «железного пика» — железа, кобальта и никеля, атомные ядра которых имеют максимальную энергию связи в расчете на одну частицу (ясно, что присоединение новых частиц к ядру, например железа, будет требовать затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика).


Что же заставляет центральные части массивной звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным (около 1.5 масс Солнца)?


В настоящее время известны два основных фактора, приводящие к коллапсу. Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с выделением фотонов (т.н. фотодиссоциация железа), и

во-вторых, захват электронов протонами с образованием нейтронов (т.н. нейтронизация вещества).


Оба процесса становятся возможными при больших плотностях (свыше 1 тонны в куб. см), устанавливающихся в центре звездных недр в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил притяжения. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящее основную энергию, запасенную в коллапсирующем ядре. В отличие от процесса катастрофического коллапса ядра, разработанного достаточно детально, сброс оболочки звезд (собственно взрыв) не так-то просто получить. По-видимому, существенную роль в этом процессе играет нейтрино.


Как показывают расчеты, проведенные на суперкомпьютерах, плотность вблизи ядра настолько высока, что даже слабовзаимодействующие с веществом нейтрино оказываются на какое-то время «запертыми» внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру и возникает ситуация, похожая на ту, которая получается при попытке налить более плотную жидкость, например, воду, поверх менее плотной (например, керосина или масла) — из опыта хорошо известно, что легкая жидкость стремится «всплыть» из-под тяжелой (в этом проявляется так называемая неустойчивость Рэлея-Тэйлора). Этот механизм приводит к возникновению гигантских конвективных движений и в конце концов импульс нейтрино передается вышележащей оболочке, которая сбрасывается в окружающее звезду пространство. Интересно отметить, что, возможно, именно эти нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой (иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество) — и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до тысячи км/с (столь большие пространственные скорости наблюдаются у молодых нейтронных звезд — радиопульсаров). Описанная схематическая картина взрыва сверхновой 2-го типа позволяет объяснить основные наблюдательные особенности этого грандиозного явления. Более того, теоретические предсказания этой модели (особенно касающиеся полной энергии и спектра нейтринной вспышки) оказались в отличном согласии с зарегистрированным нейтринным импульсом, пришедшим 23 февраля 1987 г. от сверхновой в Большом Магеллановом Облаке.


Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв произошел в звезде, лишенной водородной оболочки. Как сейчас полагают, это может быть звезда типа Вольфа-Райе (фактически это богатые гелием, углеродом и кислородом ядра звезд, у которых давление света «сдуло» верхнюю водородную оболочку, или же, если такая массивная звезда входила в состав тесной двойной системы, эта оболочка «перетекла» на соседнюю звезду под действием мощных приливных сил), у которой коллапсирует проэволюционировавшее ядро (т.н. сверхновые типа 1b), или взрывающийся белый карлик.

Как может взорваться звезда белый карлик? Ведь это очень плотная звезда, в которой не идут ядерные реакции, а силам гравитации противостоит давление плотного газа, состоящего из электронов и ионов, которое вызвано существенно квантовыми свойствами электронов (т.н. вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звезд — уменьшение упругости вещества звезды при повышении ее плотности. Это опять же связано со «вдавливанием» электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами, которые мы здесь не будем рассматривать.


Как же можно повысить плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды может перетекать на белый карлик (вспомните случай новых звезд!), и при некоторых условиях масса (а значит и плотность) его будет постепенно возрастать, что в конечном счете и приведет к коллапсу и взрыву.


Другой возможный вариант более экзотичен, но не менее реален — это столкновение двух белых карликов. Как такое возможно, спросит внимательный читатель, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, т.к. ничтожно число звезд в единице объема (от силы несколько звезд в 100-1000 парсеках). И здесь (в который уж раз!) «виноваты» оказываются двойные звезды, но теперь уже состоящие из двух белых карликов. Не вдаваясь в детали их образования и эволюции, заметим только, что, как следует из общей теории относительности А.Эйнштейна, две любые массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного уноса энергии из такой системы волнами тяготения — гравитационными волнами (например, Земля и Солнце, живи они бесконечно долго, столкнулись бы из-за этого эффекта, правда через колоссальное время, на много порядков превосходящее возраст Вселенной).


Оказывается, в случае двойных систем с массами звезд около солнечной (2*10↑30 кг) их «слияние» должно произойти за время, меньшее возраста Вселенной (примерно 10 миллиардов лет).


Как показывают оценки, в типичной галактике такие двойные белые карлики могут сливаться раз в несколько сотен лет. Гигантская энергия, освобождаемая при этом катастрофическом процессе, вполне достаточна для объяснения явления Сверхновой типа 1а. Кстати, примерная одинаковость масс белых карликов делает все такие слияния «похожими» друг на друга, поэтому сверхновые типа 1а по своим характеристикам должны выглядеть одинаково вне зависимости когда и в какой галактике произошло это событие. Это свойство сверхновых типа 1а в настоящее время используется учеными для получения независимой оценки важнейшего космологического параметра — постоянной Хаббла, которая является количественной мерой скорости расширения Вселенной.


Мы рассказали лишь о наиболее грандиозных взрывах звезд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Мы отмечали выше, что в случае Сверхновых звезд основная энергия взрыва уносится нейтрино, а не светом, поэтому исследование неба методами нейтринной астрономии имеет интереснейшие перспективы и позволит в будущем «заглянуть» в самое «пекло» сверхновой, скрытое огромными толщами непрозрачного для света вещества.


Еще более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалеком будущем расскажет нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звезд и Черных дыр.

Показать полностью 3
494

Что будет, если упасть в черную дыру?

Что будет, если упасть в черную дыру? Космос, Интересное, Наука, Черная дыра, Теория, Длиннопост

Наверняка вы полагаете, что если упадете в черную дыру, то вас ждет мгновенная смерть. Но в действительности, как полагают физики, ваша судьба будет куда более странной. В будущем такое может произойти с кем угодно. Может, вы пытаетесь найти новую обитаемую планету для человеческой расы или просто уснули в долгом пути. Что будет, если вы упадете в черную дыру? Можно было бы ожидать, что вас перемелет или разорвет. Но все не так.


В момент, когда вы входите в черную дыру, реальность будет разделена на две части. В одной вы будете немедленно уничтожены, а в другой погрузитесь в черную дыру совершенно невредимым.

Что будет, если упасть в черную дыру? Космос, Интересное, Наука, Черная дыра, Теория, Длиннопост

Черная дыра — это место, в котором известные нам законы физики не работают. Эйнштейн учил нас, что гравитация искривляет само пространство, деформирует его. Поэтому если взять достаточно плотный объект, пространство-время может стать настолько кривым, что завернется само в себя, проделав отверстие в самой ткани реальности.


Массивная звезда, которая исчерпала топливо, может обеспечить чрезвычайную плотность, необходимую для создания этого деформированного участка пространства. Прогибаясь под собственным весом и коллапсируя, массивный объект затягивает с собой и пространство-время. Гравитационное поле становится настолько мощным, что его не может покинуть даже свет, чем обрекает область, в котором находится эта звезда, на мрачную судьбу: черная дыра.


Внешней границей черной дыры является ее горизонт событий, точка, в которой сила гравитации противодействует попыткам света покинуть ее. Подойдите слишком близко и возврата уже не будет.


Горизонт событий пылает энергией. Квантовые эффекты на этой границе создают потоки горячих частиц, утекающих обратно во Вселенную. Это так называемое излучение Хокинга, названное в честь физика Стивена Хокинга, который предсказал его существование. По истечении достаточного времени черная дыра испарит свою массу полностью и исчезнет.


Погружаясь в черную дыру, вы обнаружите, что пространство становится все более искривленным, пока в самом центре не станет изогнутым бесконечно. Это сингулярность. Пространство и время перестают иметь хоть какой-нибудь смысл, и законы физики, известные нам, которые нуждаются в пространстве и времени, больше не работают.

Что происходит в сингулярности? Никто не знает. Другая вселенная? Забвение? Мэтью Макконахи плавает по ту сторону книжных полок? Загадка.


Что же произойдет, если вы случайно упадете в одну из этих космических аберраций? Сначала спросим вашего космического напарника — назовем ее Анна — которая с ужасом смотрит, как вы плывете по направлению к черной дыре, в то время как она остается на безопасном расстоянии. Она наблюдает странные вещи.


Если вы ускоряетесь по направлению к горизонту событий, Анна видит, как вы растягиваетесь и искажаетесь, словно она смотрит на вас через гигантскую лупу. Кроме того, чем ближе вы подходите к горизонту, тем больше ваши движения замедляются.


Вы не можете крикнуть, поскольку воздуха в космосе нет, но можете попытаться сигнализировать Анне сообщение Морзе светом своего iPhone (даже приложение есть для этого). Однако ваши слова будут достигать ее все медленнее и медленнее, поскольку световые волны растягиваются до все более низких и красных частот: «Хорошо, х о р о ш о, х о р о…»

.Когда вы достигнете горизонта, Анна увидит, что вы замерзли, словно кто-то нажал кнопку паузы. Вы отпечатаетесь там, обездвиженный и вытянутый по всей поверхности горизонта, когда нарастающее тепло начнет вас поглощать.


По мнению Анны, вас медленно стирает растяжение пространства, остановка времени и тепло излучения Хокинга. Перед тем как погрузиться в темноту черной дыры, вы превратитесь в пепел.


Но прежде чем начинать планировать похороны, давайте забудем об Анне и посмотрим эту жуткую сцену с вашей точки зрения. И знаете, что тут происходит? Ничего.

Что будет, если упасть в черную дыру? Космос, Интересное, Наука, Черная дыра, Теория, Длиннопост

Вы плывете прямиком в самое зловещее проявление природы и не получаете ни шишки, ни синяка — и уж точно не растягиваетесь, не замедляетесь и не поджариваетесь на излучении. Потому что находитесь в свободном падении и не испытываете гравитации: Эйнштейн назвал это «самой счастливой мыслью».


В конце концов, горизонт событий — это не кирпичная стена, плавающая в пространстве. Это артефакт перспективы. Наблюдатель, который остается вне черной дыры, не может видеть сквозь него, но это не ваша проблема. Для вас горизонта не существует.


Если бы черная дыра была меньше, у вас были бы проблемы. Сила гравитации была бы гораздо сильнее у ваших ног, чем у вашей головы, и растянула бы вас как спагетти. Но к счастью для вас это большая черная дыра, в миллионы раз массивнее Солнца, так что силы, которые могли бы вас спагеттифицировать, достаточно слабы, чтобы их можно было проигнорировать.


Более того, в достаточно большой черной дыре вы могли бы прожить остаток своей жизни, а после умереть в сингулярности.

Насколько нормальной эта жизнь будет, большой вопрос, учитывая что вас засосало против вашей воли в разрыв в пространственно-временном континууме и обратного пути нет.


Но если задуматься, нам всем знакомо это чувство, по опыту общения не с пространством, но со временем. Время идет только вперед, никогда назад, и засасывает нас против нашей воли, не оставляя шанса на отступление.


Это не просто аналогия. Черные дыры искажают пространство и время до такого экстремального состояния, что внутри горизонта событий черной дыры пространство и время на самом деле меняются ролями. В действительности, именно время засасывает вас в сингулярность. Вы не можете развернуться и уйти из черной дыры точно так же, как не можете развернуться и уйти обратно в прошлое.


В этот момент вы спросите себя: что не так с Анной? Если вы прохлаждаетесь внутри черной дыры, будучи окруженным пустым пространством, почему ваш напарник видит, как вы сгораете в излучении на горизонте событий? Галлюцинации?

На самом деле, Анна пребывает в полном здравии. С ее точки зрения вы действительно сгорели на горизонте. Это не иллюзия. Она даже могла бы собрать ваш пепел и отправить его домой.


На самом деле, законы природы требуют, чтобы вы оставались за пределами черной дыры, как это видно с точки зрения Анны. Это потому что квантовая физика требует, чтобы информация не пропадала, не терялась. Каждый бит информации, который говорит о вашем существовании, должен оставаться за пределами горизонта, чтобы законы физики Анны не нарушались.


С другой стороны, законы физики также требуют, чтобы вы плыли через горизонт, не сталкиваясь с горячими частицами или чем-то из ряда вон выходящего. В противном случае, вы будете нарушать «самую счастливую мысль» Эйнштейна и его общую теорию относительности.


Итак, законы физики требуют, чтобы вы одновременно были снаружи черной дыры в виде горстки пепла и внутри черной дыры, живы и здоровы. И есть также третий законы физики, который говорит, что информация не может быть клонирована. Вы должны быть в двух местах, но может быть только одна копия вас.


Так или иначе, законы физики приводят нас к выводу, который кажется довольно бессмысленным. Физики называют эту головоломку информационным парадоксом черной дыры. К счастью, в 1990-х они нашли способ ее разрешить.

Что будет, если упасть в черную дыру? Космос, Интересное, Наука, Черная дыра, Теория, Длиннопост

Леонард Сасскинд пришел к выводу, что парадокса нет, поскольку никто не видит вашу копию. Анна видит только одну копию вас. Вы видите только одну свою копию. Вы и Анна никогда не сможете их сопоставить (и свои наблюдения тоже). И нет третьего наблюдателя, который может одновременно наблюдать черную дыру изнутри и снаружи. Так что никакие законы физики не нарушаются.


Но вы наверняка хотели бы узнать, чья история правдива. Мертвы вы или живы? Если черные дыры нас чему-то и научили, то ответа на этот вопрос просто нет. Реальность зависит от того, кого спросить. Есть реальность Анны и реальность ваша. Вот и все.


Во всяком случае так думали долгое время. Лето 2012 года физики Ахмед Альмейри, Дональд Марольф, Джо Полчински и Джеймс Салли, коллективно известные как AMPS, задумали мысленный эксперимент, который грозил перевернуть все, что мы насобирали о черных дырах.

Они предположили, что решение Сасскинда основано на том, что любое несоответствие между вами и Анной опосредовано горизонтом событий. Не имеет значения, увидела ли Анна неудачную версию вас, растерзанных излучением Хокинга, поскольку горизонт не позволяет ей увидеть другую версию вас, плавающего в черной дыре.


Но что, если бы у нее был способ узнать, что было по ту сторону горизонта, не пересекая его?


Обычная относительность скажет «ни-ни», но квантовая механика немного размывает правила. Анна могла бы заглянуть за горизонт, используя небольшой трюк, который Эйнштейн называл «жутким действием на расстоянии».


Это происходит, когда два набора частиц, разделенных в пространстве, загадочным образом «запутаны». Они являются частью единого невидимого целого, поэтому информация, которая их описывает, загадочным образом связывается между ними.

Что будет, если упасть в черную дыру? Космос, Интересное, Наука, Черная дыра, Теория, Длиннопост

Идея AMPS основана на этом явлении. Скажем, Анна зачерпывает немного информации у горизонта — назовем ее А.


Если ее история верна, и вы уже отправились в мир получше, тогда А, зачерпнутая в излучении Хокинга за пределами черной дыры, должна быть запутана с другой частицей информации B, которая также является частью горячего облака излучения.


С другой стороны, если верна ваша история и вы живы и здоровы по другую сторону горизонта событий, то А должна быть запутана с другой частицей информации C, которая находится где-то внутри черной дыры. Но вот момент: каждый бит информации можно запутать лишь единожды. Из этого следует, что А может быть запутана либо с B, либо с C, но не одновременно с обеими.

Что будет, если упасть в черную дыру? Космос, Интересное, Наука, Черная дыра, Теория, Длиннопост

Итак, Анна берет свою частицу A и помещает ее в ручную машину декодирования запутанности, которая выдает ей ответ: B или C.


Если ответ C, побеждает ваша история, но законы квантовой механики нарушаются. Если A запутана с C, которая глубоко внутри в черной дыре, тогда эта частица информации потеряна для Анны навсегда. Это нарушает квантовый закон невозможности потери информации.


Остается B. Если декодирующая машина Анны обнаруживает, что А запутана с B, Анна побеждает и общая теория относительности проигрывает. Если А запутана с B, история Анны будет единственной верной историей, из чего следует, что вы на самом деле сгорели дотла. Вместо того, чтобы плыть прямо через горизонт, как подсказывает относительность, вы столкнетесь с пылающей стеной огня.


Таким образом, мы возвращаемся к тому, с чего начали: что происходит, когда вы падаете в черную дыру? Вы скользите через нее и живете нормальной жизнью, благодаря реальности, которая странным образом зависит от наблюдателя? Или вы подходите к горизонту черной дыры только чтобы столкнуться со смертельной стеной огня?

Никто не знает ответ, и поэтому этот вопрос стал одним из самых спорных в области фундаментальной физики.


Более ста лет физики пытаются примирить общую теорию относительности с квантовой механикой, полагая, что одной из них придется в конечном счете уступить. Решение парадокса вышеупомянутой стены огня должно указать на победителя, а также привести нас к еще более глубокой теории Вселенной.


Одна из подсказок может лежать в машине декодирования Анны. Выяснить, какой из других битов информации запутан с A, является чрезвычайно сложной задачей. Поэтому физики Даниэль Харлоу из Принстонского университета в Нью-Джерси и Патрик Хейден, работающий в Стэнфордском университете в Калифорнии, решили разобраться, сколько времени потребуется на декодирование.


В 2013 году они подсчитали, что даже при самом быстром компьютере, который только может существовать, Анне потребуется невероятно много времени, чтобы расшифровать запутанность. К моменту, когда она найдет ответ, черная дыра уже давно испарится, исчезнет из Вселенной и заберет с собой загадку смертельной стены огня.

Если это так, то одна только сложность этой проблемы может помешать Анне выяснить, чья же история верна. Обе истории останутся в равной степени верными, законы физики — нетронутыми, реальность — зависящей от наблюдателя, а никто не подвергнется опасности быть поглощенным стеной огня.


Это также дает физикам новую пищу для размышлений: дрязнящие связи между сложными вычислениями (вроде тех, которые не может провести Анна) и пространством-временем. Возможно, где-то здесь скрывается нечто большее.


Таковы черные дыры. Они не только являются досадными препятствиями для космических путешественников. Они также являются теоретическими лабораториями, которые доводят законы физики до белого каления, а тонкие нюансы нашей Вселенной выводят на такой уровень, что проигнорировать их уже нельзя.


Если истинная природа реальности где-то скрывается, лучшее место для ее поиска — это черная дыра. Правда, искать лучше изнутри. Отправим Анну, теперь ее очередь.


https://hi-news.ru/space/chto-budet-esli-upast-v-chernuyu-dy...

Показать полностью 5
13

Двигатель из "Звездного пути" реален?

Двигатель из "Звездного пути" реален? Интересное, Наука, Космос, Научная фантастика, Star Trek, Длиннопост

Большинство из нас, кто живет сегодня, никогда не знали мира, в котором не существует космических полетов. Но еще до того, как мы ступили на поверхность Луны, запустили Международную космическую станцию, направили механических посланцев к другим планетам и даже за пределы Солнечной системы, у нас был «Звездный путь», который предложил общественности такие мечты, что ими грезят до сих пор. Вместо ракетного топлива, нам предложили корабли на антиматерии. Вместо посещения ближайших миров в нашей Солнечной системе, мы отправились к планетам возле далеких звезд. Вместо преодоления звукового барьера, мы прыгнули на световые годы в считанные дни. И среди разнообразных технологических достижений, с которыми нас познакомил «Звездный путь» — и возможностей цивилизации — пожалуй, изобретение варп-двигателя было самым великолепным.
Еще до создания «Звездного пути» человечество было поставлено перед фактом: для успешного освоения космоса нужно победить скорость света. Учитывая, что даже ближайшая звезда к нашему Солнцу— и ближайший потенциально обитаемый мир — более чем в четырех световых годах от нас, путешествие к любой другой звездной системе будет означать, что на Земле пройдут многие годы, даже если сам космический корабль воспользуется преимуществами специальной теории относительности и сократит время путешествия для экипажа. Согласно теории Эйнштейна, когда вы путешествуете на скорости, близкой к скорости света, расстояния по вашему курсу движения будут укорачиваться (сокращение длины), а скорость, с которой проходит время, будет удлиняться (замедление времени). Две этих идеи буквально противоречат здравому смыслу, но тем не менее хорошо изучены и подтверждены в рамках специальной теории относительности. Если бы путешествовать по Вселенной было несложно, члены экипажа, путешествующего на околосветовой скорости, оставался бы относительно молодым, а вот в пункте отправления и назначения прошли бы многие годы. Межзвездное путешествие растянется на поколения.

Двигатель из "Звездного пути" реален? Интересное, Наука, Космос, Научная фантастика, Star Trek, Длиннопост

Но общая теория относительности предлагает возможный выход из этих тесных стен: благодаря податливости самого пространства-времени. Мы, возможно, не смогли бы путешествовать через само пространство на скорости большей, чем 299 792 458 м/с, но если бы мы могли сократить сами расстояния между двумя точками (или событиями), то мы не только могли бы добраться в пункт назначения очень быстро с точки зрения экипажа, но и с точки зрения наблюдателей там и тут. Варп-двигатель, предложенный 50 лет назад, предлагает уникальную реализацию такого решения: за счет искажения (сокращения) пространства по направлению движения звездолета.
Искажение пространства времени по направлению движения (перед) космического аппарата впервые взяли на вооружение фантасты 1960-х годов, подпоясавшись выдуманным механизмом. По их планам, варп-двигатель мог бы эффективно сократить путешествие от звезды к звезде, будучи ограниченным только тем, насколько можно сжать пространство перед кораблем, но можно ли его сделать в принципе? В 1994 году было показано, что решение в рамках ОТО позволяет привести пространство-время к такому поведению. Сжимая пространство перед аппаратом и удлиняя пространство позади на равный и противоположный показатель, можно создать «пузырь» пространства, в котором будет ваш космический аппарат. Мигель Алькубьерре показал, что такой варп-двигатель будет полностью соотносится с законами, управляющими поведение пространства-времени. 22 года назад, одним махом, физика перешла от фантастических путешествий с варп-скоростью — теперь этот двигатель называется в честь Алькубьерре — к теоретически возможным.

Двигатель из "Звездного пути" реален? Интересное, Наука, Космос, Научная фантастика, Star Trek, Длиннопост

Чтобы двигатель Алькубьерре стал реальностью, нам необходимо решить множество практических вопросов, в настоящее время непреодолимых препятствий. Во-первых, по самым скромным расчетам расхода энергии, необходимой для деформации любой непустой части пространства таким образом, необходимо минимум 20 000 мегатонн тротилового эквивалента. Или тонна массы, преобразованная в чистую энергию по формуле Эйнштейна E = mc2. Во-вторых, двигатель Алькубьерры требует создания области пространства с энергией, которая меньше нулевой энергии самого пространства, что требует наличия отрицательной массы (или отрицательной энергии) в той или иной форме. Хотя это может показаться непреодолимым препятствием, поскольку только положительные массы и энергии, как известно, существуют в этой Вселенной, создание условий, аналогичных эффекту Казимира, когда параллельные проводящие пластины могут уменьшать эффективную нулевую энергию самого пространства, могло бы удовлетворить необходимым требованиям. Это решение предложил сам Алькубьерре.
Наконец, не существует известного способа начать путешествие на варп-скорости и закончить его, как только оно началось. Очевидно, чтобы управлять космическим аппаратом, нужно уметь и то и другое. Когда-нибудь, возможно, мы снова вернемся к чертежам и позволим себе покинуть эту галактику. А пока остается только мечтать.

Показать полностью 3
6

Захватывающие снимки Солнца

Обсерватория солнечной динамики (Solar Dynamics Observatory, SDO) была запущена 11 февраля 2010 года в рамках программы «Жизнь со Звездой» (Living With a Star, LWS). В числе ее задач – изучение солнечной атмосферы на малых масштабах времени и пространства и во многих длинах волн единовременно. На борту SDO находится аппаратура, способная получать 12 различных видов изображений Солнца. Каждый снимок имеет размер 4096 на 4096 пикселей, и это позволяет ученым наблюдать на поверхности Солнца детали с угловым размером 0,6 секунды. Обсерватория передает фотографии на Землю каждые 12 секунд, что составляет около 3 терабайт данных в сутки. За период с 2010 по 2015 годы было собрано около 2600 терабайт данных, в том числе 200 миллионов снимков. Человечество получило уникальную возможность проследить за происходящими на поверхности Солнца процессами. Так, в 2014 году были зафиксированы крупнейшие за многие минувшие годы солнечные пятна. В честь пятой годовщины запуска обсерватории НАСА опубликовало видео, объединившее наиболее зрелищные моменты многолетнего наблюдения за Солнцем. «Посмотрите на гигантские облака солнечной материи, выбрасываемой в космос, на танец гигантских петель горячего вещества в короне Солнца, на разнообразные солнечные пятна и другие захватывающие явления»,- говорится в комментарии специалистов НАСА, отобравших для таймлапса-ролика лучшие снимки SDO.

Показать полностью
36

Кольца  Сатурна.

Кольца  Сатурна. Наука, Космос, Интересное, Фотография, Земля, Длиннопост

Сатурн, шестая по счёту планета от Солнца, является одним из наиболее легко наблюдаемых объектов для астрономов, во многом благодаря его обширной и весьма специфической системе колец. Кольца Сатурна восхищали астрономов-любителей на протяжении столетий, начиная с того времени, когда люди впервые начали вглядываться в небо через окуляр телескопа.


Когда Галилео Галилей впервые наблюдал Сатурн в 1610 г., он подумал, что эти кольца представляли собой гигантские спутники планеты, находившиеся по разные стороны от неё. Однако дальнейшие наблюдения, проводившиеся учёным в течение нескольких последующих лет, показали, что эти кольца меняли свою форму и даже исчезали полностью, по мере того как менялся их наклон по отношению к Земле.


В настоящее время мы знаем, что Галилео наблюдал «пересечение плоскости колец». Экватор Сатурна наклонён по отношению к орбите этой планеты вокруг Солнца под углом примерно в 27 градусов (аналогичный угол наклона для Земли составляет 23 градуса). Когда Сатурн обращается вокруг Солнца, то сначала одно, а затем и второе полушария по очереди освещаются Солнцем. Этот наклон отвечает за смену сезонов, так же как и в случае с Землёй, и когда на Сатурне наступает осеннее или весеннее равноденствие, то Солнце попадает в плоскость системы колец, в которой лежит также и экватор планеты. Солнечные лучи освещают кольца «с ребра», и тонкую полоску колец становится трудно различить при помощи телескопов. Кольца Сатурна очень широкие – они достигают 273600 километров в поперечнике – но толщина их составляет не более 10 метров.


В 1655 г. астроном Кристиан Гюйгенс предположил, что эти странные тела были твёрдыми, наклонёнными кольцами, и в 1660 г. другой астроном предположил, что эти кольца состояли из небольших спутников – догадка, которая не могла получить подтверждения в течение почти 200 последующих лет.


В эпоху освоения космоса зонд «Пионер-11» прошёл сквозь плоскость колец Сатурна в 1979 г. В 1980-е гг. космические аппараты «Вояджер-1» и «Вояджер-2» позволили взглянуть на систему колец гигантской планеты.


В 2004 г. миссия НАСА «Кассини-Гюйгенс» впервые в мире вышла на орбиту вокруг Сатурна и произвела подробные наблюдения не только самой планеты, но и её системы колец.


Состав и структура


Кольца Сатурна состоят из миллиардов частиц, размеры которых колеблются от нескольких миллиметров до десятка километров. Состоящие преимущественно из водяного льда, эти кольца также втягивают в свою систему каменистые метеороиды, движущиеся сквозь космическое пространство.


Хотя начинающему астроному-любителю может показаться, что Сатурн опоясан единым, твёрдым кольцом, но на самом деле система колец разделена на несколько частей. Эти кольца получили свои названия по алфавиту в соответствии с датами их открытия. Таким образом, главные кольца, если двигаться от периферии системы к центру, называются соответственно A, B и С. Щель шириной в 4700 километров, известная как Щель Кассини, разделяет между собой кольца A и B.

Кольца  Сатурна. Наука, Космос, Интересное, Фотография, Земля, Длиннопост

Другие, более тусклые кольца открывались по мере того, как совершенствовались технологии изготовления телескопов. «Вояджер-1» обнаружил самое близкое к центру системы кольцо D в 1980 г. Рядом с кольцом А, охватывая его снаружи, находится кольцо F, которое, в свою очередь, охватывается кольцами G и E, лежащими на значительном удалении от остальных колец системы.


Сами кольца содержат значительное число щелей и структур. Некоторые из них созданы многочисленными небольшими спутниками Сатурна, в то время как природа других из них до сих пор продолжает ставить в тупик астрономов.


Сатурн не единственная планета Солнечной системы, имеющая кольца – Юпитер, Уран и Нептун также располагают тусклыми системами колец – но со своими спутниками, система которых простирается на три четверти расстояния от Земли до Луны (282000 километров), он, без сомнения, формирует наиболее впечатляющую и доступную для наблюдения систему колец в Солнечной системе.



Бонус фото Земли сквозь кольца.

Кольца  Сатурна. Наука, Космос, Интересное, Фотография, Земля, Длиннопост
Показать полностью 2
280

7 фактов о поисках жизни во Вселенной

7 фактов о поисках жизни во Вселенной Космос, Наука, Марс, Длиннопост, Телескоп Кеплер, Kepler-452b

Всех волнует вопрос «Есть ли жизнь на других планетах?». Пока идут фундаментальные исследования в области астрономии и биологии, медиа продолжают публиковать статьи с заголовками «Обнаружена жизнь на N». Выбрали самое важное о последних открытиях в этой области, чтобы вы могли критически читать новостную ленту.


Где может существовать жизнь

Пока мы знаем лишь одну точку во Вселенной, где существует жизнь, — это Земля. Мы ищем условия, при которых может существовать белковая жизнь. Этот очень узкий диапазон назвали зоной обитаемости. Зона обитаемости, которая по-английски называется habitable zone, — это область в космосе с наиболее благоприятными условиями для жизни земного типа. Пригодность для жизни определяется следующими факторами: наличием воды в жидкой форме, достаточно плотной атмосферой, химическим разнообразием (простые и сложные молекулы на основе H, C, N, O, S и P) и наличием звезды, которая приносит необходимое количество энергии.


Астрофизики просто ищут планеты, а затем уже определяют, находятся ли они в зоне обитаемости. Из астрономических наблюдений можно увидеть, где эта планета находится, где расположена ее орбита. Если в обитаемой зоне, то сразу же интерес к этой планете возрастает. Далее нужно изучать эту планету в других аспектах: атмосфера, химическое разнообразие, наличие воды и источник тепла. Это уже чуть-чуть выводит нас за скобки понятия «потенциальная». Но главная проблема в том, что все эти звезды расположены очень далеко.


Как ищут следы жизни в других звездных системах

«Кеплер» — аппарат, который НАСА запустило в 2009 году специально для поиска экзопланет. Под экзопланетами понимаются все планеты, находящиеся за пределами нашей Солнечной системы. В 2015 году исполняется 20 лет с тех пор, как была открыта первая экзопланета у звезды солнечного типа. И, конечно, одной из самых волнующих перспектив всегда была возможность найти обитаемые планеты, следы жизни у других звезд. Ищут биомаркеры — это химические соединения биологического происхождения. Основным биомаркером на Земле, например, является присутствие кислорода в атмосфере.


Kepler-186

17 апреля 2014 года НАСА объявило об открытии экзопланеты в планетной системе красного карлика Kepler-186 в созвездии Лебедя. Kepler-186f попадает в зону обитаемости, и, если там есть атмосфера (а мы этого не знаем), там может быть и жидкая вода. Но планета вращается не у звезды типа нашего Солнца, относящегося к желтым карликам, а у красного карлика, который холоднее. Основываясь на этом, мы предполагаем, что вряд ли на ней могут быть подходящие условия для жизни. Красные карлики очень неспокойны с магнитной точки зрения, частые вспышки на этих звездах вызывают рентгеновское излучение, которое может вредить зарождающейся жизни.


Kepler-452b

В июле 2015 года НАСА объявило об открытии астрономическим спутником «Кеплер» очередной экзопланеты, получившей имя Kepler-452b. Планеты в зоне обитаемости находили и раньше, в первую очередь газовые гиганты, у которых могут быть обитаемые спутники, а могут и не быть. Находили и земли. После конференции НАСА в июле 2015 года множество СМИ написали, что на этой планете есть жидкая вода или обязательно должна быть. На самом деле мы этого не знаем, и, более того, ни планета, ни вода никому ничего не должны. Так, в нашей системе Марс тоже находится в зоне обитаемости, и на нем жидкая вода была, но сейчас это холодный безжизненный мир.

7 фактов о поисках жизни во Вселенной Космос, Наука, Марс, Длиннопост, Телескоп Кеплер, Kepler-452b

Вода на Марсе

28 сентября 2015 года Национальное американское космическое агентство объявило о доказательстве наличия на Марсе воды в жидкой форме. До этого мы знали, что на Марсе есть вода в виде льда (твердое состояние) и в виде пара (газообразное состояние). Перхлораты, следы которых на поверхности Марса обнаружили исследователи НАСА, — это соединения соли хлорной кислоты с разными металлами. Когда они гидратируются, то есть намокают, вода может существовать и при очень низкой температуре. Когда температура поднимается выше, чем -23 градуса, происходит гидратирование, или намокание перхлоратов в таком гиперсоленом виде. Эта мокрая текучая соль стекает со склонов на поверхности Марса и оставляет следы — русла рек на склонах холмов.


Перхлораты в принципе очень токсичны: это соединения хлорной кислоты. Но на Земле есть бактерии, которые могут жить при низких концентрациях перхлоратов. Конечно же, эти бактерии, помещенные сейчас в гидрораствор перхлората на Марсе, не смогут выжить. Но у нас появилось пространство для фантазии: используя те цепочки метаболизма, те их молекулы и особенности биохимического цикла, мы сконструируем бактерии, которые смогут жить при таких условиях.


Проксима b

В августе 2016 года было получено подтверждение присутствия планеты, получившей наименование Проксима b, у звезды Проксима Центавра. Это самая близкая к нам экзопланета (звезда Проксима Центавра находится от нас на расстоянии 4,2 световых года) и, возможно, ближайшее к Солнечной системе небесное тело, на котором может существовать жизнь.

7 фактов о поисках жизни во Вселенной Космос, Наука, Марс, Длиннопост, Телескоп Кеплер, Kepler-452b

Изображение: Предполагаемый ландшафт Проксимы Центавра b в представлении художника (ESO/M. Kornmesser)


Целый ряд научных групп Европейской южной обсерватории (ESO) наблюдали звезду с 2012 года. Планета Проксима b оказалась в зоне обитаемости своей звезды и относительно близко к Земле. Если мы, планета Земля, находимся на 1 астрономической единице от своей звезды, то эта новая планета — на 0,05, то есть в 200 раз ближе. Но звезда слабее светит, она более холодная, и уже на таких расстояниях она попадает в так называемую зону приливного захвата. Как Земля захватила Луну и они вместе вращаются, такая же ситуация и тут. Но при этом одна сторона планеты разогрета, а вторая холодная. Существуют такие климатические условия, система ветров, которая обменивается теплом между прогретой частью и темной частью, и на границах этих полушарий могут быть довольно благоприятные условия для жизни.


Три планеты в системе TRAPPIST-1

22 февраля 2017 года в звездной системе TRAPPIST-1 найдены семь планет, схожих по размеру и массе с Землей. Сразу три планеты оказались в зоне обитаемости, причем не просто по формальному попаданию в нужный диапазон расстояний — возможность наличия жидкой воды подтверждена моделированием их атмосфер. С другой стороны, нужно признать, что ни о каких даже предпосылках к обнаружению внеземной жизни не идет речи: есть несколько расхолаживающих моментов. Во-первых, звезда TRAPPIST-1 относится к красным карликам, а эти звезды зачастую отличаются сильной вспышечной активностью (правда, это может не относиться именно к этому карлику). Наблюдения указывают, что активность спадает с возрастом, и TRAPPIST-1 может оказаться уже пожившим и менее активным объектом. Во-вторых, вращение всех семи планет, вероятно, синхронизованно, то есть они всегда повернуты к своей звезде одной и той же стороной, так что на них не бывает смены дня и ночи. Сказать, насколько это критично или некритично для зарождения жизни, мы пока не можем.


Спутник Сатурна Энцелад

В мае 2017 года все новостные агентства писали, что на спутнике Сатурна обнаружена жизнь. Но, по сути, ученые нашли еще одно подтверждение исследованиям, которые проходили десятилетиями. Энцелад — это один из внутренних спутников планеты-гиганта в нашей Солнечной системе. Сам по себе спутник невелик: диаметр — 500 км (это что-то размером с Московскую область). Под слоем льда на спутнике обнаружены океаны. На спутнике есть горячие источники, много воды, богатое химическое разнообразие в этой области, и это практически все условия для возникновения жизни. Одна из теорий возникновения жизни на Земле говорит, что жизнь могла возникнуть на дне океана, где есть те же термальные источники (черные курильщики). На этом небольшом уникальном объекте есть подобие системы, которая присутствует на Земле. Сейчас и астробиологи, и астрофизики считают, что это, возможно, второе место в Солнечной системе, где могла возникнуть жизнь. Объект будет горячей точкой в исследованиях Солнечной системы в ближайшее время.

Показать полностью 3
Отличная работа, все прочитано!