1840

Простым языком о космических двигателях

Слушайте, друзья мои, а все же космос любят? Давайте про него тогда и поговорим. О том, как именно мы бороздим просторы. Налейте чаю, получилось довольно длинно.


Как и в случае с постом про лошадиные силы лошадей, оговариваюсь сразу: я в этом вопросе всего лишь любопытствующий, не специалист. В теме разбирался путём промышленного гугления. Если на шум подтянутся профи, а пара штук точно где-то поблизости шастает, пусть смело поправляют.

Изображения взяты из поисковиков: выбирал самое наглядное и тут же его нещадно воровал.


Давайте попробуем разобраться с тем, как мы умеем передвигаться в космическом пространстве. Элементарно, на пальцах, однако с обязательными ссылками на источники, чтобы не быть как те рептилоиды.


Гипертуннели, кротовые норы, варп-драйв, подпространство, нуль-переход и прочую деритринитацию предлагаю вычеркнуть сразу. Это всё очень здорово, но к нашей суровой действительности не имеет ни малейшего отношения. Даже если вспомнить, что кротовые норы худо-бедно теоретически обосновываются, всерьёз о них поговорить можно будет лет через сто, а то и через двести. Вот тогда - заходите, с удовольствием обсудим. А пока что наука не в курсе дела.

Всерьёз обсуждать имеет смысл только то, что можно, пусть и с натяжками, считать применимым, либо потенциально применимым на практике. Ну и про научную обоснованность конечно же нельзя забывать.


1. Итак, во-первых давайте разберёмся, что мы имеем работающего на сегодняшний день.


1.1 Самым ординарным способом передвижения в космосе являются химические ракетные реактивные двигатели. Они несколько различаются по конструкции и по типам топлива, но суть всегда одна и та же: берём топливо, смешиваем с кислородом, поджигаем (преобразуя химическую энергию в кинетическую) и летим вперёд, выбрасывая назад газообразные продукты горения. Старый проверенный дедовский способ.

Плюс - в относительной простоте, относительной дешевизне и относительно высоком уровне проработанности.


Минус - в относительно малых скоростях и очень малой возможности манёвра. Топливо заканчивается быстро, какую скорость успел набрать в самом начале полёта, с такой и чеши себе дальше. Срок работы исчисляется секундами, иногда минутами. Ни затормозить, ни сманеврировать лишний раз нельзя. Конечно, современные аппараты не летят совсем уж "по рельсам", какой-то резерв топлива обычно есть, но всё равно возможности очень и очень ограничены.


Самый простой ХРРД:

А вот это, например, ХРРД от Шаттла:

1.2 Электрические ракетные реактивные двигатели. Нельзя сказать, что идея свежая, но разработки продолжаются, регулярно появляются всё более и более экзотичные новинки, которые довольно часто пускают в дело. За пять десятилетий активных экспериментов семейство ЭРД успело хорошенько разрастись вширь, на сегодняшний день существуют: ионные, плазменные, импульсные, сильноточные и термические электрические ракетные двигатели.


В качестве источников питания чаще всего используют солнечные батареи. Однако, порой, к электрическому двигателю в качестве источника питания прикручивают и ядерный реактор. Не путать с ядерными двигателями, о которых будет ниже.


Все эти двигатели, несмотря на разнообразие, всё равно в основе своей используют реактивное движение, то есть работают по принципу "а давайте чего-нибудь посильнее выкинем сзади, чтобы бодрее летелось вперёд". Отличие от химических двигателей заключается в том, что вместо банального поджигания керосина, электрический двигатель извращается с рабочим телом как-то иначе. Например, разгоняет в электрическом поле ионизированный газ или испаряет в электрическом разряде твёрдое тело.


Минус электрических двигателей в том, что развить тягу достаточную, чтобы оторваться от Земли, на сегодняшний день они не могут. То есть двигатели, говоря простым языком, слабенькие. Взлетать всё равно приходится "на химии".


Зато у них есть и неоспоримый плюс. И заключается он в экономичности, а значит - во времени работы. Если химический РД вырабатывает своё топливо за несколько минут (после чего аппарат летит по инерции, используя гравитационные манёвры), то ЭРД работают днями. И неделями. А иногда и месяцами. Да чего уж там, ионный двигатель на межпланетной станции Deep Space 1 честно отпахал три года. И ему не приходилось возвращаться на дозаправку.

Смекаете? Химический двигатель работает недолго и сразу набирает максимальную скорость. Потом - всё, ускоряться только если за счёт гравитационной пращи (манёвр вокруг какого-то крупного объекта). ЭРД же, чтобы развить такую же скорость, которую химический набрал за несколько минут, потребуется, например (условно) три месяца. А может даже год, не суть важно. Аппарат, разгонявшийся химическим двигателем, за это время успеет улететь довольно далеко. Но вот условные три месяца прошли, аппарат с ЭРД набрал ту же скорость, с которой всё это время чешет аппарат с давно потухшим химическим двигателем. Но ЭРД-то продолжает работать. Ещё через три месяца он летит уже вдвое быстрее, и прекращать свою работу не собирается. При этом он имеет свободу манёвра и в любой момент может скорректировать свой полёт. В космосе летают годами, а в перспективе - десятилетиями, там играют долговременные ставки.

А ещё ЭРД весьма компактны и экономичны, они не требуют таскать с собой дополнительную цистерну топлива. Это значит, что их можно ставить на весьма скромные спутники Земли, позволяя им перемещаться с орбиты на орбиту своим ходом, что снижает зависимость от точности выведения и от тормозящего воздействия атмосферы. Вы его, главное, от поверхности оторвите, вверх подбросьте, а там уж он сам на ионном движке куда ему надо доползёт.


Ионный двигатель:

1.3 Ну и, наконец, последнее, что у нас сегодня есть из относительно работоспособного. Ядерный ракетный двигатель, тоже реактивный, как все предыдущие. Суть, как вы понимаете, в том же самом. Берём рабочее тело (жидкий водород - дёшево и сердито), разогреваем и выкидываем его сзади. Только вместо того, чтобы что-то поджечь, разогнать электрическим полем или испарить электрической дугой, мы греем жидкость на ядерном реакторе до газообразного состояния. Почти как паровоз.


Штука довольно спорная как по экономическим, так и по экологическим причинам. Потенциально эти двигатели могут совмещать положительные стороны химического и электрического двигателей. СССР и США разрабатывали ЯРДы начиная с середины ХХ века вплоть до испытания наземных прототипов. Разработки ведутся и сегодня.


Схема работы яррд:

Отчётливый минус абсолютно всех типов реактивных двигателей: по космическим меркам они медленные. Со скрипом их хватает для изучения внутренних, ближайших к Земле планет (внутренними считаются планеты внутри главного пояса астероидов), но уже к Юпитеру приходится тащиться годами. Так могут летать автоматические аппараты, но таскать человека (а вместе с ним все системы жизнеобеспечения) уже представляется совершенно бестолковым занятием.

Даже за несколько человеческих жизней на подобных движках до других звёзд нам не добраться, поскольку счёт пойдёт на десятки тысяч лет. При самом оптимистичном сценарии - на тысячелетия. Sad but true.

Теперь давайте поговорим о самом интересном. О том, чего у нас нет. Этот раздел мой внутренний бюрократ требует разделить на две части: "нет и скорее всего не будет" и "нет, но очень может быть".


2. За прошедшие десятилетия было выдумано (и хотя бы частично научно обосновано) много всего интересного, что пока ещё не было реализовано. Сначала обсудим то, что с высокой долей вероятности не появится никогда по экономическим причинам, либо потому что наука ушла вперёд и концепция утратила былую свежесть.


2.1 Ядерно-импульсный двигатель на ядерных бомбах. Суть заключается в простой и логичной идее: если под хвостом у корабля взорвать бомбу, она отвесит ему такой космический пендель, что корабль скоренько куда-то полетит. Старая, ещё пятидесятых годов концепция, до сих пор являющаяся самым реалистичным и самым жизнеспособным способом межзвёздного (ну и межпланетного в частности) перелёта.


Примерно вот так это должно было выглядеть:

С точки зрения науки нет никаких причин, чтобы эта штука не работала. К сожалению, есть причины экономические. В том или ином виде идея разрабатывалась с пятидесятых годов. Довольно быстро стало понятно, что одной бомбой там не отделаться и взрывать придётся много. Много и часто. По очень оптимистичным прикидкам, лет за 120-140 можно добраться до ближайшей к нам системы (тройная α Центавра ABC), если весь этот срок ежесекундно (!) подрывать несколько ядерных зарядов. Как вы понимаете, такой запас можно собрать за довольно долгий срок и только лишь дружно напрягшись всем человечеством. А потом ещё будет проблема поднять всё это хозяйство на орбиту и там собрать, на это понадобились бы тысячи носителей несуществующего уже сверхтяжёлого класса, вроде "Энергии" или "Сатурн-5".


Подобных проектов было много, самый известный из них "Орион". Это отдельная, весьма объёмная история. Чтобы не углубляться в подробности, лучше оставлю вам тут ссылку, на Вики всё неплохо описано: https://ru.wikipedia.org/wiki/Орион_(МКА).

2.2 Прямоточный термоядерный ракетный двигатель. Он же - "межзвёздный прямоточный двигатель Бассарда". Принцип движения тот же что у остальных реактивных двигателей, описанных в первой части. Отличие заключается в том, что современные двигатели расходуют то топливо, которое везут с собой. Прямоточный же двигатель скорее напоминает воздушный реактивный двигатель тем, что рабочее тело он не везёт в канистре, а добывает снаружи, из-за борта.


В качестве рабочего тела предлагалось использовать водород, захватываемый из пространства. Сначала собирать водород предполагалось гигантской воронкой, однако довольно скоро стало очевидно, что таскать такую дуру по космосу не представляется целесообразным. Тогда пришли к решению: собирать водород с помощью электромагнитного поля диаметром в несколько тысяч километров.

Ну то есть корабль электромагнитным пылесосом собирает перед собой водород (а он там таки есть в межзвёздном пространстве), нагревает его ТЯРДом и выбрасывает сзади. Это вариант первый. Вторым вариантом было не выбрасывать водород, а использовать в качестве непосредственно топлива для ТЯРДа.


Из существенных (и очень заманчивых) плюсов - возможность идти с постоянным ускорением (читай - не болтаться внутри корабля в невесомости) и практически полная топливная автономность.


Основной минус в том, что в окрестностях нашей системы количество межзвёздного газа очень невелико. Меньше, чем в других местах. Причиной послужил относительно недавний взрыв сверхновой в окрестностях Солнца, "сдувший" потенциальное топливо.

Максимальная скорость, развиваемая подобным прямоточником, составит не более 0,119c = 35,7 тыс. км/с. Причина в том, что встречные атомы, которые он должен улавливать, будут его же и тормозить своим импульсом.

Естественно, надо понимать следующее. Это голая теория. Причём теория родом из шестидесятых годов. И несмотря на то, что теоретические работы над данной концепцией всё ещё ведутся, у неё куча слабых сторон и масса недоработок. Сегодня мы уже понимаем, что как минимум система захвата рабочего тела должна быть более совершенной. Ну и конечно же, в настоящее время такой двигатель промышленно невоспроизводим (основная проблема - всё та же система захвата, то бишь "пылесос").


Вот как-то так мог бы выглядеть корабль с ПТЯРДом:

2.3 Фотонные двигатели. Тут я постараюсь покороче, поскольку этот концепт уже приближается к границе между действительностью и фантастикой. Он ещё вроде как по эту сторону реальности, но если ядерно-импульсный двигатель (п. 2.1) пришлось бы строить всей планетой лет сто, фотонный двигатель при нынешнем уровне развития нам просто недоступен. Никак.


Суть фотонного двигателя в том, что реактивная тяга создаётся истекающими фотонами света (они имеют импульс). Если упрощать, то это сверхмощный фонарик, отталкивающийся собственным лучом. Теоретически, в отличии от всех упомянутых выше тошнотиков, такой двигатель мог бы приблизиться к скорости света.


Придумано два типа фотонных двигателей: аннигиляционный и двигатель на магнитных монополях.


Для работы аннигиляционного фотонного двигателя требуется антивещество. Возможно (!), при его взаимодействии с обыкновенным веществом будет происходить реакция, почти полностью превращающая их в излучение. Беда в том, что антивещество - самая дорогая субстанция на Земле, примерной стоимостью 62,5 триллиона долларов за грамм. Высокая стоимость вызвана серьёзной нехваткой запасов антивещества. Цитирую Вики: "В 2010 году физикам впервые удалось кратковременно поймать в «ловушку» атомы антивещества. Для этого учёные охлаждали облако, содержащее около 30 тысяч антипротонов, до температуры 200 кельвинов (минус 73,15 градуса Цельсия), и облако из 2 миллионов позитронов до температуры 40 кельвинов (минус 233,15 градуса Цельсия). Физики охлаждали антивещество в ловушке Пеннинга, встроенной внутрь ловушки Иоффе — Питчарда. В общей сложности было поймано 38 атомов, которые удерживались 172 миллисекунды." Как вы догадываетесь, для полёта этого, мягко говоря, недостаточно.


Схема работы аннигиляционного фотонного двигателя:

С фотонным двигателем на магнитных монополях тоже засада. Монополи - гипотетические элементарные частицы, которые чем дальше, тем более гипотетическими становятся. Их упорно ищут, применяя Большой адронный коллайдер (такой большой и такой адронный!) к различным предметам, но эффекта пока что никакого. То бишь полный ноль. Более того, некоторые современные теории вообще не предполагают существования в природе магнитных монополей. Очень печально, потому что добывать и хранить их могло бы быть проще, чем антивещество. А могло бы и не быть. Это - передний край науки, где происходит самое интересное, а потому никто пока ни в чём не уверен.

3. Вот и пришло время для самого вкусного! Кто дочитал, тот - молодец. Наконец-то мы дошли до двигателей, которые во-первых должны реально работать, во-вторых не требуют для своего создания предварительного порабощения всей планеты.

3.1 Солнечный (световой) парус. Красивая и даже в каком-то смысле романтичная идея начала (!) ХХ века, понемногу претворяющаяся в жизнь. Автор - советский физик Фридрих Цаандер, предположивший возможность такого способа перемещения в 1920 году.

Парус использует давление фотонов света стороннего источника (вместо того чтобы светить самому, как это предполагается в фотонном двигателе), например - звезды или лазера.

В качестве основного двигателя парус пока не был использован ни разу, однако испытания ведутся многими странами. Первым аппаратом, развернувшим парус, стал российский "Прогресс" в 1993 году. Однако это было испытание самого процесса разворачивания, движение при этом не совершалось. Первым аппаратом, использовавшим парус по прямому назначению, стал японский IKAROS в 2010 году.


Главный плюс - парусу не требуется топливо. Главный минус - парусу нужен свет.

Давление света Солнца к границам Солнечной системы уменьшается до ничтожных величин, по этой причине использование такого двигателя (а точнее - движителя) будет иметь свои особенности. Между внутренними планетами, скорее всего, перемещаться можно будет вполне эффективно. А вот для перелётов к границам системы, вероятно, разгоняться придётся от самого Солнца (где давление света максимально), в определённый момент сворачивая парус, чтобы он не начинал выполнять роль солнечного тормоза и не мешал маневрировать.


Относительно свежая идея, не опробованная пока что на практике - светить в парус удаляющегося корабля лазером. Если вывести такой лазер на орбиту (чтобы не мешала атмосфера Земли), если поставить их много, если подобрать источник питания, способный долговременно давать требуемую мощность, ну и наконец, если хорошенько прицелиться, то вполне реально отправить некий аппарат даже к соседним звёздам.


Сегодняшние лазеры не позволяют отправить к соседней звезде ничего серьёзнее нескольких граммов. Сегодняшняя электроника не позволяет запихнуть в эти граммы хотя бы камеру и передающее устройство. Сегодняшняя политическая обстановка не позволяет устанавливать на орбите сверхмощные лазеры, потому что если их развернуть вниз, получится орбитальная боевая платформа, которую можно на кого-нибудь нацелить.

Но. Лазерные технологии развиваются, электроника развивается. Даже сами разгонные лазеры можно ставить не на орбите, а на обратной стороне Луны - оттуда они не будут угрожать Земле, зато в случае инопланетного вторжения сможем отстреливаться :). Шутки-шутками, но тема действительно очень и очень любопытная.


В 2016 году группа состоятельных ребят, включающая Юрия Мильнера и Марка Цукерберга, скинулись на общую сумму в 100 000 000$ на развитие этой вот идеи с разгонными лазерами и отправкой микроаппаратов к многострадальной α Центавра ABC. Вряд ли они всерьёз рассчитывают отбить свои вложения, поэтому огромное спасибо за бескорыстный вклад в науку. Впрочем, нельзя также исключать, что им просто нужен предлог для строительства гигантского лазера.

Проект называется "Breakthrough Starshot", ведут его очень титулованные граждане, в том числе Хоккинг, Перлмуттер и Рис. Рассчитывают достичь 1/5 скорости света и, соответственно, лет за двадцать "допихать" лазером аппарат (а точнее - стаю мелких аппаратов) до соседней системы. В июне 2017 года состоялся успешный вывод на низкую околоземную орбиту первых рабочих прототипов нанозондов — чипов размером 3,5 на 3,5 см и весом около 1 грамма, несущих на себе солнечную панель, микропроцессор, датчик и систему связи.


Небольшой парус, развёрнутый на стенде в лаборатории NASA (учёные мужики в правом верхнем углу для масштаба):

3.2 Электрический парус. Не путать с солнечным! Тоже парус, только вместо фотонов света он улавливает солнечный ветер - поток ионизированных частиц. Совсем новьё, финская идея 2006 года. В 2013 году в университете Хельсинки создан первый рабочий прототип.


Двигатель состоит из сети длинных тонких алюминиевых тросов с положительным потенциалом и электронной пушки. Электронная пушка создает луч электронов, направленный против движения космического корабля, из-за чего тросы приобретают положительный заряд. Создаётся электрическое поле, тормозящее ионы солнечного ветра. Ударяясь на средней скорости порядка 468 км/с, они передают свой импульс парусу и приводят в движение космический корабль.

Точные характеристики окончательно не ясны, все ждут ходовых испытаний. В целом выглядит весьма перспективно, хотя понятно, что для того чтобы набрать пристойную скорость, общая длина этих вот усов должна составлять хотя бы 2000 километров, при толщине 25 – 50 мкм.


Если сравнивать с солнечным, то главное преимущество подобного паруса в возможности двигаться по направлению к источнику направленных частиц (а не только от него). Кроме того, такой парус проще в производстве и удобнее в эксплуатации: длинный тонкий ус развернуть куда легче, чем натягивать сплошное полотно. Очевидно также, что он куда меньше боится постороннего космического мусора. Но вот сила разгона будет раз в 200 меньше чем у солнечного паруса аналогичной площади.


Художественное изображение электрического паруса:

3.3 Термоядерные ракетные двигатели. Гигантский межпланетный пылесос, описанный в пункте 2.2, по сути своей - частный случай такого двигателя. Но тот проект всё-таки фантастичен. А вот если отбросить всю экзотику с прямоточностью и сбором пролетающего мимо водорода, тогда становится похоже на правду.


На сегодняшний день мы имеем научное обоснование двух типов ТЯРДов: импульсный и на основе реактора с магнитным удержанием плазмы.


Суть импульсного ТЯРДа в том, что управляемая термоядерная реакция происходит в импульсном режиме, при периодическом ионно-пучковом обжатии и разогреве топливных «таблеток». Получается что-то отдалённо напоминающее проект из пункта 2.1, когда под кораблём предлагалось взрывать ядерные бомбы. Только там предполагалось использование энергии распада ядер, а в обсуждаемом проекте речь идёт о синтезе.


ТЯРД с магнитным удержанием плазмы выходит несколько компактнее. Термоядерное топливо (предварительно нагретая плазма из смеси топливных компонентов) подаётся в магнитную ловушку реактора, где происходит постоянная управляемая реакция термоядерного синтеза. Плазма, полученная в ходе термоядерного горения, направляется магнитными направляющими в сопло и создаёт реактивную тягу.

Любопытное дополнение с Вики: "Путём впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел (например больших планет) где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 тыс. сек до 4 млн. сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 сек."


Единственное внятное изображение ТЯРДа с магнитным удержанием, которое мне удалось найти на просторах:

Рабочих образцов термоядерных двигателей (да и реакторов) на сегодняшний день не существует. Однако разработки ведутся весьма широко. С высокой долей вероятности именно эти двигатели - наше будущее. С точки зрения науки нет никаких причин для того, чтобы их нельзя было бы создать. Причём говорить тут можно не о каком-то гипотетическом будущем, а о вполне достижимом. При оптимистичном сценарии появления первых ТЯРДов можно ждать уже на нашем веку. Вероятно, именно с этими двигателями мы станем осваивать Солнечную систему.

Ну, пожалуй что, that's all, folks! Кажется, это всё что есть более-менее обоснованного, о чём сегодня можно рассуждать всерьёз.

P.S.: Ах да! Предвижу вопросы насчёт EM Drive, он же "чудо-микроволновка". Тема весьма популярная в прессе, но не особенно популярная в научной среде. Либо в этом, либо в соседнем сообществе месяц-два назад наталкивался на новость о том, что его могли испытывать на американском орбитальном беспилотнике X-37B, что, естественно, лютая дичь. Нет таких двигателей. Есть предположительно зафиксированный эффект, который никто не может объяснить.

Первоначально о зафиксированном эффекте объявил британец Роджер Шойер в начале двухтысячных. Позже, в 2012 году, китайские исследователи сообщили, что у них тоже что-то получилось. В 2015 году несколько исследователей NASA из Космического центра им. Джонсона объявили, что смогли получить заявленный эффект в условиях вакуума (подчёркиваю - не космоса, а именно вакуума).

Однако упомянутые исследователи - скорее всё-таки энтузиасты. Серьёзные институты пока что не рассматривали эту тему по-настоящему. А причина проста - нет внятного научного объяснения принципа действия такого двигателя. Более того, он нарушает закон сохранения импульса, который пока что никто не отменял.

Даже если допустить, что эффект имеет место быть (а такая вероятность действительно есть, это нельзя отрицать), ни о каком двигателе сегодня речи идти не может. Этот эффект настолько мал, что его и зафиксировать-то трудно, не то что использовать.

То есть даже если окажется, что человечество действительно случайно нащупало что-то принципиально новое и перспективное, прежде чем куда-то эту вундервафлю привинчивать, предстоит долго разбираться, почему же шайтан-машина всё-таки работает.

P.P.S.: Заканчивая оформление поста, обнаружил, что на эту тему уже писали девять месяцев назад. Спасибо баянометру, что он прочихался хотя бы в этот момент. Расстроился поначалу. Но потом увидел что посты сильно разные и перестал расстраиваться.

Ссылки на источники - ниже. Если какой-то из них нельзя, трите смело.

Первоначально вдохновился роликами Егорова, очень уж здорово вещает.

Данные взяты из открытых источников, фотографии из подборки поисковика.

1. https://www.nasa.gov/centers/glenn/technology/warp/warp.html

2. http://homepages.mcs.vuw.ac.nz/~visser/general.shtml#why-wor...

3. https://ru.wikipedia.org/wiki/Химический_ракетный_двигатель

4. https://ru.wikipedia.org/wiki/Электрический_ракетный_двигате...

5. https://ru.wikipedia.org/wiki/Ядерная_электродвигательная_ус...

6. http://www.cosmoworld.ru/spaceencyclopedia/publications/inde...

7. http://www.proatom.ru/modules.php?name=News&file=article...

8. https://dawn.jpl.nasa.gov/news/news-detail.html?id=2626

9. https://ru.wikipedia.org/wiki/Ионный_двигатель

10. https://ru.wikipedia.org/wiki/Плазменный_ракетный_двигатель

11. https://ru.wikipedia.org/wiki/Электрический_ракетный_двигате...

12. http://n-t.ru/tp/ts/kd3.htm

13. https://ru.wikipedia.org/wiki/Ядерный_ракетный_двигатель

14. http://sci-lib.com/article872.html

15. https://ru.wikipedia.org/wiki/Ядерная_энергодвигательная_уст...

16. http://alfven.princeton.edu/publications/choueiri-sciam-2009

17. https://hi-news.ru/space/10-radiacionnyx-incidentov-epoxi-ko...

18. https://ru.wikipedia.org/wiki/Орион_(МКА)

19. http://dicelords.народ.ru/rockets/rocket3c2.html

20. https://ru.wikipedia.org/wiki/Фотонный_двигатель

21. https://ru.wikipedia.org/wiki/Антивещество

22. http://livefromcern-archive.web.cern.ch/livefromcern-archive...

23. https://lenta.ru/news/2010/11/18/antimatter/

24. https://ru.wikipedia.org/wiki/Магнитный_монополь

25. https://ru.wikipedia.org/wiki/Солнечный_парус

26. https://geektimes.ru/post/291579/

27. https://ru.wikipedia.org/wiki/Breakthrough_Starshot

28. http://breakthroughinitiatives.org/News/12

29. https://ru.wikipedia.org/wiki/IKAROS

30. http://www.computerra.ru/49312/sozdan-prototip-elektrichesko...

31. https://ru.wikipedia.org/wiki/Термоядерный_ракетный_двигател...

32. http://ufn.ru/ru/articles/1988/4/b/

Наука | Научпоп

9.2K постов82.6K подписчиков

Правила сообщества

Основные условия публикации

- Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

- Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

- Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

- Видеоматериалы должны иметь описание.

- Названия должны отражать суть исследования.

- Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.


- Посты-ответы также должны самостоятельно (без привязки к оригинальному посту) удовлетворять всем вышеперечисленным условиям.

Не принимаются к публикации

- Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

- Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

- Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.


Наказывается баном

- Оскорбления, выраженные лично пользователю или категории пользователей.

- Попытки использовать сообщество для рекламы.

- Фальсификация фактов.

- Многократные попытки публикации материалов, не удовлетворяющих правилам.

- Троллинг, флейм.

- Нарушение правил сайта в целом.


Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество Пикабу.

Вы смотрите срез комментариев. Показать все
23
Автор поста оценил этот комментарий

Хороший обзор, спасибо!


Тема EmDrive меня не то, чтобы интересует... но, скажем так, дает некоторую фантастическую надежду. Надежду на то, что инженеры случайно наткнулись на то, от объяснения чего ученые еще очень далеки. Методом тыка нащупали очень перспективное направление, в котором науке следует развиваться. И уже при жизни моего поколения - это случайное открытие даст совершенно невероятные плоды.


А может ли кто-то припомнить за последние 50 лет изобретение, которым сначала стали пользоваться - а потом объяснили, почему оно работает? Не обязательно в физике - наверное, в медицине полно необъяснимых, но вполне повторимых результатов?

раскрыть ветку (52)
31
Автор поста оценил этот комментарий

Честно признаюсь, лично я далёк от оптимизма. Не те нынче времена, чтобы сначала научиться использовать огонь а потом тысячи лет искать объяснение физике процесса. Всё-таки в наши дни оно наоборот бывает: утром открытие, вечером применение. Можно наоборот, но открытие - вперёд.

Британский учёный своё открытие объяснить внятно не смог. У него там получилось как у Стругацких: "Высочайшее достижение нейтронной мегалоплазмы! - провозгласил он. - Ротор поля наподобие дивергенции градуирует себя вдоль спина и там, внутре, обращает материю вопроса в спиритуальные электрические вихри, из коих и возникает синекдоха отвечания..."

Китайцы тоже доверие не вызывают. У них частенько с достоверностью проблемы. Над этим ещё в "Теории большого взрыва", кажется, иронизировали.

Ребятушки из ц.им. Джонсона - да, существенно более надёжны. Но это несколько энтузиастов, как я понимаю, отдельная группа, чей результат другой группой пока не подтверждён. Могли ли они ошибиться, случайно или нарочно? Скажем, горя оптимизмом и желая попасть в число первооткрывателей? Да легко могли. Могли не учесть какое-то внешнее воздействие? Тоже могли.

Хватает у нас в истории таких случаев, когда один вроде выяснил, второй вроде подтвердил, а остальным потом десятилетиями бороться с антипрививочниками, тупо вцепившимися в оригинальную, давно опровергнутую статью.

Но-о-о, да, однозначно отмахнуться сегодня тоже пока нельзя.

раскрыть ветку (21)
18
Автор поста оценил этот комментарий

Дык на то и научный метод, чтобы все желающие могли проверить, перепроверить и учесть все внешние воздействия. Наука имеет право ошибаться и умеет признавать свои ошибки. Кажется, Ландау задавал своим студентам в качестве домашнего задания находить ошибки в свежих "доказательствах" теоремы Ферма.


Помню, несколько лет назад "прогремел" случай, когда по оптоволоконному кабелю сигнал был передан быстрее (на миллиардные доли процента) скорости света. Эта новость просочилась в научно-(и ненаучно)-популярную прессу в виде новостей в стиле "Изобретена сверхсветовая передача информации!!!1111адынадынадын".


При этом сами "первооткрыватели" не кричали на всех углах, что опровергли всю существующую физику, а говорили в своем научном сообществе что-то в духе "Мужики, у нас тут какая-то херня получается, будьте добры, проверьте нас и найдите у нас ошибку?" И ученые не впали в истерику, а планомерно разобрали и проверили все возможные погрешности. В итоге - оказалось, что часы в передающей и принимающей лабораториях были синхронизированы не совсем точно (разница составляла как раз те самые миллиардные доли процента), но нашли эту ошибку только спустя несколько месяцев поисков.


С EmDrive сейчас ситуация похожая - в него не верят - и это хорошо. Плохо, что на опровержение этой теории выделяется недостаточно ресурсов - как я понял, во всем мире над этой проблемой работают хорошо если пара десятков человек. Я понимаю, что выделять большие бюджеты на опровержение маргинальной теории - чаще всего бессмысленно, но с моей личной точки зрения - если уж убивать надежду, то побыстрее :(

раскрыть ветку (4)
1
Автор поста оценил этот комментарий

По моему мнению закон сохранения импульса чуть ли не важней сохранения энергии. Очень спорно, что он нарушается вот так.

раскрыть ветку (3)
5
Автор поста оценил этот комментарий
Почему он вообще должен нарушаться? Никто, вроде принцип не объяснил, откуда уверенность, что эта дичь что-то нарушает
раскрыть ветку (2)
1
Автор поста оценил этот комментарий

Весь дискурс этого эффекта был в том, что он якобы нарушает закон сохранения импульса.

раскрыть ветку (1)
3
Автор поста оценил этот комментарий
что-то я не понял про эту свч-печь, видимо... ясно
4
Автор поста оценил этот комментарий

Добавлю. Ребятушки из ц.им. Джонсона, вероятнее всего, выехали на некорректном анализе сырых данных. Пользуясь бритвой Хенлона, не буду приписывать никому злого умысла, поэтому скажу, что виной всему неправильно построенная модель.

На Реддите был пост, в котором автор провел реанализ сырых данных на основе более адекватной модели и показал, что остаточный эффект, называемый тягой, хоть и остается, но становится слишком странным, чтобы можно было говорить о том, что в эксперименте было что-то зафиксировано.

Это не опубликовано в научных журналах, но, на мой взгляд, это куда лучше объясняет результат эксперимента и более заслуживает места в исходной статье, чем корявые аппроксимации Уайта.

https://www.reddit.com/r/EmDrive/comments/5jda9f/how_to_exag...

Иллюстрация к комментарию
раскрыть ветку (8)
3
Автор поста оценил этот комментарий
Почему нельзя просто закинуть на орбиту и нажать кнопку ВКЛ?
раскрыть ветку (7)
3
Автор поста оценил этот комментарий
Потому, что туда не возят бесполезную хуйню?
раскрыть ветку (4)
10
Автор поста оценил этот комментарий

Космический корабль «Союз МС-02» успешно стартовал с космодрома Байконур и взял курс к Международной космической станции. В этот раз, помимо трех членов экипажа — космонавтов Сергея Рыжикова и Андрея Борисенко, а также американского астронавта Роберта Шейна Кимброу, — в космос отправились мощи преподобного Серафима Саровского.

раскрыть ветку (3)
3
Автор поста оценил этот комментарий
бесполезно = никто не платит за это. А не лично вам бесполезно
раскрыть ветку (2)
4
Автор поста оценил этот комментарий

А кто сказал, что за доставку на орбиту для проверки этого вероятно работающего вероятно двигателя не собирались платить?

раскрыть ветку (1)
Автор поста оценил этот комментарий
чайник рассела != аргумент
0
Автор поста оценил этот комментарий

Дорого

раскрыть ветку (1)
2
Автор поста оценил этот комментарий
Готов поддержать запуск на кикстартере
1
Автор поста оценил этот комментарий

Спасибо за наводку, интересным чтивом оказалось.

Насколько я понял, немного покопавшись в интернетах, все претензии к сохранению импульса актуальны только в рамках ОТО и в условиях СТО всё нормально работает. Так что я, пожалуй, послежу за темой. Так, на всякий случай)

0
Автор поста оценил этот комментарий
утром открытие, вечером применение.

Если кто-нибудь пытался втулить в ОТО, например, то чем глубже, тем явственней ощущение, что ничего там не открыто. Просто посмотрели, ага, свет во всех направлениях одинаково летит, прикинули матмодель - вроде подходит, и даже предсказывает чёта, ура открытие! А по сути ведь это и есть ротор наподобие дивергенции. Вот этот ваш мнимый множитель у координаты времени - чистая синекдоха ведь. Них** не объясняет, зато как красиво звучит! Про квантовую механику та же бадяга - формулы есть, понимания нет. Так что мы пока этот "огонь" только используем, без понимания физики.

DELETED
Автор поста оценил этот комментарий
Я конечно далёк от науки, но думаю что именно такие как вы тормозят развитие науки. Настолько "скептетично" что смешно. (наверное такого слова нет)
раскрыть ветку (4)
4
Автор поста оценил этот комментарий

Ну, было бы странно не считать такие ломающие, слабые и слабопредсказуемые эффекты ошибкой до обнаружения ошибки или объяснения.

Не?

раскрыть ветку (3)
2
Автор поста оценил этот комментарий

Чем люди дальше от понимания того как работает наука, тем более они склонны ожидать от учёных охоты на снежного человека, ловли летающих тарелок, тралления шотландских озёр в поисках плезиозавров и пристального изучения "изобретения", нарушающего фундаментальный закон сохранения импульса.


Вы мне лучше вот что скажите. Каков был ваш маршрут до этого поста? В последние сутки наблюдаю повторное возникновение интереса к нему, и это спустя восемь дней. Рейтинг поста снова ползёт вверх, то есть откуда-то подошли новые читатели.

раскрыть ветку (2)
1
Автор поста оценил этот комментарий
Попал в пост о Вояджерах и понеслась.
раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Понятно =)

4
Автор поста оценил этот комментарий
Уже было исследование результатов EmDrive, насколько помню, результат был спровоцирован малым нагревом пружины, что объясняет причину появления ничтожной аномальной силы.
раскрыть ветку (2)
1
Автор поста оценил этот комментарий

Дай линк

раскрыть ветку (1)
3
Автор поста оценил этот комментарий

Лови, вот видео на английском, все очень подробно объяснено: https://www.youtube.com/watch?v=JGcvxg7jJTs

4
Автор поста оценил этот комментарий
Печально, но с EmDrive определились уже. Там отлетали ионы меди. Но вера в сказочное открытие при моей жизни не оставляет меня...
раскрыть ветку (11)
13
Автор поста оценил этот комментарий

Пруфлинк. Мне сдается, что вы выдаете гипотезу случайного комментатора с Реддита за реальность.

3
Автор поста оценил этот комментарий
А чего плохого? Ну и пусть летят себе. Медь плотнее аргона, она не стравится через 10 лет. Вкупе с ядерной установкой для выработки энергии(эту тему автор совсем обошел стороной, а у нас сейчас вроде как хотят запилить такую мегаваттного класса), это лучшая перспектива для межпланетных полетов (даже до юпитера) в ближайшие лет 100 -200.
А Юпитер - влажная фантазия на 300 лет вперед - ставлю бутыль Вискаря, что к тому времени там появится плавающая в атмосфере обитаемая станция. И на титане будет одна (не плавающая уже) - пристанище качков.
раскрыть ветку (8)
3
Автор поста оценил этот комментарий

Автор упомянул, что иногда к электрическим двигателям в качестве источника энергии присобачивается ядерный реактор. Это вот оно как раз и будет, просто пытаются втрамбовать в разумные объёмы реактор помощнее. Движок всё равно останется электрический.

Да, наши действительно хотят орбитальный тягач. И по планам в 2018 году работы должны были бы завершиться.

К сожалению, есть обоснованное подозрение что не всё так радужно.

раскрыть ветку (4)
0
Автор поста оценил этот комментарий

там куча проблем на самом деле. Мегаватт - это охуллиардная добавка к теплу, которое рассеивать без выброса тела тяжело.

0
Автор поста оценил этот комментарий
Насколько я слышал к 2021? Что не работает наш двигатель или сложен пока? Потому что наши хотели на ядерном двигле лететь на Марс. Вот хотелось бы верить, что успеем раньше НАСА.:-)
раскрыть ветку (2)
4
Автор поста оценил этот комментарий

Наши хотели лунную базу, наши хотели орбитальную лунную базу, наши хотели просто высадку на Луну, наши хотели новую орбитальную станцию, наши хотят новый тягач. И всё это за последние годы. Двигло-то, скорее всего, работает, да и реактор, очень может быть, тоже вполне работоспособный. Но сегодняшняя реальность такова, что этого может оказаться недостаточно для осуществления полёта.

0
Автор поста оценил этот комментарий

Там не ядерный двигатель, а ядерный источник питания. Двигатели те же СПд вроде как..

1
Автор поста оценил этот комментарий

Увы. Плавающая в атмосфере станция на Юпитере существовать не может. Она либо сгорит, либо ее раздавит. Подобное было на xkcd в "what if".

раскрыть ветку (1)
4
Автор поста оценил этот комментарий

ну конечно, если ебануть туда металлическую субмарину, так и будет. Она тупо не поплывет там, где плотность на порядок ниже плотности воды. А я говорю о станции вроде дирижабля, плавающего в аммиаке при давлениях 1-5 бар

0
Автор поста оценил этот комментарий

станция? из чего? свинца штолле?

1
Автор поста оценил этот комментарий

А можно ссылочку?

1
DELETED
Автор поста оценил этот комментарий
Мне интересно как догодались соеденить ведро и микроволновку и потом ещё ищмерить тягу.
0
Автор поста оценил этот комментарий
Закон сохранения импульса фундаментален. Так что все это просто неучтенные эффекты.
раскрыть ветку (13)
1
Автор поста оценил этот комментарий
Есть в науке один нюанс: если что-то на сегодня кажется незыблемым - не факт, что таковым останется завтра.
раскрыть ветку (12)
Автор поста оценил этот комментарий

Очевидно, что физику вы не учили. Поэтому говорить с вами бесполезно.

раскрыть ветку (11)
3
Автор поста оценил этот комментарий

Очевидно, с наукой вы знакомы лишь по учебнику физики.

раскрыть ветку (8)
Автор поста оценил этот комментарий
Ну-ка, скажите, каков вес тела массой 10 кг, поднимающегося на лифте со скоростью 5 м/с.
раскрыть ветку (7)
0
Автор поста оценил этот комментарий

Не указана система отсчета.

раскрыть ветку (6)
Автор поста оценил этот комментарий
По умолчанию - относительно Земли.
Автор поста оценил этот комментарий
Ну что, еще долго считать будете, ниспровергатель основ?
раскрыть ветку (4)
0
Автор поста оценил этот комментарий

Я не собираюсь вестись на такие дешевые провокации.

раскрыть ветку (3)
Автор поста оценил этот комментарий

Просчитать такую простую задачку не можете и при этом еще говорите о том, что знаете физику? Тонко )

раскрыть ветку (2)
0
Автор поста оценил этот комментарий

Это вы сами придумали, а теперь что-то от меня требуете. Я сказал, что вы незнакомы с наукой.

раскрыть ветку (1)
1
Автор поста оценил этот комментарий
Жаль, что фейнман с вами не согласен. Он-то физику учил, я надеюсь, по вашему? А мысль эту он высказывает в видеоинтервью, где сравнивает вселенную с шахматной партией, есть на ютубе.
1
Автор поста оценил этот комментарий
Очевидно что вы в физику верите, а не понимаете её принципов.
Вы смотрите срез комментариев. Чтобы написать комментарий, перейдите к общему списку