1840

Простым языком о космических двигателях

Слушайте, друзья мои, а все же космос любят? Давайте про него тогда и поговорим. О том, как именно мы бороздим просторы. Налейте чаю, получилось довольно длинно.


Как и в случае с постом про лошадиные силы лошадей, оговариваюсь сразу: я в этом вопросе всего лишь любопытствующий, не специалист. В теме разбирался путём промышленного гугления. Если на шум подтянутся профи, а пара штук точно где-то поблизости шастает, пусть смело поправляют.

Изображения взяты из поисковиков: выбирал самое наглядное и тут же его нещадно воровал.


Давайте попробуем разобраться с тем, как мы умеем передвигаться в космическом пространстве. Элементарно, на пальцах, однако с обязательными ссылками на источники, чтобы не быть как те рептилоиды.


Гипертуннели, кротовые норы, варп-драйв, подпространство, нуль-переход и прочую деритринитацию предлагаю вычеркнуть сразу. Это всё очень здорово, но к нашей суровой действительности не имеет ни малейшего отношения. Даже если вспомнить, что кротовые норы худо-бедно теоретически обосновываются, всерьёз о них поговорить можно будет лет через сто, а то и через двести. Вот тогда - заходите, с удовольствием обсудим. А пока что наука не в курсе дела.

Всерьёз обсуждать имеет смысл только то, что можно, пусть и с натяжками, считать применимым, либо потенциально применимым на практике. Ну и про научную обоснованность конечно же нельзя забывать.


1. Итак, во-первых давайте разберёмся, что мы имеем работающего на сегодняшний день.


1.1 Самым ординарным способом передвижения в космосе являются химические ракетные реактивные двигатели. Они несколько различаются по конструкции и по типам топлива, но суть всегда одна и та же: берём топливо, смешиваем с кислородом, поджигаем (преобразуя химическую энергию в кинетическую) и летим вперёд, выбрасывая назад газообразные продукты горения. Старый проверенный дедовский способ.

Плюс - в относительной простоте, относительной дешевизне и относительно высоком уровне проработанности.


Минус - в относительно малых скоростях и очень малой возможности манёвра. Топливо заканчивается быстро, какую скорость успел набрать в самом начале полёта, с такой и чеши себе дальше. Срок работы исчисляется секундами, иногда минутами. Ни затормозить, ни сманеврировать лишний раз нельзя. Конечно, современные аппараты не летят совсем уж "по рельсам", какой-то резерв топлива обычно есть, но всё равно возможности очень и очень ограничены.


Самый простой ХРРД:

А вот это, например, ХРРД от Шаттла:

1.2 Электрические ракетные реактивные двигатели. Нельзя сказать, что идея свежая, но разработки продолжаются, регулярно появляются всё более и более экзотичные новинки, которые довольно часто пускают в дело. За пять десятилетий активных экспериментов семейство ЭРД успело хорошенько разрастись вширь, на сегодняшний день существуют: ионные, плазменные, импульсные, сильноточные и термические электрические ракетные двигатели.


В качестве источников питания чаще всего используют солнечные батареи. Однако, порой, к электрическому двигателю в качестве источника питания прикручивают и ядерный реактор. Не путать с ядерными двигателями, о которых будет ниже.


Все эти двигатели, несмотря на разнообразие, всё равно в основе своей используют реактивное движение, то есть работают по принципу "а давайте чего-нибудь посильнее выкинем сзади, чтобы бодрее летелось вперёд". Отличие от химических двигателей заключается в том, что вместо банального поджигания керосина, электрический двигатель извращается с рабочим телом как-то иначе. Например, разгоняет в электрическом поле ионизированный газ или испаряет в электрическом разряде твёрдое тело.


Минус электрических двигателей в том, что развить тягу достаточную, чтобы оторваться от Земли, на сегодняшний день они не могут. То есть двигатели, говоря простым языком, слабенькие. Взлетать всё равно приходится "на химии".


Зато у них есть и неоспоримый плюс. И заключается он в экономичности, а значит - во времени работы. Если химический РД вырабатывает своё топливо за несколько минут (после чего аппарат летит по инерции, используя гравитационные манёвры), то ЭРД работают днями. И неделями. А иногда и месяцами. Да чего уж там, ионный двигатель на межпланетной станции Deep Space 1 честно отпахал три года. И ему не приходилось возвращаться на дозаправку.

Смекаете? Химический двигатель работает недолго и сразу набирает максимальную скорость. Потом - всё, ускоряться только если за счёт гравитационной пращи (манёвр вокруг какого-то крупного объекта). ЭРД же, чтобы развить такую же скорость, которую химический набрал за несколько минут, потребуется, например (условно) три месяца. А может даже год, не суть важно. Аппарат, разгонявшийся химическим двигателем, за это время успеет улететь довольно далеко. Но вот условные три месяца прошли, аппарат с ЭРД набрал ту же скорость, с которой всё это время чешет аппарат с давно потухшим химическим двигателем. Но ЭРД-то продолжает работать. Ещё через три месяца он летит уже вдвое быстрее, и прекращать свою работу не собирается. При этом он имеет свободу манёвра и в любой момент может скорректировать свой полёт. В космосе летают годами, а в перспективе - десятилетиями, там играют долговременные ставки.

А ещё ЭРД весьма компактны и экономичны, они не требуют таскать с собой дополнительную цистерну топлива. Это значит, что их можно ставить на весьма скромные спутники Земли, позволяя им перемещаться с орбиты на орбиту своим ходом, что снижает зависимость от точности выведения и от тормозящего воздействия атмосферы. Вы его, главное, от поверхности оторвите, вверх подбросьте, а там уж он сам на ионном движке куда ему надо доползёт.


Ионный двигатель:

1.3 Ну и, наконец, последнее, что у нас сегодня есть из относительно работоспособного. Ядерный ракетный двигатель, тоже реактивный, как все предыдущие. Суть, как вы понимаете, в том же самом. Берём рабочее тело (жидкий водород - дёшево и сердито), разогреваем и выкидываем его сзади. Только вместо того, чтобы что-то поджечь, разогнать электрическим полем или испарить электрической дугой, мы греем жидкость на ядерном реакторе до газообразного состояния. Почти как паровоз.


Штука довольно спорная как по экономическим, так и по экологическим причинам. Потенциально эти двигатели могут совмещать положительные стороны химического и электрического двигателей. СССР и США разрабатывали ЯРДы начиная с середины ХХ века вплоть до испытания наземных прототипов. Разработки ведутся и сегодня.


Схема работы яррд:

Отчётливый минус абсолютно всех типов реактивных двигателей: по космическим меркам они медленные. Со скрипом их хватает для изучения внутренних, ближайших к Земле планет (внутренними считаются планеты внутри главного пояса астероидов), но уже к Юпитеру приходится тащиться годами. Так могут летать автоматические аппараты, но таскать человека (а вместе с ним все системы жизнеобеспечения) уже представляется совершенно бестолковым занятием.

Даже за несколько человеческих жизней на подобных движках до других звёзд нам не добраться, поскольку счёт пойдёт на десятки тысяч лет. При самом оптимистичном сценарии - на тысячелетия. Sad but true.

Теперь давайте поговорим о самом интересном. О том, чего у нас нет. Этот раздел мой внутренний бюрократ требует разделить на две части: "нет и скорее всего не будет" и "нет, но очень может быть".


2. За прошедшие десятилетия было выдумано (и хотя бы частично научно обосновано) много всего интересного, что пока ещё не было реализовано. Сначала обсудим то, что с высокой долей вероятности не появится никогда по экономическим причинам, либо потому что наука ушла вперёд и концепция утратила былую свежесть.


2.1 Ядерно-импульсный двигатель на ядерных бомбах. Суть заключается в простой и логичной идее: если под хвостом у корабля взорвать бомбу, она отвесит ему такой космический пендель, что корабль скоренько куда-то полетит. Старая, ещё пятидесятых годов концепция, до сих пор являющаяся самым реалистичным и самым жизнеспособным способом межзвёздного (ну и межпланетного в частности) перелёта.


Примерно вот так это должно было выглядеть:

С точки зрения науки нет никаких причин, чтобы эта штука не работала. К сожалению, есть причины экономические. В том или ином виде идея разрабатывалась с пятидесятых годов. Довольно быстро стало понятно, что одной бомбой там не отделаться и взрывать придётся много. Много и часто. По очень оптимистичным прикидкам, лет за 120-140 можно добраться до ближайшей к нам системы (тройная α Центавра ABC), если весь этот срок ежесекундно (!) подрывать несколько ядерных зарядов. Как вы понимаете, такой запас можно собрать за довольно долгий срок и только лишь дружно напрягшись всем человечеством. А потом ещё будет проблема поднять всё это хозяйство на орбиту и там собрать, на это понадобились бы тысячи носителей несуществующего уже сверхтяжёлого класса, вроде "Энергии" или "Сатурн-5".


Подобных проектов было много, самый известный из них "Орион". Это отдельная, весьма объёмная история. Чтобы не углубляться в подробности, лучше оставлю вам тут ссылку, на Вики всё неплохо описано: https://ru.wikipedia.org/wiki/Орион_(МКА).

2.2 Прямоточный термоядерный ракетный двигатель. Он же - "межзвёздный прямоточный двигатель Бассарда". Принцип движения тот же что у остальных реактивных двигателей, описанных в первой части. Отличие заключается в том, что современные двигатели расходуют то топливо, которое везут с собой. Прямоточный же двигатель скорее напоминает воздушный реактивный двигатель тем, что рабочее тело он не везёт в канистре, а добывает снаружи, из-за борта.


В качестве рабочего тела предлагалось использовать водород, захватываемый из пространства. Сначала собирать водород предполагалось гигантской воронкой, однако довольно скоро стало очевидно, что таскать такую дуру по космосу не представляется целесообразным. Тогда пришли к решению: собирать водород с помощью электромагнитного поля диаметром в несколько тысяч километров.

Ну то есть корабль электромагнитным пылесосом собирает перед собой водород (а он там таки есть в межзвёздном пространстве), нагревает его ТЯРДом и выбрасывает сзади. Это вариант первый. Вторым вариантом было не выбрасывать водород, а использовать в качестве непосредственно топлива для ТЯРДа.


Из существенных (и очень заманчивых) плюсов - возможность идти с постоянным ускорением (читай - не болтаться внутри корабля в невесомости) и практически полная топливная автономность.


Основной минус в том, что в окрестностях нашей системы количество межзвёздного газа очень невелико. Меньше, чем в других местах. Причиной послужил относительно недавний взрыв сверхновой в окрестностях Солнца, "сдувший" потенциальное топливо.

Максимальная скорость, развиваемая подобным прямоточником, составит не более 0,119c = 35,7 тыс. км/с. Причина в том, что встречные атомы, которые он должен улавливать, будут его же и тормозить своим импульсом.

Естественно, надо понимать следующее. Это голая теория. Причём теория родом из шестидесятых годов. И несмотря на то, что теоретические работы над данной концепцией всё ещё ведутся, у неё куча слабых сторон и масса недоработок. Сегодня мы уже понимаем, что как минимум система захвата рабочего тела должна быть более совершенной. Ну и конечно же, в настоящее время такой двигатель промышленно невоспроизводим (основная проблема - всё та же система захвата, то бишь "пылесос").


Вот как-то так мог бы выглядеть корабль с ПТЯРДом:

2.3 Фотонные двигатели. Тут я постараюсь покороче, поскольку этот концепт уже приближается к границе между действительностью и фантастикой. Он ещё вроде как по эту сторону реальности, но если ядерно-импульсный двигатель (п. 2.1) пришлось бы строить всей планетой лет сто, фотонный двигатель при нынешнем уровне развития нам просто недоступен. Никак.


Суть фотонного двигателя в том, что реактивная тяга создаётся истекающими фотонами света (они имеют импульс). Если упрощать, то это сверхмощный фонарик, отталкивающийся собственным лучом. Теоретически, в отличии от всех упомянутых выше тошнотиков, такой двигатель мог бы приблизиться к скорости света.


Придумано два типа фотонных двигателей: аннигиляционный и двигатель на магнитных монополях.


Для работы аннигиляционного фотонного двигателя требуется антивещество. Возможно (!), при его взаимодействии с обыкновенным веществом будет происходить реакция, почти полностью превращающая их в излучение. Беда в том, что антивещество - самая дорогая субстанция на Земле, примерной стоимостью 62,5 триллиона долларов за грамм. Высокая стоимость вызвана серьёзной нехваткой запасов антивещества. Цитирую Вики: "В 2010 году физикам впервые удалось кратковременно поймать в «ловушку» атомы антивещества. Для этого учёные охлаждали облако, содержащее около 30 тысяч антипротонов, до температуры 200 кельвинов (минус 73,15 градуса Цельсия), и облако из 2 миллионов позитронов до температуры 40 кельвинов (минус 233,15 градуса Цельсия). Физики охлаждали антивещество в ловушке Пеннинга, встроенной внутрь ловушки Иоффе — Питчарда. В общей сложности было поймано 38 атомов, которые удерживались 172 миллисекунды." Как вы догадываетесь, для полёта этого, мягко говоря, недостаточно.


Схема работы аннигиляционного фотонного двигателя:

С фотонным двигателем на магнитных монополях тоже засада. Монополи - гипотетические элементарные частицы, которые чем дальше, тем более гипотетическими становятся. Их упорно ищут, применяя Большой адронный коллайдер (такой большой и такой адронный!) к различным предметам, но эффекта пока что никакого. То бишь полный ноль. Более того, некоторые современные теории вообще не предполагают существования в природе магнитных монополей. Очень печально, потому что добывать и хранить их могло бы быть проще, чем антивещество. А могло бы и не быть. Это - передний край науки, где происходит самое интересное, а потому никто пока ни в чём не уверен.

3. Вот и пришло время для самого вкусного! Кто дочитал, тот - молодец. Наконец-то мы дошли до двигателей, которые во-первых должны реально работать, во-вторых не требуют для своего создания предварительного порабощения всей планеты.

3.1 Солнечный (световой) парус. Красивая и даже в каком-то смысле романтичная идея начала (!) ХХ века, понемногу претворяющаяся в жизнь. Автор - советский физик Фридрих Цаандер, предположивший возможность такого способа перемещения в 1920 году.

Парус использует давление фотонов света стороннего источника (вместо того чтобы светить самому, как это предполагается в фотонном двигателе), например - звезды или лазера.

В качестве основного двигателя парус пока не был использован ни разу, однако испытания ведутся многими странами. Первым аппаратом, развернувшим парус, стал российский "Прогресс" в 1993 году. Однако это было испытание самого процесса разворачивания, движение при этом не совершалось. Первым аппаратом, использовавшим парус по прямому назначению, стал японский IKAROS в 2010 году.


Главный плюс - парусу не требуется топливо. Главный минус - парусу нужен свет.

Давление света Солнца к границам Солнечной системы уменьшается до ничтожных величин, по этой причине использование такого двигателя (а точнее - движителя) будет иметь свои особенности. Между внутренними планетами, скорее всего, перемещаться можно будет вполне эффективно. А вот для перелётов к границам системы, вероятно, разгоняться придётся от самого Солнца (где давление света максимально), в определённый момент сворачивая парус, чтобы он не начинал выполнять роль солнечного тормоза и не мешал маневрировать.


Относительно свежая идея, не опробованная пока что на практике - светить в парус удаляющегося корабля лазером. Если вывести такой лазер на орбиту (чтобы не мешала атмосфера Земли), если поставить их много, если подобрать источник питания, способный долговременно давать требуемую мощность, ну и наконец, если хорошенько прицелиться, то вполне реально отправить некий аппарат даже к соседним звёздам.


Сегодняшние лазеры не позволяют отправить к соседней звезде ничего серьёзнее нескольких граммов. Сегодняшняя электроника не позволяет запихнуть в эти граммы хотя бы камеру и передающее устройство. Сегодняшняя политическая обстановка не позволяет устанавливать на орбите сверхмощные лазеры, потому что если их развернуть вниз, получится орбитальная боевая платформа, которую можно на кого-нибудь нацелить.

Но. Лазерные технологии развиваются, электроника развивается. Даже сами разгонные лазеры можно ставить не на орбите, а на обратной стороне Луны - оттуда они не будут угрожать Земле, зато в случае инопланетного вторжения сможем отстреливаться :). Шутки-шутками, но тема действительно очень и очень любопытная.


В 2016 году группа состоятельных ребят, включающая Юрия Мильнера и Марка Цукерберга, скинулись на общую сумму в 100 000 000$ на развитие этой вот идеи с разгонными лазерами и отправкой микроаппаратов к многострадальной α Центавра ABC. Вряд ли они всерьёз рассчитывают отбить свои вложения, поэтому огромное спасибо за бескорыстный вклад в науку. Впрочем, нельзя также исключать, что им просто нужен предлог для строительства гигантского лазера.

Проект называется "Breakthrough Starshot", ведут его очень титулованные граждане, в том числе Хоккинг, Перлмуттер и Рис. Рассчитывают достичь 1/5 скорости света и, соответственно, лет за двадцать "допихать" лазером аппарат (а точнее - стаю мелких аппаратов) до соседней системы. В июне 2017 года состоялся успешный вывод на низкую околоземную орбиту первых рабочих прототипов нанозондов — чипов размером 3,5 на 3,5 см и весом около 1 грамма, несущих на себе солнечную панель, микропроцессор, датчик и систему связи.


Небольшой парус, развёрнутый на стенде в лаборатории NASA (учёные мужики в правом верхнем углу для масштаба):

3.2 Электрический парус. Не путать с солнечным! Тоже парус, только вместо фотонов света он улавливает солнечный ветер - поток ионизированных частиц. Совсем новьё, финская идея 2006 года. В 2013 году в университете Хельсинки создан первый рабочий прототип.


Двигатель состоит из сети длинных тонких алюминиевых тросов с положительным потенциалом и электронной пушки. Электронная пушка создает луч электронов, направленный против движения космического корабля, из-за чего тросы приобретают положительный заряд. Создаётся электрическое поле, тормозящее ионы солнечного ветра. Ударяясь на средней скорости порядка 468 км/с, они передают свой импульс парусу и приводят в движение космический корабль.

Точные характеристики окончательно не ясны, все ждут ходовых испытаний. В целом выглядит весьма перспективно, хотя понятно, что для того чтобы набрать пристойную скорость, общая длина этих вот усов должна составлять хотя бы 2000 километров, при толщине 25 – 50 мкм.


Если сравнивать с солнечным, то главное преимущество подобного паруса в возможности двигаться по направлению к источнику направленных частиц (а не только от него). Кроме того, такой парус проще в производстве и удобнее в эксплуатации: длинный тонкий ус развернуть куда легче, чем натягивать сплошное полотно. Очевидно также, что он куда меньше боится постороннего космического мусора. Но вот сила разгона будет раз в 200 меньше чем у солнечного паруса аналогичной площади.


Художественное изображение электрического паруса:

3.3 Термоядерные ракетные двигатели. Гигантский межпланетный пылесос, описанный в пункте 2.2, по сути своей - частный случай такого двигателя. Но тот проект всё-таки фантастичен. А вот если отбросить всю экзотику с прямоточностью и сбором пролетающего мимо водорода, тогда становится похоже на правду.


На сегодняшний день мы имеем научное обоснование двух типов ТЯРДов: импульсный и на основе реактора с магнитным удержанием плазмы.


Суть импульсного ТЯРДа в том, что управляемая термоядерная реакция происходит в импульсном режиме, при периодическом ионно-пучковом обжатии и разогреве топливных «таблеток». Получается что-то отдалённо напоминающее проект из пункта 2.1, когда под кораблём предлагалось взрывать ядерные бомбы. Только там предполагалось использование энергии распада ядер, а в обсуждаемом проекте речь идёт о синтезе.


ТЯРД с магнитным удержанием плазмы выходит несколько компактнее. Термоядерное топливо (предварительно нагретая плазма из смеси топливных компонентов) подаётся в магнитную ловушку реактора, где происходит постоянная управляемая реакция термоядерного синтеза. Плазма, полученная в ходе термоядерного горения, направляется магнитными направляющими в сопло и создаёт реактивную тягу.

Любопытное дополнение с Вики: "Путём впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел (например больших планет) где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 тыс. сек до 4 млн. сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 сек."


Единственное внятное изображение ТЯРДа с магнитным удержанием, которое мне удалось найти на просторах:

Рабочих образцов термоядерных двигателей (да и реакторов) на сегодняшний день не существует. Однако разработки ведутся весьма широко. С высокой долей вероятности именно эти двигатели - наше будущее. С точки зрения науки нет никаких причин для того, чтобы их нельзя было бы создать. Причём говорить тут можно не о каком-то гипотетическом будущем, а о вполне достижимом. При оптимистичном сценарии появления первых ТЯРДов можно ждать уже на нашем веку. Вероятно, именно с этими двигателями мы станем осваивать Солнечную систему.

Ну, пожалуй что, that's all, folks! Кажется, это всё что есть более-менее обоснованного, о чём сегодня можно рассуждать всерьёз.

P.S.: Ах да! Предвижу вопросы насчёт EM Drive, он же "чудо-микроволновка". Тема весьма популярная в прессе, но не особенно популярная в научной среде. Либо в этом, либо в соседнем сообществе месяц-два назад наталкивался на новость о том, что его могли испытывать на американском орбитальном беспилотнике X-37B, что, естественно, лютая дичь. Нет таких двигателей. Есть предположительно зафиксированный эффект, который никто не может объяснить.

Первоначально о зафиксированном эффекте объявил британец Роджер Шойер в начале двухтысячных. Позже, в 2012 году, китайские исследователи сообщили, что у них тоже что-то получилось. В 2015 году несколько исследователей NASA из Космического центра им. Джонсона объявили, что смогли получить заявленный эффект в условиях вакуума (подчёркиваю - не космоса, а именно вакуума).

Однако упомянутые исследователи - скорее всё-таки энтузиасты. Серьёзные институты пока что не рассматривали эту тему по-настоящему. А причина проста - нет внятного научного объяснения принципа действия такого двигателя. Более того, он нарушает закон сохранения импульса, который пока что никто не отменял.

Даже если допустить, что эффект имеет место быть (а такая вероятность действительно есть, это нельзя отрицать), ни о каком двигателе сегодня речи идти не может. Этот эффект настолько мал, что его и зафиксировать-то трудно, не то что использовать.

То есть даже если окажется, что человечество действительно случайно нащупало что-то принципиально новое и перспективное, прежде чем куда-то эту вундервафлю привинчивать, предстоит долго разбираться, почему же шайтан-машина всё-таки работает.

P.P.S.: Заканчивая оформление поста, обнаружил, что на эту тему уже писали девять месяцев назад. Спасибо баянометру, что он прочихался хотя бы в этот момент. Расстроился поначалу. Но потом увидел что посты сильно разные и перестал расстраиваться.

Ссылки на источники - ниже. Если какой-то из них нельзя, трите смело.

Первоначально вдохновился роликами Егорова, очень уж здорово вещает.

Данные взяты из открытых источников, фотографии из подборки поисковика.

1. https://www.nasa.gov/centers/glenn/technology/warp/warp.html

2. http://homepages.mcs.vuw.ac.nz/~visser/general.shtml#why-wor...

3. https://ru.wikipedia.org/wiki/Химический_ракетный_двигатель

4. https://ru.wikipedia.org/wiki/Электрический_ракетный_двигате...

5. https://ru.wikipedia.org/wiki/Ядерная_электродвигательная_ус...

6. http://www.cosmoworld.ru/spaceencyclopedia/publications/inde...

7. http://www.proatom.ru/modules.php?name=News&file=article...

8. https://dawn.jpl.nasa.gov/news/news-detail.html?id=2626

9. https://ru.wikipedia.org/wiki/Ионный_двигатель

10. https://ru.wikipedia.org/wiki/Плазменный_ракетный_двигатель

11. https://ru.wikipedia.org/wiki/Электрический_ракетный_двигате...

12. http://n-t.ru/tp/ts/kd3.htm

13. https://ru.wikipedia.org/wiki/Ядерный_ракетный_двигатель

14. http://sci-lib.com/article872.html

15. https://ru.wikipedia.org/wiki/Ядерная_энергодвигательная_уст...

16. http://alfven.princeton.edu/publications/choueiri-sciam-2009

17. https://hi-news.ru/space/10-radiacionnyx-incidentov-epoxi-ko...

18. https://ru.wikipedia.org/wiki/Орион_(МКА)

19. http://dicelords.народ.ru/rockets/rocket3c2.html

20. https://ru.wikipedia.org/wiki/Фотонный_двигатель

21. https://ru.wikipedia.org/wiki/Антивещество

22. http://livefromcern-archive.web.cern.ch/livefromcern-archive...

23. https://lenta.ru/news/2010/11/18/antimatter/

24. https://ru.wikipedia.org/wiki/Магнитный_монополь

25. https://ru.wikipedia.org/wiki/Солнечный_парус

26. https://geektimes.ru/post/291579/

27. https://ru.wikipedia.org/wiki/Breakthrough_Starshot

28. http://breakthroughinitiatives.org/News/12

29. https://ru.wikipedia.org/wiki/IKAROS

30. http://www.computerra.ru/49312/sozdan-prototip-elektrichesko...

31. https://ru.wikipedia.org/wiki/Термоядерный_ракетный_двигател...

32. http://ufn.ru/ru/articles/1988/4/b/

Наука | Научпоп

9.2K постов82.6K подписчиков

Правила сообщества

Основные условия публикации

- Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

- Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

- Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

- Видеоматериалы должны иметь описание.

- Названия должны отражать суть исследования.

- Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.


- Посты-ответы также должны самостоятельно (без привязки к оригинальному посту) удовлетворять всем вышеперечисленным условиям.

Не принимаются к публикации

- Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

- Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

- Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.


Наказывается баном

- Оскорбления, выраженные лично пользователю или категории пользователей.

- Попытки использовать сообщество для рекламы.

- Фальсификация фактов.

- Многократные попытки публикации материалов, не удовлетворяющих правилам.

- Троллинг, флейм.

- Нарушение правил сайта в целом.


Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество Пикабу.

94
Автор поста оценил этот комментарий
Нихера себе автор заморочился! Респект, очень познавательно, давай теперь про каждый двигатель подробнее, что-ли)
Или про фантастические движки напиши, тоже интересно будет!
раскрыть ветку (1)
92
Автор поста оценил этот комментарий

Старался =)

Всё что можно написать про фантастические - это, к сожалению, голые догадки без какой-либо подтверждённой теории. Любой текст про них будет отдавать желтизной. Ну вот если только про кротовины... Надо подумать.

Из перечисленных выше про какой было бы интереснее в первую очередь?

показать ответы
23
Автор поста оценил этот комментарий

Хороший обзор, спасибо!


Тема EmDrive меня не то, чтобы интересует... но, скажем так, дает некоторую фантастическую надежду. Надежду на то, что инженеры случайно наткнулись на то, от объяснения чего ученые еще очень далеки. Методом тыка нащупали очень перспективное направление, в котором науке следует развиваться. И уже при жизни моего поколения - это случайное открытие даст совершенно невероятные плоды.


А может ли кто-то припомнить за последние 50 лет изобретение, которым сначала стали пользоваться - а потом объяснили, почему оно работает? Не обязательно в физике - наверное, в медицине полно необъяснимых, но вполне повторимых результатов?

раскрыть ветку (1)
31
Автор поста оценил этот комментарий

Честно признаюсь, лично я далёк от оптимизма. Не те нынче времена, чтобы сначала научиться использовать огонь а потом тысячи лет искать объяснение физике процесса. Всё-таки в наши дни оно наоборот бывает: утром открытие, вечером применение. Можно наоборот, но открытие - вперёд.

Британский учёный своё открытие объяснить внятно не смог. У него там получилось как у Стругацких: "Высочайшее достижение нейтронной мегалоплазмы! - провозгласил он. - Ротор поля наподобие дивергенции градуирует себя вдоль спина и там, внутре, обращает материю вопроса в спиритуальные электрические вихри, из коих и возникает синекдоха отвечания..."

Китайцы тоже доверие не вызывают. У них частенько с достоверностью проблемы. Над этим ещё в "Теории большого взрыва", кажется, иронизировали.

Ребятушки из ц.им. Джонсона - да, существенно более надёжны. Но это несколько энтузиастов, как я понимаю, отдельная группа, чей результат другой группой пока не подтверждён. Могли ли они ошибиться, случайно или нарочно? Скажем, горя оптимизмом и желая попасть в число первооткрывателей? Да легко могли. Могли не учесть какое-то внешнее воздействие? Тоже могли.

Хватает у нас в истории таких случаев, когда один вроде выяснил, второй вроде подтвердил, а остальным потом десятилетиями бороться с антипрививочниками, тупо вцепившимися в оригинальную, давно опровергнутую статью.

Но-о-о, да, однозначно отмахнуться сегодня тоже пока нельзя.

показать ответы
47
Автор поста оценил этот комментарий
Я как раз занимаюсь разработкой и испытаниями двигателей СПД и могу вам сказать, что вы не совсем правы. Двигатели 50 летней давности (а вы имеете ввиду КДУ ЭОЛ) имеют мало общего с тем, что летает сейчас. Самым широко используемым двигателем типа СПД, сейчас является СПД-100, а самым первым широко используемым был спд-70. На малых спутниках летает спд-50. Это все двигатели так называемой "классической" схемы (при этом с эолом, повторюсь, имеют общего только очертания. Сейчас широко ведутся работы в 2х направлениях.
1. Двигатель высокой мощности. Для больших спутников, довыведения на орбиту (когда химический толкач отвалился рано) и для перспективных межпланетных перелетов. Это модернизации спд-100, более крупный спд-140 и дальнейшие.
2. Двигатели для малых и сверхмалых спутников (спд-40 и меньше). Данные двигатели должны работать достойно при крайне малой вкладываемой мощности (до 250вт). ЗЫ лично у меня спд-26 и при 60вт работал.

Вч и СВЧ ионные источники так же разрабатываются в нашей организации (в другом отделе). Но пока это все не очень стабильно и жизнеспособно.

Если будет интерес общественности могу написать про эту тему подробнее.

По поводу emdrive. Мое мнение (и всех с кем работаю) - бред. Эффект появление тяги - ошибка измерений. Там тяга микрограммы, + эта чудо штука даёт тягу в одну и туже сторону, как его к измерительному устройству не привесь...(этот факт говорит о том что испытатели измеряют собственные шумы тягомера)
раскрыть ветку (1)
14
Автор поста оценил этот комментарий
Если будет интерес общественности могу написать про эту тему подробнее.

Не знаю как там насчёт общественности, мне лично жуть как интересно!

По поводу emdrive. Мое мнение (и всех с кем работаю) - бред. Эффект появление тяги - ошибка измерений.

+

2
Автор поста оценил этот комментарий

Проект называется "Breakthrough Starshot", ведут его очень титулованные граждане, в том числе Хоккинг, Перлмуттер и Рис. Рассчитывают достичь 1/5 скорости света и, соответственно, лет за двадцать "допихать" лазером аппарат (а точнее - стаю мелких аппаратов) до соседней системы.

Мне вот интересно, чем они собираются эти корабли защищать?

В фантастике-то у всех кораблей магические силовые защитные поля есть. У нас подобной технологии нет и в помине.

На 1/5 скорости света столкновение с любым самым маленьким камушком скорее всего приведёт к полному уничтожению корабля. И даже более мелкие объекты будут повреждать обшивку на протяжении всего полёта.

раскрыть ветку (1)
5
Автор поста оценил этот комментарий

Честно говоря, проблему защиты от встречных объектов будут решать массовостью запускаемых аппаратов. Вёдрами их кидать будут. Парочка, глядишь, долетит.

В данном конкретном случае защищаться придётся не от того что впереди, а от сотни-другой мегаваттных лазеров, прямой наводкой лупящих крохам чётко в корму. Нет у нас пока отражателя нужного качества. Ищут.

показать ответы
0
Автор поста оценил этот комментарий
Сразу прошу прощения за то, что пишу прибывая в не самом трезвом виде.
Я, возможно, невнимательно читал, но мне здается, что вы запямятовали про радиодвигатели(я знаю, что технология архаична, но все же). Еще раз прошу прощения, якоже был невнимателен.
раскрыть ветку (1)
4
Автор поста оценил этот комментарий

То что называют "радиодвигателем" - тот же фотонный двигатель (п. 2.3), но использующий излучение с большей длиной волны. Идея непопулярная, всерьёз не рассматривалась и не изучалась.

Да, было такое предложение, призванное решить отдельные проблемы с фокусировкой реактивной струи (мужчины поймут :)). Но это получается маловероятная концепция маловероятной концепции. Сегодня и в сам-то фотонник слабо верится, а уж такая экзотика...

показать ответы
0
Автор поста оценил этот комментарий
Насколько я слышал к 2021? Что не работает наш двигатель или сложен пока? Потому что наши хотели на ядерном двигле лететь на Марс. Вот хотелось бы верить, что успеем раньше НАСА.:-)
раскрыть ветку (1)
4
Автор поста оценил этот комментарий

Наши хотели лунную базу, наши хотели орбитальную лунную базу, наши хотели просто высадку на Луну, наши хотели новую орбитальную станцию, наши хотят новый тягач. И всё это за последние годы. Двигло-то, скорее всего, работает, да и реактор, очень может быть, тоже вполне работоспособный. Но сегодняшняя реальность такова, что этого может оказаться недостаточно для осуществления полёта.

1
Автор поста оценил этот комментарий

Сейчас гравитация используется только для маневров, как в упомянутой "гравитационной праще". И, возможно, моя идея несколько романтична, но нет ли возможности использовать антигравитацию либо просто гравитацию и "притягиваться" к космическим объектам, а потом отталкиваться от оных?

раскрыть ветку (1)
4
Автор поста оценил этот комментарий

Общая теория относительности запрещает антигравитацию. Возможность существования такого явления не доказана. К сожалению, пока что это голая фантастика.

Использовать "просто гравитацию" чтобы "притягиваться" - из той же оперы. Мы только-только, год назад, смогли впервые зафиксировать гравитационные волны. Это самое начало долгого и безумно интересного научного пути. Рано загадывать, что будет в его конце.

показать ответы
4
DELETED
Автор поста оценил этот комментарий

Автор, позволю себе вас немного поправить:

После заголовка "Самый простой ХРРД:" у вас идет схема двигателя с турбиной, насосами и регенеративным охлаждением камеры сгорания и сопла. Например, вытеснительная подача топлива возможна вообще без насосов и турбин, а двигатель с абляционным охлаждением не требует циркуляции компонентов топлива в стенках камеры сгорания и сопла ( что и является регенеративным охлаждением). На картинке подходящая схема.


А, и еще: компонент топлива может быть вообще один (допустим, перекись водорода), если он будет разлагаться на катализаторе. Так что даже приведенная мной схема не является самой простой)


Ну и можно также вспомнить твердотопливные двигатели - это вообще эдакий цилиндр с соплом, в котором находится топливо


А так пост хороший, конечно, вы молодец

Иллюстрация к комментарию
раскрыть ветку (1)
3
Автор поста оценил этот комментарий

Вы кругом правы.

3
Автор поста оценил этот комментарий

Насобираем товарищу рейтинга, что-бы мог картинки к посту прикрепить?

раскрыть ветку (1)
3
Автор поста оценил этот комментарий

Подозреваю, что товарищу категорически запрещено выносить с работы картинки =)

Тем не менее, давайте насобираем, чего ж нет.

показать ответы
0
Автор поста оценил этот комментарий
погодь-погодь, разве ядерные реакторы используются в космических аппаратах сейчас? И я не про РИТЭГ.

пс: пост годнотища, респект, плюсы и сэйв за труд
раскрыть ветку (1)
3
Автор поста оценил этот комментарий

Прямо сейчас, кажется, нет. Но ещё недавно использовались: https://ru.wikipedia.org/wiki/Ядерные_реакторы_на_космически...

Теперь ваяют вот такую штуку: https://ru.wikipedia.org/wiki/Ядерная_энергодвигательная_уст...

показать ответы
3
Автор поста оценил этот комментарий
А чего плохого? Ну и пусть летят себе. Медь плотнее аргона, она не стравится через 10 лет. Вкупе с ядерной установкой для выработки энергии(эту тему автор совсем обошел стороной, а у нас сейчас вроде как хотят запилить такую мегаваттного класса), это лучшая перспектива для межпланетных полетов (даже до юпитера) в ближайшие лет 100 -200.
А Юпитер - влажная фантазия на 300 лет вперед - ставлю бутыль Вискаря, что к тому времени там появится плавающая в атмосфере обитаемая станция. И на титане будет одна (не плавающая уже) - пристанище качков.
раскрыть ветку (1)
3
Автор поста оценил этот комментарий

Автор упомянул, что иногда к электрическим двигателям в качестве источника энергии присобачивается ядерный реактор. Это вот оно как раз и будет, просто пытаются втрамбовать в разумные объёмы реактор помощнее. Движок всё равно останется электрический.

Да, наши действительно хотят орбитальный тягач. И по планам в 2018 году работы должны были бы завершиться.

К сожалению, есть обоснованное подозрение что не всё так радужно.

показать ответы
4
Автор поста оценил этот комментарий

Ну, было бы странно не считать такие ломающие, слабые и слабопредсказуемые эффекты ошибкой до обнаружения ошибки или объяснения.

Не?

раскрыть ветку (1)
2
Автор поста оценил этот комментарий

Чем люди дальше от понимания того как работает наука, тем более они склонны ожидать от учёных охоты на снежного человека, ловли летающих тарелок, тралления шотландских озёр в поисках плезиозавров и пристального изучения "изобретения", нарушающего фундаментальный закон сохранения импульса.


Вы мне лучше вот что скажите. Каков был ваш маршрут до этого поста? В последние сутки наблюдаю повторное возникновение интереса к нему, и это спустя восемь дней. Рейтинг поста снова ползёт вверх, то есть откуда-то подошли новые читатели.

показать ответы
0
Автор поста оценил этот комментарий
Общая теория относительности запрещает антигравитацию.

Только при отсутствии частиц с отрицательной массой

Иллюстрация к комментарию
раскрыть ветку (1)
2
Автор поста оценил этот комментарий

Как только найдёте - тащите их сюда. Будем строить антиграв =)

Иллюстрация к комментарию
показать ответы
1
Автор поста оценил этот комментарий

Реально оч познавательная статья, однако есть ньюанс, про который забыли упомянуть. А именно, что даже не смотря малое кол-во газов из-за сверхновой, в космосе все равно много молекул. И плевать бы на них, пока скорость невелика. Однако при скоростях порядка скорости света, даже на 0.3С будет ГИГАНТСКАЯ проблема с тем, что эти молекулы будут "пескоструить" корпус корабля. А поскольку полёт будет длиться не минуты и даже не часы, а десятилетия, то не выдержит никакой корпус, не хватит мощности никакому электромагнитному полю, чтобы отталкивать их. Это просто тупик. На данный момент.


Вот и диллема. На небольшой скорости это будут сотни-тысячи лет, на большой корабль сотрется в пыль.

раскрыть ветку (1)
2
Автор поста оценил этот комментарий

До 0.3с нам ещё ой как далеко. О-о-о-ой как далеко. =(


Но если теоретически, данная проблема разрешается:

а) чугунной чушкой во лбу корабля;

б) электромагнитным полем как у упомянутого "пылесоса", только не притягивающим а отталкивающим.

показать ответы
Автор поста оценил этот комментарий
Там в космосе почти вакуум. Один атом вещества на куб.километр пустоты. Будет ли реактивный двигатель отталкивать ракету? Фильм "гравитация" с его огнетушителями не в счёт. А паруса... Вот у Плутона солнца почти и не видно. Точка маленькая. Там уж какой ветер то? Просто по теории то все получается красиво и картинки можно нарисовать, а вот практически никто ничего подобного не делал.
раскрыть ветку (1)
1
Автор поста оценил этот комментарий

Объясняю на пальцах. Прям совсем упрощённо и грубо. Для тех кто придёт меня поправлять: ребятушки, я догадываюсь что вы хотите мне сказать, но так проще дать человеку первичное понимание процесса.


Так вот. Реактивному двигателю не надо отталкиваться от чего-то постороннего. Есть закон сохранения импульса. Этот закон говорит нам, что если что-то кинуть, то на тебя будет воздействовать такая же сила, как на кинутый предмет: вы бросили мячик - мячик улетел, но на вас подействовала такая же сила как и на него, с места вы не сдвинулись только потому, что мешает трение о землю.

Если вы бросите мячик в космосе, мячик полетит в одну сторону, а вы - в другую. Правда существенно медленнее, поскольку у вас масса (простите за это замечание) больше чем у мячика. Если вы в космосе оттолкнёте от себя человека с такой же массой, то полетите в противоположные стороны с одинаковой скоростью. Вы отталкиваетесь не от того что есть или чего нет в космосе, а непосредственно от того, что вы бросаете.

Суть реактивного движения в том, чтобы что-то (например - газ) как можно сильнее кинуть назад и, соответственно, сдвинуться вперёд. Отталкиваться от чего-то ещё при этом не требуется - вы уже отталкиваетесь от того, что улетает назад. Поэтому в данном случае встречные атомы вещества будут только мешаться - они будут нас тормозить.


Насчёт парусов. Да, чем дальше от Солнца, тем меньше давление фотонов света (для солнечного паруса) и солнечного ветра (для электрического паруса). Поэтому полёт к Плутону не будет похож на поездку по прямой. Надо будет приблизиться к Солнцу, где давление максимальное. Раскрыть парус. Разогнаться. Подлетая к Юпитеру - свернуть парус. Дать круг вокруг Юпитера, чтобы увеличить скорость за счёт гравитационного манёвра. И вот только тогда уже свистеть со спущенными парусами в сторону Плутона.

Кораблю с солнечным парусом придётся обойтись без торможения, то есть делать все свои дела у Плутона "на ходу", иначе он не сможет вернуться - там нет света чтобы заново разогнаться. Электрический парусник, возможно, сможет использовать и встречное движение солнечного ветра.


Я конечно же очень упростил. Но для первичного понимания - вполне нормально. Надеюсь, стало понятнее.

показать ответы
1
Автор поста оценил этот комментарий
Годнота. Пару лет назад читал практически всё у попмеха иль чего-то подобного. Вот про эл.парус не читал, но у солнечного паруса были какие-то нереальные размеры, для межзвездного полёта. А нацеленный подрыв ядерных зарядов вроде свернули с практики почти сразу как протестировали. Такого двигателя не будет из-за устаревшей технологии.

Кароч, годнота редкостная, подача инфы решает. Спасибо!
раскрыть ветку (1)
1
Автор поста оценил этот комментарий

Позже вернулся, перечитал, сообразил что неверно твою мысль понял. Конечно же все эти годы мучают голую теорию. Практических испытаний с ядерными зарядами не было. Сообразили, что нам ещё на этой планете жить потом. Обычную взрывчатку использовали.

А ведь по первости прямо с Земли планировали на такой дряни стартовать, даже не с орбиты. Это были пятидесятые, физики отрывались как хотели.

1
Автор поста оценил этот комментарий
Годнота. Пару лет назад читал практически всё у попмеха иль чего-то подобного. Вот про эл.парус не читал, но у солнечного паруса были какие-то нереальные размеры, для межзвездного полёта. А нацеленный подрыв ядерных зарядов вроде свернули с практики почти сразу как протестировали. Такого двигателя не будет из-за устаревшей технологии.

Кароч, годнота редкостная, подача инфы решает. Спасибо!
раскрыть ветку (1)
1
Автор поста оценил этот комментарий

Ядерные заряды мучают уже шестьдесят лет. Один "Орион" (https://ru.wikipedia.org/wiki/Орион_(МКА)) мусолили лет пятнадцать. От него, понятное дело, давно отказались, но продолжают рисовать более миниатюрные, необитаемые автоматические станции. Очень уж там заманчивые скорости получаются.

Но - да, такого двигателя скорее всего не будет. ТЯРД (3.3) реальнее.

0
Автор поста оценил этот комментарий
А микроволновый двигатель?
раскрыть ветку (1)
1
Автор поста оценил этот комментарий

Я ж в конце про него написал. EM Drive - это он и есть.

1
Автор поста оценил этот комментарий

Космического кран:370000 км алмазной нитки и противовес около Луны мог бы использовать гравитацию Луны( прилив) для подъёма серьёзных грузов в космос.Людям в будущем это не мешало бы.Спасибо.

раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Ого, это вы далече забрели в архивы Пикабу. Посту уже семь лет, как вы сюда добрались? =)

1
Автор поста оценил этот комментарий

автору спасибо за труды, если будет время, сделайте пост о ракетоносителях вчерашнего дня и сегодняшнего (оформив в фирменном стиле повествования) союзы, протоны, энергии, бураны, шаттлы и пр.(могу и сам погуглить, но толкового нет кроме вики) Достижения спейсХ, боинга и других компаний в области освоения космоса уже на сегодня. ) спасибо.

раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Надо подумать. Есть опасение, что всё что можно написать на эту тему давным-давно написано. Причём даже не десятки раз. Тут за счёт одного только способа подачи материала не выехать, требуется какая-то новизна. Свежесть ощущений нужна. Если соображу с какой стороны к этой теме подобраться, чтобы не впасть в банальщину, то напишу.

1
Автор поста оценил этот комментарий
Попал в пост о Вояджерах и понеслась.
раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Понятно =)

2
Автор поста оценил этот комментарий
Какой офигенный пост, я бы за такие даже денег бы платил.
раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Мне определённо нравится эта идея!

За деньги я могу такого добра довольно много написать =))

показать ответы
1
Автор поста оценил этот комментарий

рекомендую Валентина Гибалова почитать насчет ТЭМ (Транспортно энергетический модуль), частью которого является ЯЭДУ. Данный товарищ в основном о мирном атоме пишет, но не о теории, а о инженерных решениях. Но не забывает космос и термояд.

http://tnenergy.livejournal.com/13275.html

раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Спасибо! Гляну.