Серия «Энергетика»

Насчёт термоядерного синтеза на NIF1

В начале декабря всех гиков от физики порадовала новость о том, что в Ливерморской национальной лаборатории им. Лоуренса достигли положительного выхода энергии термоядерной реакции.

Вот только несклоько постов на Пикабу об этом:

Хорошие новости

То о чем так долго говорили большевики, свершилось! Лазерная установка NIF вышла в термоядерный плюс

В США добились прорыва в термоядерном синтезе, сымитировав происходящий на Солнце процесс

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Событие, безусловно, знаковое, так как впервые за последние 70 лет, энергия, произведённая системой, превысила подведённую энергию в 1,53 раза. Этот коэффициент обозначается буквой Q.


Однако, говорить о том, что мы в одном шаге до энергетического эльдорадо, по-прежнему рано.


Как работает установка NIF


Идея заключается в том, чтобы очень быстро нагреть крохотную капсулу термоядерного топлива так, чтобы получившаяся плазма внутри неё успела прореагировать до того, как её частички разлетятся в разные стороны. Поскольку их ничего не удерживает, кроме собственной инерции, такой вид термоядерного синтеза получил название «инерциального».

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Микрокапсула с термоядерным топливом


Для нагрева используются лазеры. Всего на установке 2 пакета по 96 мощных лазеров. Здесь я приведу очень сжатое описание того, как именно они работают, так как это будет важно чуть позднее.

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Схема установки

Импульс начинается с низкоэнергетической выспышки инфракрасного излучения (1053 нм). Импульс генерируется волоконным лазером. Он является резонатором для всех 192 лучей. Импульс первоначально разделеяется на 48 лучей, которые направляются в модули предварительного усиления. В каждом из них происходит двухступенчатый процесс усиления при помощи ксеноновых газоразрядных ламп. На этом этапе испульс циркулирует от 30 до 60 раз, увеличивая мощность с порядка наноджоулей до десятков миллиджоулей.


На второй стадии, свет проходит 4 раза через модули предварительного усиления (Preamplifier Module – PAM) с неодимовым стеклом, где мощность импульса повышается с миллиджоулей до 6 джоулей. По словам специалистов лаборатории, конструкция этих модулей представляла собой главную сложность.

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Упрощённая диаграмма оптической схемы установки


После предварительного усиления импульс проходит через серию стеклянных усилителей, расположенных на концах лучепроводов. Перед импульсом производится накачка этих усилителей при помощи 7680 ламп, питающихся от массива конденсаторов, которые могут запасать до 422 МДж энергии (117 КВт * ч). При прохождении импульса сквозь усилитель, с него забирается неоторое количество энергии. Импульс проходит через усилитель так же 4 раза, в результате чего, его энергия поднимается с 6 Дж до номинальных 3-4 МДж. Учитывая, что сам импульс длится считанные наносекунды, пиковая ультрафиолетовая мощность, которая доставляется к мишени составляет порядка 500 ТВт.


Большую часть лучепровода занимают пространственные фильтры. Это длинные трубы, которые фокусируют луч на крохотном участке в центре трубы, где расположена маска, которая не пропускает никакого света, кроме точки фокуса.

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Пространственный фильтр


Полный путь лазерного луча в системе составляет где-то 1,5 км.

После усиления луч направляется к камере, внутри которой установлена мишень. Камера имеет около 10 м в диаметре. 192 луча проходят через сложную систему зеркал: так как путь от главного резонатора до мишени у всех лучей разный, используется сложная оптическая система, задерживающая свет некоторых лучей таким образом, чтобы они все ударили в мишень одновременно.

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Схема камеры с мишенью.

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

И её вид снаружи


На финальной стадии инфракрасный свет (1053 нм) преобразуется в ультрафиолет (351 нм) в устройстве, которое назвается частотный преобразователь. Он состоит из тонких листов (1см), вырезанных из кристалла дигидрофосфата калия. Когда инфракрасный свет проходит через первую из двух пластин, длина волны уменьшается до 537 нм (зелёный цвет), а при прохождении через вторую пластину — до 351. Это делается для того, чтобы повысить эффективность нагрева мишени. В идеале, эффективность преобразования может достигать 80%, но фактически, энергия, доставляемая до мишени, уменьшается до 1,8 Мдж.


В NIF используется метод непрямого нагрева. Это значит, что сама капсула с топливом находится в металлическом цилиндре. Нагрев цилиндра (он называется «Хольраум», от немецкого Hohlraum — полость) лазерами заставляет металл переиспускать рентгеновские лучи, которые равномерно и симметрично распределяются по мишени.

Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Схема топливного элемента


Положительный выход


Действительно, 5 декабря 2022 года, на NIF добились положительного выхода энергии. Из поглощённых топливом 2,05 МДж энергии, выделилось 3,15 МДж. Таким образом, показатель Q (отношение полученной энергии к затраченной) составляет 1,53. Энергия была доставлена до мишени при помощи 192 лазеров, суммарная накачка которых (не считая вспомогательных систем) потребовала 400 МДж энергии (почти в 200 раз больше!).


НО


Из 3 МДж лазера где-то 1,5 МДж теряется после конверсии в ультрафиолет, и ещё 15% теряются в цилиндре. Ещё 15% из переиспущенного рентгена поглощаются внешней оболочкой мишени. Только 10-14 КДж энергии поглощается непосредственно топливом.


Насчёт термоядерного синтеза на NIF Термоядерный синтез, Энергетика (производство энергии), Наука, Технологии, Исследования, Термоядерный реактор, Длиннопост

Потери энергии лазера


С другой стороны, лазеры, которые используются на установке NIF уже достаточно морально устарели (им уже по 30 лет). Учёные из лаборатории утверждают, что с учетом современных технологических достижений, они могут увеличить эффективность лазеров с текущего показател <1% до 20%. Это позволит говорить о 30% эффективности установки. С такой эффективностью, для того, чтобы получить промышленную термоядерную энергию, необходим коэффициэнт Q не менее 50 (лучше 100), то есть примерно 100 МДж с затраченных 2 МДж.


Как можно увеличить эффективность?Делать зажигание чаще. В лучшем случае, один лазер на NIF способен давать примерно 1 импульс в сутки. Фактически же, в настоящее время на установке NIF производится 1 импульс примерно в 2 недели. Для чтого, чтобы данный метод получения энергии стал коммерчески-эффективным, необходимо производить несколько импульсов в секунду! При этом, надо перед каждым импульсом производить замену капсулы с топливом.


Сама по себе энергия, получаемая на NIF в настоящее время непригодна к использованию. Предстоит ещё разработать эффективную схему преобразования этой энергии в полезную — электрическую.


Таким образом, даже если на этом пути не возникнет никаких фундаментальных препятствий, боюсь, по-прежнему, термоядерная энергия — вопрос ближайших десятилетий (как и 70 лет назад).

Показать полностью 9

Неисчерпаемый, чистый, безопасный источник дешевой энергии?

Прочитал пост (Китай и его "искусственное солнце" - Science Box ) об очередных успехах китайцев в этом деле, стал было писать комментарий, но потом решил сделать пост, так как сказать нужно многое.

Неисчерпаемый, чистый, безопасный источник дешевой энергии? Наука, Термоядерный синтез, Энергетика (производство энергии), Длиннопост

Когда-то я тоже был большим энтузиастом термоядерной энергетики (желающие разделить мой восторг, смогут это сделать, прочитав вот этот мой старый пост), однако позднее я наткнулся на статью Дэниэла Джессби, человека, 25 лет посвятившего исследованиям в области термоядерного синтеза (ссылка), и это сильно поубавило во мне энтузиазма.


Несколько вводных:

Для обеспечения термоядерного синтеза необходимы температуры порядка нескольких сотен миллионов градусов. Разумеется, никакой материал не сможет выдерживать подобные температуры, поэтому дейтериево-тритиевую плазму, в которой будут проходить реакции синтеза, необходимо удерживать в вакууме, подвешенной в магнитном поле, которая обеспечивается работой очень мощных сверхпроводящих электромагнитов.

Это называется магнитным удержанием, подобный принцип используется в ТОКАМАКах, так же, этот принцип будет использован в строящемся экспериментальном реакторе ITER


Есть и другой принцип получения управляемого синтеза, путём концентрации супермощных лазеров на крохотной мишени (на установке NIF в США, но в среде независимых исследователей постепенно растут сомнения в перспективности данного способа, о чём свидетельствует данная статья в журнале Science )


Реакции синтеза нам известны столько же, сколько и реакции деления, однако, если первая электроэнергия от реакции деления была получена спустя всего 10 лет после открытия, а спустя 12 лет заработала первая атомная электростанция, термоядерная энергия так и остаётся «технологией завтрашнего дня» и по прошествии более 80 лет с той поры.


Обеспечить сам синтез, в принципе, несложно. Вот, например, один американский школьник даже собрал у себя дома термоядерный реактор (см. 13-летний американец собрал дома термоядерный реактор). Проблема состоит в том, чтобы получить от реакции больший выход энергии, чем было на неё затрачено.

Неисчерпаемый, чистый, безопасный источник дешевой энергии? Наука, Термоядерный синтез, Энергетика (производство энергии), Длиннопост

Вот это тоже термоядерный реактор


Прочитайте ещё раз заголовок данного поста. В нём каждое слово не совсем верно (или совсем неверно), но лучше по порядку.


Неисчерпаемый?


Когда люди говорят о «неисчерпаемом топливе» применительно к термоядерному синтезу, обычно подразумевают дейтерий. Его действительно довольно много (156 частей на миллион в воде или порядка 4¹⁶ кг только на Земле). А что насчёт трития? В настоящее время единственной страной, производящей тритий в более-менее значимых объёмах, является Канада. Объём этот… 2,5 — 3,5 кг в год. Для запуска одного ITER потребуется 3 кг — то есть практически весь годовой объём мирового рынка трития. Гипотетический тритиевый реактор потреблял бы 56 кг трития на производство 1 ГВт·года электроэнергии, тогда как всемирные запасы трития на 2006 год составляли всего 21 кг (источник).


Проект DEMO — демонстрационная термоядерная электростанция, которую планируется построить после ITER (который уже официально признан исключительно исследовательской установкой) будет ежедневно потреблять по данным с их же сайта до 300 г трития, чтобы выработать 800 МВт электроэнергии.


Не всё, разумеется, так безрадостно, и установки эти строят далеко не глупые люди. После реакции слияния, большая часть выделенной энергии уносится вместе с нейтроном. Ёмкость, внутри которой происходит реакция, окружена слоем лития, который поглощает этот нейтрон и распадается до трития с выделением альфа-частицы.

Неисчерпаемый, чистый, безопасный источник дешевой энергии? Наука, Термоядерный синтез, Энергетика (производство энергии), Длиннопост

В теории запасы трития могут восполняться за счёт этой реакции, но на практике в реакции синтеза прореагирует менее 10% всего трития, который будет добавлен в плазму. Оставшийся тритий необходимо будет собрать с внутренних поверхностей камеры реактора и повторно внести. И такой цикл необходимо произвести от 10 до 20 раз, чтобы весь тритий поучаствовал в синтезе. И даже потери в 1% будут означать, что восполнить при помощи самого реактора столько же трития, сколько было потрачено, невозможно.

Практически же, например, в опытах, проводимых на установке ДЖЭТ, безвозвратные потери трития составили порядка 10%.


Чистый?


Ядра трития будут попадать как в детали самого реактора, так и в воду, которая будет их охлаждать, а тритий — радиоактивен. Соответственно, здесь уже необходимы меры для предотвращения радиоактивного загрязнения окружающей среды. Вторая (и гораздо большая) проблема — нейтроны, выделением которых сопровождается почти любая реакция синтеза. Быстрые нейтроны с энергией порядка 14 МэВ будут уносить почти всю энергию синтеза, а поскольку они электрически нейтральны, магнитное поле их не задержит.


Постоянная бомбардировка нейтронами конструкций реактора делает их не только радиоактивными (см.  Наведённая радиоактивность), но и вызывает их эрозию, уменьшая их прочность и прочие эксплуатационные характеристики, уменьшает срок их службы, а главное — требует решения вопроса об их дальнейшей утилизации. Тот же ДЖЕТ, произвёл порядка 3 тыс. кубометров радиоактивных отходов. Для ITER количество радиоактивных отходов оценивается в 30 тыс. тонн, при этом даже через 100 лет порядка 6 тыс. тонн из них всё ещё будут представлять опасность. Стоимость их утилизации оценивается в сумму свыше 300 млн. долларов США (источник), что подводит нас к следующему заблуждению…


Безопасный?


Как уже стало понятно, человеку лучше не находиться вблизи работающего термоядерного реактора, все работы по ремонту и обслуживанию должны будут выполняться либо роботами, либо системами с дистанционным управлением, но и это не самое сложное. Основной проблемой являются магниты. Чтобы выдержать ток требуемой силы для формирования магнитного поля, способного удержать разогретую до сотен миллионов градусов плазму, они должны быть сверхпроводящими. Но такой магнит может непредсказуемо потерять состояние сверхпроводимости в процессе, который называется quench (а по-русски: Внезапная потеря сверхпроводимости). В результате резко подскакивает напряжение, магнит сильно нагревается. Такой нагрев может спровоцировать потерю сверхпроводимости и у соседних магнитов. А ведь эти магниты удерживают плазменный шнур, раскалённый до сотен миллионов градусов! Так что всегда будет оставаться риск «катастрофического разрушения конструкции», проще говоря — взрыва, сопровождающегося выбросом радиоактивных материалов.


Зная это, можно не сомневаться, что со стороны регулирующих органов в разных странах будут выдвинуты очень жёсткие требования по обеспечению дополнительных мер безопасности, а это значит — дополнительные затраты, а главное — крушение мифа о том, что термоядерная электростанция не потребует столь жёстких требований по безопасности, которые сейчас предъявляются к атомной энергетике.

Неисчерпаемый, чистый, безопасный источник дешевой энергии? Наука, Термоядерный синтез, Энергетика (производство энергии), Длиннопост

Биологический щит реактора ITER


Дешевый источник энергии?


В случае возникновения ситуации с потерей проводимости магнита, реактор должен быть остановлен, магнит должен быть извлечён, нагрет до комнатной температуры, отремонтирован, затем охлаждён обратно до сверхпроводимого состояния и установлен обратно. Процесс может быть довольно длительным, и всё это время реактор будет простаивать, не производя энергии.

Для удаления продуктов реакции из плазмы (в основном, гелий) используется устройство под названием дивертор. Из-за контакта с гелием, они тоже подвергаются усиленной эрозии, и это ещё одно дорогостоящее устройство, которое будет требовать регулярной замены.

Неисчерпаемый, чистый, безопасный источник дешевой энергии? Наука, Термоядерный синтез, Энергетика (производство энергии), Длиннопост

Дивертор


Давайте пофантазируем и представим, что мы преодолели все трудности. Электромагниты не теряют сверхпроводимости, камера реактора не подвергается эрозии и не становится радиоактивной, мы производим достаточно трития, чтобы восполнить все потери и нашли подходящий материал для изготовления диверторов… Перед нами всё равно встанет проблема энергопотребления.


Криостаты работают на жидком гелии при температуре 4.5 К, внутри камеры реактора необходимо поддерживать жёсткий вакуум, а так же прокачивать большое количество воды для охлаждения. Мы ещё даже не запустили реактор, а уже затратили огромное количество энергии. В случае с ITER на обеспечение вспомогательных систем реактора потребуется по разным оценкам от 75 до 110 МВт электрической энергии (источник). Когда начнётся непосредственно синтез, потребуется ещё больше. Потребуется нагреть плазму и включить магниты для её удержания.


Планируемое энерговыделение для ITER составляет порядка 500 МВт, многих эта цифра вводит в заблуждение, потому что речь здесь идёт не об электрической, а о тепловой энергии, которую ещё потом предстоит преобразовать с неизбежными потерями. Конверсия тепловой энергии в электрическую в лучшем случае удаётся при «всего» 60% потерь, что оставляет нам лишь 200 МВт выработанной электроэнергии, что гораздо ниже мощности, которую реактор будет потреблять (порядка 300 МВт), поэтому ни о каком положительном выходе энергии для ITER речь не идёт, даже в теории.


ITER останется лишь исследовательским реактором. К 2027 году на нём планируется начать первые эксперименты, а дейтериево-тритиевый синтез — к 2035 году.


Первая попытка производства электроэнергии будет предпринята на проекте DEMO  с мощностью порядка 2 ГВт. Реализация проекта ожидается к середине 2040-х годов. Так что, наиболее оптимистичным сроком получения первого коммерческого электричества от термоядерной энергии можно считать 2060-е.


Даже если все технологии были бы доступны нам сегодня, если бы мы уже решили все проблемы, использование термоядерного синтеза для производства электроэнергии всё равно не получит массового распространения из-за крайне высокой стоимости первоначальных инвестиций.


Даже атомную энергетику, сегодня могут позволить себе далеко не все, а термоядерная станция, требующая специальных материалов, суперпроводящих магнитов, криогенных и вакуумных систем, будет стоить на порядок или даже на несколько порядков дороже.


Огромные затраты и сроки окупаемости проектов связанных с термоядерной энергетикой ставят под сомнение сам вопрос о том, будет ли когда-нибудь коммерчески успешно реализован хоть один из них. Одной из главных задач, стоящих перед энергетикой сегодня является сокращение выбросов углекислоты, и с этой задачей термоядерный синтез справился бы неплохо, но уже сейчас всё больше стран внедряют программы перехода на уровень нулевых выбросов и уже к 2040 многие из этих программ будут реализованы (источник). Альтернативные и возобновляемые источники энергии получают всё большее распространение, а стоимость энергии из возобновляемых источников падает год от года гораздо стремительнее, чем можно было ожидать.

Неисчерпаемый, чистый, безопасный источник дешевой энергии? Наука, Термоядерный синтез, Энергетика (производство энергии), Длиннопост

Но даже если возобновляемыми источниками и не удастся перекрыть всё возрастающие потребности человечества, с этим легко должна справиться гораздо более «простая» и «дешевая» ядерная энергетика.


Вполне возможно, что к моменту, когда мы действительно научимся строить термоядерные электростанции, проблема, которую мы пытаемся решить при их помощи, уже исчезнет.

Показать полностью 6

Грустные мысли по поводу транспорта на альтернативном топливе

Классическая термодинамика – это единственная физическая теория общего содержания, относительно которой я убеждён, что в рамках применимости её основных понятий она никогда не будет опровергнута.  – А. Эйнштейн

Как думаете, в чём содержится больше энергии – в килограмме человеческого жира или килограмме тротила? Вы удивитесь, но животный жир на единицу массы содержит в 8 раз больше энергии, чем тринитротолуол (37 МДж / кг против 4,184 МДж / кг). Жир, конечно, не взрывается так же, как тротил, но способен запасать гораздо больше энергии. Это свойство химических веществ называется плотностью энергии.


Самые лучшие литий-ионные аккумуляторы имеют плотность энергии в 6 – 10 раз меньше, чем тринитротолуол (0,46 – 0,72 МДж / кг).


Если посмотреть на таблицу плотности энергии различных химических веществ, станет понятно, что любые аккумуляторы в этом плане серьёзно уступают тому же бензину или дизельному топливу. Также становится очевидно, почему, когда требуется взять с собой большое количество энергии, бензин, дизельное топливо или авиакеросин становятся практически безальтернативными. Аккумуляторы запасают почти в 30 раз меньше энергии на единицу своей массы, чем химическое топливо (топливо для горения требует кислород, и на 1 часть топлива надо добавить примерно 2 части кислорода, чтобы оно загорелось).

Грустные мысли по поводу транспорта на альтернативном топливе Электромобиль, Альтернативная энергетика, Экология, Глобальное потепление, Термодинамика, Tesla, Гифка, Длиннопост

Въедливый читатель может возразить – батареи генерируют электрическую энергию, в то время как из взрывчатки и химического топлива энергия освобождается в виде тепла. Это весомый аргумент, поэтому посмотрим на современный дизель-генератор. При оптимальной нагрузке в 60-70%, он выдаст примерно 3 КВт*ч электроэнергии на 1 литр топлива (https://bryan-power.com/wp-content/uploads/diesel-generator-fuel-consumption.pdf). Это соответствует примерно 10,8 МДж энергии, что по-прежнему будет примерно в 20 раз больше, чем вы получите с 1 кг батарей.


Теперь давайте ещё раз взглянем на таблицу плотностей энергии, чтобы понять, что никаких прорывов в части аккумуляторов ожидать не следует. Какие бы мы батареи не изобретали, принцип их устройства окажется неизменным: для того, чтобы она дала электрический ток в виде хотя бы одного электрона, нам потребуется как минимум 1 атом на аноде, чтобы этот электрон отдать, 1 атом на катоде, чтобы его принять, и ещё нужно N атомов для разделения анода и катода (электролит). Химическое топливо или взрывчатка запасают энергию в 100% молекул, у аккумулятора этот показатель много меньше 50% при том, что сейчас литий-металлические аккумуляторы имеют плотность энергии лишь в 10 раз меньше.


Для аккумулятора это весьма хороший показатель, так как взамен уменьшенной плотности энергии мы получаем относительную безопасность использования. Представьте, что мы могли бы запасать в аккумуляторах энергию с такой же плотностью энергии, как в тротиле. Захотелось бы вам иметь такой аккумулятор?


Что будет, если вы «закоротите» такую батарею? Сделаем очень щедрое предположение, и дадим ей, например, теплоёмкость как у воды – 4180,6 Дж/(кг•К), то есть, для того, чтобы подогреть воду на 1 градус, необходимо потратить столько энергии, и я повторяю, это очень щедро – круче воды в этом плане только гелий, аммиак и водород. Так вот, если 1 кг батарея высвободит около 4 млн. джоулей, то она «согреется» на 1000 градусов Цельсия. На практике же, нагрев будет ещё больше, так удельная теплоёмкость этой батареи не будет и близко подходить к такому значению, как у воды.


Собственно, даже современные аккумуляторы представляют собой определённую опасность:

Грустные мысли по поводу транспорта на альтернативном топливе Электромобиль, Альтернативная энергетика, Экология, Глобальное потепление, Термодинамика, Tesla, Гифка, Длиннопост

Теперь, наверное, становится понятно, почему бензин (и прочее углеводородное топливо) является сегодня наиболее предпочтительным «переносным» источником энергии. Бензин является почти что идеальным топливом – при огромной плотности энергии, он остаётся относительно безопасным. Да, пары бензина тоже могут взрываться, но на миллиард автомобилей в мире, на подобные случаи статистика отводит доли процента. Кроме того, чтобы потушить бензин, необходимо всего лишь перекрыть доступ кислорода пламени. Повреждённая батарея, с другой стороны, будет продолжать отдавать свою энергию, пока не освободит её полностью. Потушить её нельзя. Энергия, способная заставлять автомобиль двигаться 600-800 км, легко и безопасно запасается в бензобаке объёмом 40-60 литров, в то время как аккумуляторы электромобиля сейчас занимают в 3-4 раза больший объём, и при этом имеют запас хода всего 200-250 км.


Я уже не говорю про авиацию, где аккумуляторы не применимы в принципе – вы не сможете сделать хоть сколько-нибудь годный самолёт, так как для необходимой мощности двигателей потребуется большая масса батарей, чтобы поднять которую потребуется более мощный двигатель, чтобы его запитать потребуется больше батарей... ну вы поняли.


Сейчас активно продвигаются два вида автомобилей, не использующих углеводородное топливо – электромобили и автомобили на водородных ячейках.


Водород, казалось бы, идеальное топливо. Его плотность энергии 142 МДж на 1 кг. Выше – только у ядерного и термоядерного топлива. Однако, добавьте к массе, собственно, водорода, массу баллона для его хранения, и всё уже не выглядит таким радостным. Обычный стальной промышленный баллон для сжатого газа, выдерживающий давление 150 атм. имеет массу почти 60 кг и вмещает всего 40 литров газа. Плотность водорода в нормальных условиях 0,08987 г/л, это значит, что при давлении в 150 атмосфер, масса водорода, помещающегося в этот баллон составит… всего около 0,45 кг. Для хранения 450 грамм водорода требуется «тара» массой 60 кг! Сжигая это количество, я получу ~63,9 МДж энергии, что эквивалентно ~1,5 кг дизельного топлива.

Грустные мысли по поводу транспорта на альтернативном топливе Электромобиль, Альтернативная энергетика, Экология, Глобальное потепление, Термодинамика, Tesla, Гифка, Длиннопост

Возьмём обычный автомобиль с объёмом топливного бака, скажем 50 л. Масса пустого топливного бака пусть будет 10 кг, масса всей топливной системы при плотности топлива 875 г/л составляет 53,75 кг, при этом, в таком автомобиле запасено 2,1 ГДж энергии.


Чтобы запасти такое же количество энергии, в случае с водородом мне потребуется 14 кг водорода… то есть примерно 33 баллона, которые весят по 60 кг каждый, то есть почти 2 тонны. При этом кто-то ещё должен будет потратить энергию на то, чтобы сжать весь этот водород до 150 атмосфер.


Вот Тойота-Миллениум. Одна заправка для неё – это примерно 5 кг водорода (эквивалент ~22 литра бензина), однако суммарная масса топливной системы вместе с баками составляет 92,5 кг. (и это при использовании высокотехнологичных ультра-лёгких материалов, а не стали).

Грустные мысли по поводу транспорта на альтернативном топливе Электромобиль, Альтернативная энергетика, Экология, Глобальное потепление, Термодинамика, Tesla, Гифка, Длиннопост

Дальность хода на одной заправке для такого автомобиля составляет 500 км. Вроде неплохо, но если мы возьмём эквивалентную массу бензина (~80 кг или 91 л) на обычном автомобиле сходного класса мы проедем в 2 – 2,5 раз большее расстояние.


Ещё не стоит забывать тот факт, что водород взрывается при смеси с воздухом в концентрациях от 18,3 до 59% (то есть, практически всегда) И взорваться он может просто от искры статического электричества на вашей одежде или просто от косого взгляда. Представьте себе, что будет, если водородные баки такого автомобиля повредятся в результате ДТП!


Да, сейчас безопасности водородных автомобилей уделяется большое внимание, но посмотрите на это видео, где в топливный водородный бак стреляют практически в упор. Посмотрите внимательно на скорость, с которой из бака исходит струя газа – она сопоставима со скоростью пули. И, помните, этот газ может взорваться от любой искры чуть позже, даже если он не взорвался от выстрела.

Грустные мысли по поводу транспорта на альтернативном топливе Электромобиль, Альтернативная энергетика, Экология, Глобальное потепление, Термодинамика, Tesla, Гифка, Длиннопост

Теперь посмотрим на флагман электромобилестроения Tesla Model 3. В документации указано, что на одной зарядке, этот «лучший электромобиль» пробегает 215 миль или 346 км (это если используется форм-фактор 18650). На элементах форм-фактора 2170 будет на 100 миль больше и Тесла догонит среднюю дальность пробега стандартной легковушке на 1 заправке (500 км). При этом масса батарей составляет около 500 кг! То есть, у Теслы топливная система имеет массу почти в 10 раз больше при меньшем пробеге! Характеристики даже хуже, так как разряженный аккумулятор весит столько же, чем заряженный (на самом деле нет, но погрешность пренебрежительно мала).


Теперь про дозаправку. Если у бензинового транспорта и даже автомобилей на водороде проблем заправкой нет, и её длительность составляет несколько минут, у электромобиля скорость зарядки аккумуляторов исчисляется часами! При этом, чем выше скорость передвижения, тем быстрее я посажу батареи. При перемещении со скоростью 100 км/ч на каждые следующие 100 – 120 км, мне необходимо будет целый час подзаряжать аккумуляторы (и это если я найду розетку!).


Аккумуляторы Илона Маска – одни из лучших в мире на сегодняшний день, но что бы он нам не обещал на тему «революций» в аккумуляторостроении, термодинамику ему не победить и по плотности энергии, аккумуляторы всегда будут гораздо хуже химического топлива.


Разумеется, у химического топлива есть один недостаток – при его сгорании образуется углекислый газ, который вносит серьёзное влияние в процесс глобального потепления климата. Разумеется, у электромобилей, как у городского транспорта есть будущее, и есть своя ниша, однако посмотрите на эту картинку и подумайте вот о чём – так ли уж чиста эта «чистая» энергия:

Грустные мысли по поводу транспорта на альтернативном топливе Электромобиль, Альтернативная энергетика, Экология, Глобальное потепление, Термодинамика, Tesla, Гифка, Длиннопост

Вот прогноз динамики развития мировой энергетики до 2040 года (источник) . Разумеется, я тоже очень рад, что доля возобновляемых источников энергии растёт, однако, не стоит думать, что их доля в ближайшие годы превысит долю, приходящуюся на выработку электроэнергии из ископаемого топлива:

Грустные мысли по поводу транспорта на альтернативном топливе Электромобиль, Альтернативная энергетика, Экология, Глобальное потепление, Термодинамика, Tesla, Гифка, Длиннопост

Подумайте, автомобиль на водороде будет тратить энергию не только на перевозку вас, но ещё и на перемещение тяжёлых топливных баллонов, к тому же водород – не самое безопасное топливо в мире. Но это ещё не всё, на то, чтобы сжать водород до 150 – 200 атмосфер тоже будет потрачена энергия (на заправке).


То же самое касается электромобилей – подумайте, сколько лишнего веса в виде аккумуляторах ездит вместе с вами, подумайте, что почти половина энергии данных аккумуляторов тратится лишь на перемещение их собственного веса.


Автомобильный бензин или дизельное топливо, если упростить, при сжигании производят воду и углекислый газ. Больше того, если потратить определённую энергию, то эти два компонента можно заново скомбинировать в углеводородное топливо и кислород. Да, на производство топлива таким способом потратится больше энергии, чем потом может получиться при его сжигании, но раз мы всё равно хотим тратить энергию на перевозку «мёртвой массы» аккумуляторов или газовых баллонов, не лучше ли сосредоточить усилия в этом направлении?

Показать полностью 7
Отличная работа, все прочитано!