47

Алгоритмы для неспокойных недр

В Институте вычислительных технологий СО РАН совершенствуют систему быстрой классификации сейсмических событий, ориентированную на регионы с высокой техногенной нагрузкой.Инструментами автоматической классификации, встроенными в системы сейсмического мониторинга, сегодня никого не удивишь. Они соревнуются представительностью и фундаментальностью признаков, мощностью и новизной алгоритмов и, в итоге – точностью.Однако за рамками научных публикаций остаются важные вопросы трудоемкости настройки и обучения ядра системы, требуемого качества данных, объема «ручного» труда пользователя и уровня его квалификации.

«Фактически вне поля зрения оказывается принципиальное свойство любого инструмента – его технологичность и целесообразность реализации, – констатировал старший научный сотрудник Кемеровского филиала ИВТ СО РАН кандидат технических наук Роман Юрьевич Замараев. – Что спорить о нескольких процентах преимущества в точности классификатора, которые, к слову, можно опровергнуть на других данных, если затраты на развертывание различаются в десятки раз?»

Свои резоны привносят и региональные особенности. Например, в Кемеровской области работают десятки предприятий, регулярно проводящих массивные взрывные работы. В непосредственной близости от промышленных зон проживает около 2 миллионов человек и размещены муниципальные коммуникации.

«В общей сложности за год здесь регистрируется более 2 000 сейсмических событий в диапазоне магнитуд, характерных как для региональных землетрясений, так и для типичных (по технологии и мощности) взрывов на угольных разрезах, – продолжил Роман Замараев. – Непрерывный сейсмический мониторинг этой территории создает внушительный поток данных, которые являются частью информационного обеспечения гражданской обороны и спасательных служб. Работа с этими данными требует высокой квалификации и ответственности сотрудников службы наблюдения».

«Если проставить приоритеты в решении задач сейсмического мониторинга, то станет понятно, что практикам нужен не столько инструмент исследователя, сколько рабочая технология классификации сейсмических событий, – резюмировал старший научный сотрудник Кемеровского филиала ИВТ СО РАН кандидат технических наук Семен Евгеньевич Попов. – Технология, способная справиться с поступающим объемом данных, достаточно дешевая для региональных и муниципальных служб, не требующая высокой квалификации оператора и способная заменить его по точности классификации на потоке типичных событий».

К реализации был принят созданный в Кемеровском филиале ИВТ СО РАН алгоритм классификации, в котором используются оригинальные признаки промышленных взрывов и природных сейсмических событий. При сопоставимой с «конкурентами» точности этот алгоритм однопроходный, лишен настроечных коэффициентов, ветвлений и сортировок. Он идеально подходит для «распараллеливания», то есть выполнения в несколько потоков на нескольких вычислительных ядрах.

Идея параллельных вычислений была реализована на платформе Apache Spark – так называемой «платформе экономичных супервычислений».

Общая схема работы системы быстрой классификации сейсмических сигналов на базе параллельных вычислений Apache Spark


Эта платформа позволяет собирать в локальной сети достаточно мощные вычислительные кластеры из почти офисных компьютеров, и расширять кластеры линейно до требуемой производительности. «В тестах вычислительной системы из трех рабочих станций за счет дополнительной оптимизации кода под параллельное исполнение и использования платформы Apache Spark получен 25-кратный прирост производительности по сравнению с конкурентами, – рассказал С. Попов. – В итоге посекундная обработка суточной сейсмической записи занимает менее 35-40 секунд, что приближает нас к скорости вычислений, близкой к реальному времени».

Система реализована в виде веб-сервиса и в настоящее время тестируется в Службе сейсмических наблюдений Агентства по защите населения и чрезвычайным ситуациям администрации Кемеровской области.ИВТ СО РАН

Наука | Научпоп

9.3K постов82.8K подписчика

Правила сообщества

Основные условия публикации

- Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

- Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

- Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

- Видеоматериалы должны иметь описание.

- Названия должны отражать суть исследования.

- Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.


- Посты-ответы также должны самостоятельно (без привязки к оригинальному посту) удовлетворять всем вышеперечисленным условиям.

Не принимаются к публикации

- Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

- Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

- Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.


Наказывается баном

- Оскорбления, выраженные лично пользователю или категории пользователей.

- Попытки использовать сообщество для рекламы.

- Фальсификация фактов.

- Многократные попытки публикации материалов, не удовлетворяющих правилам.

- Троллинг, флейм.

- Нарушение правил сайта в целом.


Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество Пикабу.