81

Как формируются планеты и звезды?

Как формируются планеты и звезды? Космос, Наука, Солнечная система, Формирование Звезд, Длиннопост

Все мы хорошо знакомы с солнечной системой, ведь по сути это наш родной дом. Название входящих в ее состав планет, порядок их расположения, а может быть даже расстояния до солнца известны многим, однако не все так просто. В этой статье мы углубимся в саму суть этой интересной темы и составим четкое представление о солнечной системе и ее формировании.


Наша система планет сформировалась очень давно. Примерно 4,5 млрд лет назад. В нее входит центральная звезда — солнце. И все естественные космические объекты, вращающиеся вокруг нее. В нашей солнечной системе находится всего 9 планет, или 8 полноценных, в связи с признанием Плутона карликовой планетой.


Не так давно Плутон считался одной из основных планет, наиболее удаленной от солнца. Но сейчас он рассматривается как один из самых крупнейших объектов пояса Койпера — темной, дискообразной зоны за пределами орбиты Ньютона, содержащей триллионы комет.

Как формируются планеты и звезды? Космос, Наука, Солнечная система, Формирование Звезд, Длиннопост

По какому же принципу формируются планеты и звезды? Они образуются из туманностей, состоящих из газа и пыли. Иногда по чистой случайности определенные области газопылевой туманности становятся плотнее окружающего их вещества. Благодаря силе тяготения все окружающее их вещество начинает к ним притягиваться. Масса все увеличивается и увеличивается до тех пор, пока не образуется новая звезда. Такое явление называют гравитационным коллапсом. В остатках облака большая часть газа и пыли закручивается в одну сторону. За счет конденсации увеличивается скорость вращения вокруг центральной части, тогда и завершается стадия коллапса. Незначительная часть облака распределяется по экватору вращения звезды, и из вещества этого остаточного диска в дальнейшем образуются планеты.

Как формируются планеты и звезды? Космос, Наука, Солнечная система, Формирование Звезд, Длиннопост

Все планеты объединяют в две группы:


1. Внутренние — планеты земной группы

2. Внешние — газовые гиганты


Самая большая планета входящая в земную группу — Земля. Поверхность такого типа планет твердая, на них можно осуществлять посадку космических аппаратов и даже ходить. Таки планеты обладают высокой плотностью и состоят преимущественно из тяжелых металлов. Этим они и отличаются от газовых гигантов. Планеты земной группы имеют сходное строение: ядро, мантия и кора, которая образовалась в результате частичного плавления мантии. Две планеты из земной группы имеют спутники. Земля — луну. Марс — Деймос и Фобос.

Как формируются планеты и звезды? Космос, Наука, Солнечная система, Формирование Звезд, Длиннопост

Газовые гиганты представляют собой гигантские газовые шары, окруженными кольцами, а между внутренними и внешними планетами располагается пояс астероидов. Газовые гиганты имеют небольшую плотность и краткий период солнечного вращения за счет их отдаленности от солнца. Следовательно, значительное сжатие с полюсов. Их поверхности хорошо отражают солнечные лучи, поэтому и царит весьма не дружелюбный климат. К газовым гигантам относят: Юпитер, Сатурн, Уран и Нептун. Они так же как и планеты земной группы имеют сходное строение и состоят из нескольких слоев. По мере углубления в планету увеличивает давление, которого хватает для сжатия газа до жидкого вещества.

Как формируются планеты и звезды? Космос, Наука, Солнечная система, Формирование Звезд, Длиннопост

Предполагается, что газовые планеты имеют небольшое каменное или металлическое ядро. В атмосферах этих планет дуют мощные ветры, со скоростями превышающие несколько тысяч км/ч. Например, скорость ветра на экваторе Сатурна составляет 1800 км/ч.

Найдены дубликаты

+7
Может, всё же Пояс Койпера находится за орбитой Нептуна, а не за орбитой Ньютона? Просто, что-то я не слышал о такой планете, как Ньютон.
+7

Гравитационный коллапс - это когда гравитация пересиливает принцип запрета Паули (предел Оппенгеймера-Волкова) и звезда схлопывается в чёрную дыру. А звезда зажигается, когда температура в центре газопылевого облака становится достаточной для термоядерного синтеза.

раскрыть ветку 2
0

Вот, правильно человек сказал, когда сила трения нагревает центр звезды до 100 млн(?)* градусов начинается процес термоядерного синтеза, то есть звезда "зажигается".

*100 млн градусов вроде нужно для дейтерия с тритием, не уверен сколько нужно для начала реакции водород + водород.

раскрыть ветку 1
0

15-20 млн К достаточно

+3

напоминает доклад подготовленный дома хорошим учеником эдак класса 7го

+4

Познавательно конечно, но очень и очень кратко!! Из серии "Как нарисовать сову"

+2

А может внутренние планеты в Солнечной системе когда-то были газовыми гигантами с которых сдуло атмосферу и остались одни каменные ядра? Как вам такая версия?

0
Из какого газа состоят газовые планеты? Не такого как в зажигалках? Типа если бросить туда спичку-она ёбанет?
раскрыть ветку 2
+4
если бросить туда спичку-она ёбанет?

Нет. Окислителя, то нет. Если бы был давно и без тебя ебанула бы. Там же грозы идут похлеще чем в штате Техас.

А газ в основном водород. Самое распространенное вещество во вселенной. По совместительству и самое простое.

-4

Надо Миллеру сказать. Ты в доле."Космический поток" в обход Украины

-1

Спасибо, Кэп.

Похожие посты
50

МКС в эфире, МКС-55/56

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ, сокращенно МКС (англ. International Space Station, сокр. ISS) - крупнейший международный проект, пилотируемая орбитальная станция, используемая как многоцелевой космический исследовательский комплекс.

Уже 20 лет находясь на орбите нашей планеты она работает в пилотируемом режиме, на её борту постоянно живут и работают международные космические экипажи.

Космонавты и астронавты занимаются научной деятельностью которую можно провести только в условиях невесомости, а высота орбиты станции позволяет проводить масштабные исследования атмосферы и поверхности Земли. Станция это космическая многозадачная платформа позволяющая оперативно вносить коррективы в исследования.

К 20-летию начала работы МКС в пилотируемом режиме, мы начинаем публикацию кратких видеофрагментов из жизни и рабочих моментов космонавтов и астронавтов.

В данном ролике бортинженер МКС-55/56, космонавт Олег Артемьев показывает как в огромной по своим размерам МКС можно найти обходимую вещь.

98

Подборка интересных новостей науки за неделю. От второго маркера жизни на Венере до нового органа в черепе человека

Каждый понедельник мы отбираем несколько интересных новостей науки и делаем короткое видео о них.

В новом выпуске: Где искать священный Грааль высокотемпературной сверхпроводимости; чем занимается новый обнаруженный орган в человеческом теле; какой второй вероятный признак жизни обнаружили на Венере; какой процесс позволил ученым измерить самый короткий промежуток времени; и как сделать кожу как у хамелеона?

Содержание ролика:

00:30 Как найти священный Грааль высокотемпературной сверхпроводимости

04:20 Медики открыли новый орган в центре черепа

06:14 В атмосфере Венеры обнаружили глицин

08:07 Ученые измерили самый короткий промежуток времени

10:48 Ученые разрабатывают искусственную хамелеонью кожу


(все ссылки на пруфы и исследования под роликом на ютубе)

549

Если инопланетяне свяжутся с нами, поймем ли мы их?

Польский философ и писатель-фантаст Станислав Лем считал, что наш вид никогда не сможет прочитать или понять послание инопланетян. Свой аргумент Лем изложил в шедевральном романе 1968 года «Голос Господа». В романе рассказывается об испытаниях и неудачах масштабной, похожей на Манхэттенский проект попытки расшифровать внеземное послание. По мере того, как книга углубляется в философию, лингвистику, математику, теорию информации и многое другое, автор медленно выкристаллизовывает аргументы скептиков о том, почему связь с инопланетянами почти наверняка обречена на провал. В своей простейшей манере Лем приходит к выводу о том, что существуют два непреодолимых барьера для коммуникации с разумными формами жизни, которые естественным образом будут существовать между чужеродными видами. Это лингвистический барьер и разрыв в интеллекте.

Лингвистический барьер
Помните фильм «Прибытие» 2016 года? В нем на нашу планету приземляется инопланетный корабль, а существа в кабине капитана – гиптоподы, напоминают земных обитателей морских глубин – головоногих моллюсков (осьминогов), что значительно осложняет коммуникацию между людьми и визитерами из космоса. Чтобы разгадать язык гиптоподов, правительство обращается за помощью к одному из ведущих мировых лингвистов. Дальнейший сюжет фильма рассказывать не буду, избавив читателей, которые его не смотрели, от спойлеров. Однако Лем утверждает, что даже в случае контакта с инопланетянами, теоретически понятное сообщение все равно будет нечитаемым.
Лем пишет, что на всех известных человеческих языках, от латыни до баскского, мы можем перевести предложение: «бабушка умерла, похороны в среду», и оно будет понято. Но этот перевод возможен только потому, что биологически и культурно мы все разделяем одни и те же ориентиры, необходимые для понимания слов: мы все умрем. Мы размножаемся половым путем и у нас есть бабушки. Несмотря на огромные культурные различия, все мы, так или иначе, церемониализуем акт смерти. И, наконец, что не менее важно, мы все связаны с гравитацией Земли и отмечаем течение времени в терминах темных и светлых периодов, вызванных вращением нашей планеты. Но представьте себе инопланетянина, который размножается бесполым путем – как амеба. У однополого существа не было бы ни бабушки, ни речевого аппарата, чтобы описать ее. Точно так же, эти существа могут быть «незнакомы с понятием смерти и похорон». Все эти понятия требуют объяснения.
Язык, утверждает Лем, требует общих ориентиров между коммуникаторами. И если разумная жизнь не выглядит и не ведет себя пугающе похоже на нас, то любой чужеродный вид будет отличаться от нас бесконечным количеством способов. Основой человеческого языка является наше восприятие окружающего мира, и нет никакой гарантии, что инопланетная жизнь сможет передать сообщение, которое мы понимаем, или так, как мы понимаем. Но даже если они это сделают, кто знает, сможем ли мы когда-нибудь разобрать дикцию чего-то столь странного, как разумное существо с биологией, основанной на мышьяке или кремнии?

Формы внеземного общения
Лем приводит несколько примеров, которые являются образцом различных возможностей инопланетного общения. У каждого из них есть свои подводные камни, которые сбивают нас с толку. Например, сообщение может быть записано так, как мы, люди, общаемся друг с другом и на языке, подобном нашему, с отдельными единицами значения, такими как слова, относящиеся к объектам и понятиям. Хотя словарный запас и грамматика этого языка сами по себе могут быть за пределами нашего понимания, по крайней мере, мы могли бы понять, как приступить к переводу. Словом, прямо как в фильме «Прибытие».
Но коммуникация может также быть системой «моделирования» сигналов, таких как теле или радио сигнал. Это означает, что сообщение, которое мы получим – не сообщение как таковое, а, например, сообщение, зашифрованное в двоичном коде. Лем считает, что в таком случае наши шансы обречены на провал. По мнению писателя, представители чуждого нам вида скорее всего общались бы с помощью чего-то вроде запаха. Эта идея, к слову, описана в фильме «Спасайтесь сами» (Save yourselves! 2020) – история повествует об инопланетянах, похожих на маленьких пуфиков, которые прилетели захватить нашу планету. Рекомендую к просмотру.
Третий и четвертый примеры заключаются в том, что сообщение может представлять собой своего рода «рецепт», то есть набор инструкций, необходимых для производства определенного объекта, или оно «может содержать описание объекта — конкретной «вещи».Так, в книге Лема инопланетяне посылают рецепт, чтобы вырастить инопланетянина, который затем смог бы общаться с людьми.
Выдающийся астроном и популяризатор науки Карл Саган высказывал похожую точку зрения. Свои соображения на счет возможного общения с инопланетной цивилизацией он изложил в романе «Контакт», по которому в 1997 году сняли одноименный фильм с Джоди Фостер и Мэтью Макконахью. Согласно сюжету, молодая радиоастроном (героиня Фостер) поймала сообщение от инопланетян, расшифровка которого показала схему строительства чего-то наподобие инопланетного корабля. Отмечу, что Саган считал радиоастрономию наиболее возможным способом контакта с внеземным разумом.

Разрыв в интеллекте
Давайте представим, что благодаря какому-то абсурдному лингвистическому везению мы сможем прочитать полученный инопланетный сигнал. Лем считает, что его расшифровка решает лишь половину проблемы: «не исключено, что получив послание от далеких миров, мы поступили бы с ним как дикари, греющиеся у огня горящих книг» — пишет Лем.
Писатель считал, что скорее всего интеллект наших внеземных друзей принципиально выше человеческого:

Я могу общаться со своей собакой, высокоинтеллектуальным животным, но только в той максимальной степени, которую позволяют когнитивные способности собаки.

Таким образом, наш вид может быть просто недостаточно высокоразвит, чтобы понять все, что хотят сказать инопланетяне. Но даже если представители внеземной цивилизации близки к нам интеллектуально и их цивилизация похожа на нашу, мы просто-напросто можем никогда об этом не узнать – в конце-концов никто не отменял космические расстояния и законы физики, согласно которым, во Вселенной действует ограничение скорости света – примерно 300 000 километров в секунду, а также, о ограничение скорости звука, о чем написано в этой статье.

Всем спасибо за прочтение данного поста.
Взято отсюда: https://hi-news.ru/eto-interesno/esli-inoplanetyane-svyazhut...

Показать полностью
92

Как черная дыра разорвала звезду на спагетти

В СМИ активно растиражировали новость о том, что астрономы смогли увидеть как черная дыра пожирает звезду, предварительно разорвав её на спагетти. В новом видео пулковский астроном Кирилл Масленников расскажет, что астрономы увидели на самом деле, что выдумали художники и что такое «событие приливного разрушения».

С помощью телескопов Европейской южной обсерватории (ESO) и других научных учреждений мира астрономы зафиксировали редкое явление: вспышку света от звезды, разрываемой на части сверхмассивной черной дырой. Это явление, называемое событием приливного разрушения – на сегодняшний день самая близкая к нам вспышка такого происхождения; событие, вызвавшее ее, произошло на расстоянии более 215 миллионов световых лет от Земли.


Спагеттификация — при приближении к черной дыре материя подвергается сильнейшему гравитационному давлению. Когда тело оказывается слишком близко к источнику мощного гравитационного поля оно оказывается растянуто и приобретает длинную тонкую форму, как спагетти. Термин был придуман Стивеном Хокингом в книге "Краткая история времени", хотя сам эффект был описан задолго до него.


Астрономы сталкиваются с трудностямя при исследовании вспышек, сопровождающих процесс спагеттификации, так как они часто загораживаются от нас завесой пыли и обломков. Лишь теперь удалось исследователям пролить свет на происхождение этой завесы.


“Мы обнаружили, что, когда черная дыра поглощает звезду, могут происходить мощные выбросы вещества в направлении от черной дыры, которые и создают помехи при наблюдениях”, -- объясняет Саманта Оутс (Samantha Oates), также сотрудница Бирмингемского университета. Это происходит из-за того, что энергия, высвобождаемая в процессе поглощения черной дырой звездного вещества, отбрасывает часть его фрагментов вовне.


Астрономы наблюдали событие приливного разрушения AT2019qiz в спиральной галактике в созвездии Эридана на протяжении шести месяцев. “Из-за того, что мы поймали это явление на ранней его стадии, мы сумели увидеть, как из окрестностей черной дыры истекает поток вещества со скоростью до 10 000 км/c, который и образует завесу из пыли и осколочного материала”, -- говорит Кейт Алекзандер, эйнштейновский стипендиат NASA в Северо-западном университете США.

Как черная дыра разорвала звезду на спагетти Наука, Космос, Черная дыра, Видео, Длиннопост, Астрономия, Фильмы

На этой иллюстрации – звезда (на переднем плане) подвергается спагеттификации в процессе всасывания её сверхмассивной черной дырой (на заднем плане) в ходе «события приливного разрушения». В новом исследовании, выполненном при помощи Очень Большого телескопа и Телескопа новой технологии ESO, группа астрономов обнаружила, что, когда черная дыра пожирает звезду, может произойти мощный выброс материи звезды в окружающее пространство.


Релиз на сайте Европейской Южной Обсерватории, опубликованный Кириллом Масленниковым:

https://www.eso.org/public/russia/news/eso2018/

Показать полностью 1
37

Тройное солнце

Гало – редкое и уникальное природное явление, представляющее собой светящееся кольцо вокруг Солнца. В древности гало, как и другим небесным явлениям, приписывалось мистическое значение знамений. Как правило, они считались дурными, особенно если гало принимало крестообразную форму, которая трактовалась как крест или меч.

Тройное солнце Норильск, Россия, Север, Наука, Космос, Гало, Длиннопост

Существует множество форм гало: круги, обратные радуги и горящие столбы. Солнечные лучи, преломляясь о строго шестигранные кристаллики льда в верхних слоях атмосферы, рисуют в небе исполинские сияющие круги. Часто рядом с основным источником света можно наблюдать ложное светило.


Необходимо условие для этого явления — низкие температуры, когда воздух влажный. Как правило, наблюдать гало можно, когда на улице -20 и ниже.

Тройное солнце Норильск, Россия, Север, Наука, Космос, Гало, Длиннопост

Наиболее часто солнечное гало видят американцы из северных штатов, а в России можно наблюдать в районах Крайнего Севера, в особенности, недалеко от Норильска.

Тройное солнце Норильск, Россия, Север, Наука, Космос, Гало, Длиннопост

Местные жители считают это явление визитной карточкой заполярной зимы и обычно называют «Солнечным столбом». Иногда гало ошибочно принимают за северное сияние.


Фото из открытых источников.

Показать полностью 2
138

Активные вулканы Ио создают на спутнике серную атмосферу

Атмосфера спутника Юпитера Ио состоит в основном из диоксида серы (SO₂). До недавних пор было неизвестно, что является основным источником, восполняющим серную атмосферу Ио: активные вулканы или залежи замороженного диоксида серы, испаряемые солнечным светом.

Активные вулканы Ио создают на спутнике серную атмосферу Солнечная система, Астрономия, Наука, Видео

Наблюдения, проведенные с помощью радиотелескопа ALMA в Чили, подтвердили, что основным источником атмосферы Ио является вулканическая деятельность. На поверхности Ио находятся примерно 400 активных вулканов.

Источник

112

МКС-64

МКС-64 — шестьдесят четвёртая долговременная экспедиция на Международную космическую станцию.

Командир Сергей Рыжиков (космонавт Роскосмоса)

Бортинженер Сергей Кудь-Сверчков (космонавт Роскосмоса)

Бортинженер Кэтлин Рубинс (астронавт НАСА)

481

Самодельная метеостанция для мониторинга погоды

Казалось бы, причем тут исследования космоса? Но далее все по-порядку :)

Мониторинг погоды с помощью самодельного оборудования оказался довольно любопытным занятием...


Идея создания автоматизированной обсерватории с удаленным управлением упёрлась в необходимость получать текущие данные состояния погоды в точке установки астрономического оборудования, вот этого:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Четыре года назад познакомился с микроконтроллерами Arduino (AVR), они оказались очень удобными для прототипирования различных устройств, которые потом можно будет сделать на более серьезных МК. Для обучения работы с Arduino решил собрать первое устройство - метеостанцию. Состояла она из двух блоков - внешнего, который висел за окном и раз в 5 минут передавал показания, и внутреннего, который принимал показания по радиоканалу и отправлял их в сеть на удаленный сервер. На внешнем блоке даже сделал солнечную панель, как помню купил по акции шесть садовых фонариков по 39 рублей, выдернул из них солнечные панели. Собрал из них одну большую, она заряжала внутренние АКБ (обычные ААА аккумуляторы). Такого симбиоза хватало на полгода бесперебойной работы метеостанции, потом аккумуляторы все-таки приходилось заряжать нормально.

Спустя год работы метеостанции, я ее отключил и разобрал. Сделана она была из подручных материалов, вот как она выглядела спустя год работы (внешний блок):

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Самодельный блок с анемометром, датчиком освещенности на фоторезисторе и датчиком DHT22 - температуры и влажности.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Блок с МК, и аккумуляторами спустя год - резиновые заглушки сильно потрескались.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Ну а внутри этого блока находится вот что:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Корпус утеплял в 2-3 слоя, проклеивал. Не знаю помогло это или нет, но АКБ, которые там стояли, до сих пор держат заряд и работают исправно. Целый год работала Arduino и не было ни одного сбоя или зависания - ее не приходилось перезагружать. Разброс температур был от +45 на Солнце, до -32 зимой.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Анемометр можно было бы сделать из шариковой мышки, но я такую не нашел. Сделал из небольшого двигателя, убрал все лишнее и прорезал сбоку отверстие для отпопары. На штоке якоря убрал обмотку, поставил самодельный диск с прорезью. Ну и DHT22 датчик:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Одно из моих увлечений - астрономия, и в этом году я построил астрономическую будку с удалённым управлением (часть 1, часть 2, часть 3). И для автоматизации процесса съемки очень важно получать и обрабатывать погодные условия прямо здесь и прямо сейчас. Поэтому решил строить новую метеостанцию, опять на Arduino (понравилась мне она), но уже более серьезную.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сперва сделал на RJ-45 розетках возможность подключения модулей, но потом переделал на жесткую пайку. Все-таки так будет надёжнее, учитывая прошлый опыт. Соединения могут давать сбои.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все детали метеостанции напечатал на 3D принтере, получилось прям как заводское исполнение.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Метеостанция после недели тестов и отладки программного обеспечения установлена на свое место - на астрономическую обсерваторию.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сейчас она измеряет и передает на удаленный сервер показания - температуру, влажность, точку росы, освещенность, интенсивность УФ-излучения, скорость и направление ветра. Заказал еще ИК-пирометр, для датчика облачности. Измерение уровня осадков делать не стал, так как актуально только в теплое время года.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все данные можно смотреть через веб-интерфейс: просматривать текущие метеоусловия, а также статистику по предыдущим дням: https://meteo.miksoft.pro/

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

В планах - "допиливание" frontend \ backend метеостанции, сделать возможность выгрузки данных. Также сейчас метеостанция подключена и к проекту "Народный мониторинг".

Конечно, я понимаю, что для работы настоящей метеостанции должны быть выполнены большое количество условий (чтобы ее показания котировались), датчики должны быть сертифицированы, и явно быть дороже и точнее. Но сейчас, для работы удаленной астрономической обсерватории, мне этого более чем достаточно - перед запуском планировщика обсерватории я могу посмотреть текущую метеосводку. Теперь я могу быть уверенным, что в случае наступления неблагоприятных метеоусловий во время съемки (облака или осадки) - контроллер обсерватории сам припаркует телескоп и закроет крышу.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Буквально вчера получил посылку из Китая - ИК пирометр, который будет работать в паре с другим датчиком и мониторить облачность. Так что в ближайшие выходные буду добавлять новый датчик в метеостанцию.


Что дальше? Может быть стоит как-то развить этот мини-проект, сделать еще одну, но автономную, с солнечной панелью, АКБ и передачей данных по GSM?


Посты про строительство обсерватории смотрите в моем профиле.


Адрес метеостанции: https://meteo.miksoft.pro/

Мой телеграмм канал: https://t.me/nearspace (@nearspace)
Показать полностью 13
46

Самая высокая гора в Солнечной системе

Самая высокая гора в Солнечной системе Марс, Солнечная система, Космос, Горы, Ландшафт, Олимп

Олимп — потухший вулкан, расположенный на Марсе. Его высота от основания составляет 26 километров. Ширина Олимпа — 540 километров.

Интересно то, что из-за такой ширины невозможно увидеть подножье горы, находясь на её вершине, так как оно скроется за горизонтом из-за кривизны поверхности планеты.

488

Солнечная система. Газовые гиганты

Наша Солнечная система поделена на две части. Внутренние орбиты четырех планет земной группы отделены от четырех газовых гигантов поясом астероидов. Четыре большие газовые планеты, как бы защищают нас от внешнего космоса и принимают на себя удары небесных тел, прилетевших из вселенной.

Начнем с царя Солнечной системы – Юпитер.

С древних времен люди упоминали об этом гиганте. Подробные описания его движения были в Месопотамии, Китае, Греции.

Но когда 400 лет назад появились первые телескопы, люди были поражены его масштабами.

В 1610 году Галилео Галилей впервые рассмотрел планету и ее окружение более подробно и открыл четыре крупнейших спутника Ганимед, Ио, Каллисто и Европа, которые до сих пор называются «Галилеевы спутники».

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Всего, в настоящее время зафиксировано 79 естественных спутников.

Во второй половине 1600-х годов итальянский астроном Джованни Кассини внимательно рассмотрел в телескоп поверхность Юпитера и обнаружил «Большое Красное пятно» громадных размеров, в котором свободно уместится три наших Земли.

Впоследствии ученые выяснили, что это ураган, который бушует в атмосфере планеты уже более 350 лет.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Большой прорыв в изучении нашей Солнечной системы произошел, когда земляне начали посылать космические аппараты.

Первым был зонд НАСА «Пионер-10», который был запущен с Земли еще в 1972 году. Впервые рукотворный космический аппарат преодолел пояс астероидов и передал изображение Юпитера с расстояния 132 тыс. км от верхней атмосферы планеты. В 1982 году зонд вылетел за пределы нашей Солнечной системы, и сейчас продолжает свой путь в сторону звездной системы «Тельца». Цели он достигнет через 2 млн. лет!

Всего на данный момент 7 аппаратов проследовали транзитом через систему Юпитера, а два «Галилео» и «Джуно» вышли на орбиту гиганта и стали исследовать спутники Юпитера.

В частности выяснилось, что Юпитер обладает мощнейшим радиационным полем. Зонд «Галилео» получил дозу радиации, уровень которой превышает смертельный для человека в 25 раз.

А вот структура самой планеты пока на уровне гипотез, проверить которые мы пока не в состоянии.

Следующая уникальная газовая планета, это Сатурн – «Властелин колец», с его неповторимыми кольцами.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Первые упоминания о планете в легендах и мифах были у вавилонян.

Если бы не было визитной карточки Сатурна, его колец, то это был бы – простой белесый приплюснутый шар! Они состоят из ледяных осколков и пыли. Они простираются более чем на 120 тыс. км, но невероятно тонкие по толщине от 20 м до 1 км.

Космический аппарат «Кассини», для того чтобы выйти на орбиту Сатурна, прошел сквозь один из разрывов колец. Яркий блеск колец из-за наличия пыли, со временем не угасает. Ученые это объясняют тем, что ледяные осколки постоянно сталкиваются друг с другом и обновляются.

Всего зафиксировано 62 спутника Сатурна. Великолепные виды некоторых из них нам подарил зонд «Кассини» с посадочным модулем на Титан «Гюйгенсом».

Не очень большой по размеру Энцелад (около 500 км в диаметре) обладает интересной особенностью. На нем большое количество криогейзеров, которые выбрасывают фонтаны воды на большую высоту. Так действует приливное действие Сатурна.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Гейзеры Энцелада, снятые аппаратом Кассини.

На Титане существует азотная атмосфера, а на поверхности, озера из жидкого метана и ландшафты, похожие на земные, но покрыты они замерзшим азотом.

На это спутник Сатурна, был послан спускаемый аппарат «Гюйгенс», который прититанился 14 января 2005 года. Во время спуска велась съемка.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Еще один ярко выделяющийся объект в системе Сатурна - это Япет!

Характерным является контраст двух его сторон по яркости. Достоверного объяснения этому явлению пока нет.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

И последнее явление, запечатленное аппаратом «Кассини» - огромный шторм в северном полушарии газового гиганта.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Предпоследняя планета по современной классификации Солнечной системы, это Уран.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Главное отличие ее от других в том, что ее ось вращения лежит «на боку» относительно плоскости орбиты!

Планета была открыта в 1781 году английским астрономом Уильямом Гершелем. И хотя он утверждал, что наблюдал разреженные кольца у этой планете, подтвердилось это только в 1977 году.

Снимки планеты с близкого расстояния в 81,5 тыс. км передал нам, пролетающий мимо американский зонд «Вояджер-2».

Считается, что цвет сине-зеленой однообразной атмосферы задает метан, да и к тому температура атмосферы самая низкая среди планет Солнечной системы -224° С.

У Урана зафиксировано 27 невзрачных спутника.

Интересно, что само открытие планеты позволило расширить Солнечную систему в два раза. Солнечному свету, для того чтобы достичь Урана, потребуется времени в 20 раз больше чем до Земли.

Последняя официально оформленная планета – Нептун.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Нептун был открыт «на кончике пера», сначала математически, а затем и с помощью телескопа.

В 1989 году состоялось пока единственное посещение окрестностей планеты. В 3000 км от атмосферы пролетал американский космический аппарат «Вояджер-2». Он сделал достаточно большое количество снимков, на одном из которых было зафиксировано, так называемое Большое Темное пятно, однако в 1994 году космический телескоп «Хаблл», его уже не обнаружил.

Одно из объяснений: В атмосфере Нептуна бушуют самые сильные ветры среди планет Солнечной системы, и их скорости могут достигать 2100 километров в час.

Еще одна загадка Нептуна, его температура, которая в 2,5 раза выше чем у Урана, хотя Нептун находится гораздо дальше Урана.

Есть несколько гипотез: от радиоактивного излучения ядра планеты, до химических процессов, связанных с распадом метана.

У Нептуна обнаружено 14 естественных спутников, один из которых сильно превосходит остальные. Это Тритон. Он имеет сферическую форму размером около 2,7 тыс. км и состоит преимущественно изо льда.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Температура его поверхности близка к абсолютному нулю -235 °С . Движется он по спиральной орбите и через несколько десятков млн. лет будет разрушен и у Нептуна возникнет кольцо, как у Сатурна.

По современным данным науки заканчивается Солнечная система так называемым поясом Койпера, в котором сосредоточено большое количество малых планет и астероидов, в том числе и недавняя девятая планета – Плутон.

И в конце приведу относительные размеры планет Солнечной системы:

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Источник

Показать полностью 10
360

5 самых сильных ураганов Солнечной системы

Если вы думаете, что знаете, что такое ураган и сильный ветер, то разочарую вас - смотря с чем сравнивать. Оказывается, не только на Земле случаются штормы и ураганы. Причем на некоторых планетах ветра дуют гораздо сильнее и гораздо дольше.

1. Ветра Венеры

На Венере царит крайне недружелюбная атмосфера. И дело не только в невероятной для Земли температуре - около 500 градусов Цельсия. Вся атмосфера этой планеты - один сплошной ураган. Ученые высчитали, что густая атмосфера Венеры делает оборот вокруг ее поверхности за 4 земных дня, притом что планета вращается вокруг своей оси 243 земных дня.

Скорость ветра, дующего на Венере, около 100 м в секунду (360 км в час). И такой ветер даже может изменить скорость движения планеты на две минуты в день. Да, который длится 243 земных дня.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Густая атмосфера Венеры скрывает от взгляда поверхность планеты

2. Марсианская буря

В отличие от густой атмосферы Венеры на Марсе она еще более разреженная, чем на Земле.

Здесь происходят очень большие песчаные бури. Настолько большие, что охватывают всю планету целиком. Сильный ветер дует со скоростью до 100 м в секунду.

Из-за одной из таких бурь в 2019 году "пал смертью храбрых" марсоход "Оппортьюнити". Он работал на солнечных батареях, из-за начавшейся бури доступа к солнечным лучам долгое время не было, поэтому связь с марсоходом была навсегда потеряна.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Слева - "спокойный" Марс, справа - во время бури

3. Большое красное пятно Юпитера

Юпитер - не только самая большая планета, так называемый газовый гигант, но и рекордсмен по ураганам - они здесь самые большие. Ну а самый большой ураган Юпитера, а также самый известный - Большое красное пятно (БКП).

Скорость ветра в этом урагане достигает 500 километров в час. Внутри него спокойно уместились бы две или три Земли (размер пятна непостоянен, он то уменьшается, то увеличивается).

Люди наблюдают БКП с момента открытия Юпитера. Т.е. его наблюдают уже 350 лет.

В настоящее время пятно значительно уменьшается, и кто знает, может быть скоро оно исчезнет совсем.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Почему цвет пятна кирпичный - до сих пор загадка для ученых

4. Шестиугольник Сатурна

Необычный шторм наблюдается на Сатурне. На его северном полюсе уже минимум 38 лет время виден шестиугольный вихрь. Формирование мегашторма такой необычной формы ученые объясняют сменой времен года на Сатурне - они длятся по семь с половиной земных лет.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Почти идеальный шестиугольник Сатурна

5. Большое темное пятно на Нептуне

Аналогично Большому красному пятну Юпитера на Нептуне было обнаружено Большое темное пятно.

Правда, в отличие от Юпитера, на Нептуне ураган пропал на снимках уже в 1994 году. Но именно здесь дули сильнейшие ветра Солнечной системы со скоростью 2400 километров в час.

Сейчас ученые обнаружили новое пятно на Нептуне - Северное большое темное пятно.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Большое темное пятно

источник

Показать полностью 4
26

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная»

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная» Космос, Вселенная, Астрономия, Черная дыра, Фракталы, Наука, Теория, Горизонт событий, Видео, Длиннопост

Чёрные дыры притягательны не только в буквальном смысле (ещё бы при такой гравитации!), они захватывают воображение фантастов, кинематографистов и, естественно, ученых. Смесь опасности и необъяснимости этих космических объектов порождает огромное множество теорий на их счет. И если вопрос о реальности их существования в наше время уже снят (потому, что снята первая фотография чёрной дыры), то вопросов об их природе и свойствах остается очень много.


В разных теориях чёрные дыры могут оказываться связанными друг с другом через кротовые норы, порождать наши дочерние вселенные, иметь электрический заряд, вращаться или быть стационарными, парить в вакууме или быть плотно окруженными материей.


Поскольку изучение чёрных дыр это процесс, по большей части, чисто теоретический, то и сами теории можно строить практически на любой основе.


Один из самых свежих взглядов на возможную сущность чёрных дыр совсем недавно представил в своем исследовании астрофизик Пол Саттер (Paul Sutter). Его чисто теоретический, основанный на математических расчетах, подход позволяет обосновать тип сверхпроводящих чёрных дыр, которые будучи электрически заряженными, окружены определенным видом пространства, известным как "антидеситтеровское пространство".


Этот тип пространства интересен и сам по себе, потому что предполагает отрицательную геометрическую кривизну, что делает это пространство похожим на седло. Но не менее интересно, что такая совокупность исходных предположений по расчетам Саттера должна приводить к существованию внутри такой чёрной дыры фрактальной вселенной.


Логика Саттера основана на следующем построении. Заряженные чёрные дыры во многом аналогичны вращающимся чёрным дырам, существование которых однозначно доказано. Поэтому изучая заряженные дыры, математика которых даже проще, можно основываться на том, что известно о вращающихся чёрных дырах.


Ученые выяснили, что когда последние становятся относительно холодными, то вокруг них возникает "дымка" квантовых полей. Эта дымка липнет к поверхности чёрной дыры, притягиваемая неумолимой гравитацией, но выталкивается наружу наэлектризованным отталкиванием той же самой чёрной дыры. Такая дымка квантовых полей, постоянно колеблющихся на поверхности чёрной дыры, создает сверхпроводящий слой.


Всю свою последующую математическую модель Саттер на известных свойствах сверхпроводников. Обычно частицы в реальных сверхпроводниках могут колебаться, поддерживая колебания волн взад и вперед, создавая эффект, известный как колебания Джозефсона. А глубоко внутри этих чёрных дыр само пространство колеблется взад и вперед, что позволяет строить самые фантастические предположения относительно их внутренней природы.


«Исследователи обнаружили, что самые внутренние области сверхпроводящей черной дыры могут представлять собой расширяющуюся Вселенную в гротескной миниатюре, место, где пространство может растягиваться и деформироваться с разной скоростью в разных направлениях», - поясняет Саттер.


Кроме того, в зависимости от температуры чёрной дыры, некоторые из этих областей пространства могут вызвать новый цикл вибраций, которые затем создают новый участок расширяющегося пространства, который в свою очередь запускает новый цикл вибраций, которые затем создают новый участок расширения пространства, и так далее, и так далее во все меньших масштабах.


Это сформировало бы миниатюрную фрактальную вселенную, бесконечно повторяющуюся от большей до меньшей. Совершенно невозможно представить, как бы выглядело путешествие через такое пространство, но это определенно было бы необычно.


В центре этого причудливого фрактального хаотического беспорядка должна находиться сингулярность: точка с бесконечной плотностью, место, где находится всё, что составляло материю, когда-то упавшую в черную дыру.


К сожалению, даже используя свои математические методы сверхзаряженной сверхпроводимости, исследователи не могут описать, что происходит в сингулярности. Вся известная физика рушится, и для ее полного описания требуются новые теории гравитации.

Никто не знает, что может обнаружиться в центре сверхпроводящей чёрной дыры. Но, учитывая как обычный, не связанный с наукой зритель, залипает на видах фракталов, большинству путешествие к такому центру понравилось бы.


Смотрите также анонсы новых тем на нашем ютуб-канале
Показать полностью 1
616

Колонизация солнечной системы

Часть 3. Точки опоры

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

В этой части рассмотрим рациональный способ колонизации солнечной системы и логистику. Стоит отметить, что речь идёт не о разовой высадке, а про постоянно действующие полуавтономные базы, между которыми выполняются регулярные рейсы.

Подразумевается уровень технологий близкий к текущему, а это наличие аппаратов на ионных двигателях с ядерными энергетическими установками, полностью многоразовых космических кораблей, выводящих около 100 тонн на НОО и обратно.

На мой взгляд, способ освоения космоса может быть только один: создание опорных орбитальных станций, с их помощью осуществление стабильных перемещений с поверхности планет на низкую орбиту и далее между опорными станциями планет.

Очередность освоения банальна: опорные орбитальные станции на орбитах Земли и Луны - освоение Луны - орбитальная станция Марса - Марсианская база.

Чтобы человеку лететь дальше, нужен скачок технологий в части двигателей (обеспечивающий запас по скорости ближе к 100 км/с), без него постоянные пилотируемые полёты дальше пояса астероидов маловероятны - слишком большая длительность. Поэтому Каллисто и Титан - это уже очень далекая перспектива, а Церера на грани достижения аппаратами ближайшего будущего.

«Новый дивный Мир»
Первое что нужно для создания колоний - это опорные орбитальные станции.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Фотография станция «Мир»

В обозримом будущем неизбежно появление орбитальных станций, по сравнению с которыми «Мир» и МКС будут смотреться небольшими cubsat’ами.

Создание колонии, подразумевает перемещение большого количества грузов с поверхности Земли на поверхность другой планеты (спутника) и постоянное перемещение людей между ними.

Посадка и взлёт на поверхность могут быть выполнены только при помощи химических двигателей, при этом межпланетные перелеты или доставку грузов (где время не играет большого значения) выгоднее выполнять на ионных. Тут выявляется первая задача такой станции: необходимость пересадки пассажиров, накопление и загрузка контейнеров.

В целом, если речь идёт о массовых полетах, то экономически целесообразно делать разные корабли:
- для выполнения посадки на Землю (Марс) с возможность выдерживать высокие тепловые нагрузки при посадке;
- для выполнения посадок/взлёта на Луну, которые будут иметь в шесть раз меньше двигателей чем для взлёта с земли, небольшие топливные баки и без тепловой защиты;
- для выполнения пассажирских перевозок между станциями с радиационной защитой вместо тяжёлых элементов для посадки на поверхность, а также с минимальным количеством двигателей;
- для грузовых перевозок в виде медленного ионного ядерного буксира с возможностью установки множества стандартных контейнеров (хотя для космоса это скорее цилиндры).

Например, взлёт с Луны и выход на ее низкую орбиту, требует в 6 раз меньше тяги и в 7 раз меньше топлива. Соотвественно, при одинаковой выводимой массе полезной нагрузки Лунный аппарат можно сделать более чем в 6 раз дешевле.

Для перелётов между Землей и Луной не нужны мощные двигатели, которые обеспечивают взлёт с поверхности, а достаточно одного маломощного (но тут нужна оптимизация с точки зрения вероятности отказа). Топливные баки можно делать меньше примерно в 4 раза. Это все снижает массу, что позволит без особых потерь делать массивную радиационную защиту.

Туристический чартер будущего (не надо воспринимать всерьёз)

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

До тех пор, пока в колонии не начнёт функционировать производство компонентов топлива - необходимо осуществлять дозаправку ракет. Взлёт с земли не позволяет иметь на борту достаточного количества топлива для полетов даже к Луне (имеется ввиду применение и возвращение аппаратов многоразового использования). Таким образом, для любых полетов с НОО (если они не в один конец) потребуется наличие топлива на орбите. Например, чтобы заправить до полного «Starship» требуется выполнить 12 запусков и осуществить 11 стыковок с процедурой перелива топлива. Очевидно, удобнее и выгоднее выполнить заправку один раз, пристыковавшись к орбитальной станции. И быстрое обеспечение топливом - это второе основное предназначение орбитальных станций.

Появление кораблей, которые не рассчитаны на сход с орбиты (буксиры с ядерными энергоустановками), повлечёт за собой необходимость выполнения сборочных, ремонтных операций и технического обслуживания прямо в космосе. Учитывая, что вывод более 100 тонн с Земли достаточно тяжелая задача, поэтому, чтобы собрать грузовой корабль с реактором мегаватт на 30, его придётся выводить на орбиту по частям и уже на ней выполнять крупноузловую сборку. Это третья функция орбитальной станции.

Фактически на орбите Земли и любого другого «шара», где развивается колония, необходим грузовой и пассажирский порт. Соотвественно, появляется необходимость наличия постоянного рабочего персонала, для которого требуется создать комфортные условия. Тут уже неизбежно появление «центробежной» гравитации.

В итоге, на орбитах Луны, Марса (а затем и на других обозначенных планетах) получим что-то вроде МКС, с длинными фермами причалов, ядерным реактором, полями панелей радиаторов, шарообразными баками с топливом, надувными ангарами и вращающимся тором жилых модулей. По всему этому великолепию будут постоянно передвигаться «лифты» и люди в скафандрах.

Картинки, удовлетворяющей меня с инженерной точки зрения, не нашёл, поэтому прикреплю наиболее адекватную с просторов интернета.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Выгоднее иметь одну международную станцию. Чем больше - тем безопаснее при выходе из строя отдельного модуля. Чем чаще на неё летают - тем дешевле снабжение и ротация людей. Станция будет расти, пока не упрется в предел по площади панелей системы охлаждения и прочность конструкции, необходимой для выполнения коррекции орбиты.

Стоит отметить: для оптимизации запусков к Луне и Марсу наклонение орбиты станции должно быть около 25 градусов, что заставляет задуматься о роли России в этом прекрасном будущем.


Полёт с Земли на Луну будет выглядеть примерно так:
- добираешься до космопорта;
- садишься на ракету;
- взлетаешь и летишь к орбитальной станции;
- отдыхаешь с зале ожидания с видом на Землю пару часов;
- пересаживаешься на корабль с метан-кислородными двигателями до Луны;
- отлетаешь от Земной станции, летишь в космосе (по времени как трансокеанский перелёт) и выходишь на Лунной станции;
- там пересаживаешься на посадочный шаттл с водородо-кислородными двигателем, и долетаешь до Лунного космопорта;
- садишься на экспресс-луноход и едешь до нужной базы.

У нас некоторые на поезде до Чёрного моря дольше ездят.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Картинка из интернета.

Процесс доставки на Марс посылки будет примерно следующим:
- на марсианском алиэкспрессе делается заказ;
- заказ приходит в сортировочный центр космопорта;
- его вместе с другими заказами упаковывают в стандартный космический грузовой контейнер (например, цилиндр 8x12 м) и выводят к орбитальной станции;
- там автоматические манипуляторы под присмотром оператора разместят контейнер на буксире с ионными двигателями, добавит ещё штук 11 таких контейнеров (с запасными реакторами, разными консервами, компьютерной техникой, скафандрами и прочими вещами);
- далее этот космический контейнеровоз начинает свой полёт на Марс;
- на марсианской станции его разгружают и по одному контейнеру спускают с орбиты на посадочных модулях;
- далее груз сортируют и доставляют заказ уже в жилой модуль.


Про инфраструктуру колонии в следующем посте.

Показать полностью 4
4241

Колонизация солнечной системы

Часть 2

Заметка про то, что ждёт космонавтов в потенциальных местах для создания колоний.

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Изображение проекта Starship при торможении в атмосфере Марса.

Часть 1 - Колонизация солнечной системы

Перед началом надо заметить, что данный пост (как и первая часть) не говорит, о том, что уже завтра летим колонизировать Титан, Марс. Колонизация, в полном ее понимании (не разовые высадки), в ближайшие лет 30, не грозит даже Луне. Это будет долгий и опасный процесс по длительности ближе к сотне лет. На вопрос «Зачем надо лететь к другим планетам?» очевидного ответа нет. Но я надеюсь, что человечество выберет путь запуска ракет на другие планеты, а не друг по другу.


Самое главное для колоний - это условия обитания вне жилых модулей.

Начнём с самых удобных для человека. А это Венера и Титан.

Венера

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Для высот 45 - 55 км, в среднем примерно + 15 С. В атмосфере углекислый газ и немного азота 3.5%, давление близко к земному, (можно выбирать, что комфортнее температура или давление - поднимаемся выше, там холоднее и разряженее, ниже, наоборот). Тяготение 0.9 g - кислородный баллон очень быстро начнёт оттягивать спину. В облаках серная кислота, но концентрация довольно большая. Можно ходить в ОЗК, с баллоном кислорода. В принципе, акваланг с полным гидрокостюмом (из подходящего материала) вполне подойдёт. Вокруг облака, земли не видно. Если вывалиться из аэростата, то не долетев до земли, примерно одновременно, сварит в атмосфере и раздавит давлением. Радиация приемлема.

Подходящая форма одежды для длительного пребывания в облаках Венеры - это акваланг.

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Если надо быстро перебежать от одного- конца дирижабля до другого - можно в повседневной одежде, надо просто задержать дыхание (опять же глаза лучше закрыть), если вдохнёте - отравитесь серной кислотой.

Серная кислота на Венере космонавтов не окислит - если судить, что концентрация кислоты 80%, а доля водяного пара на «жилых высотах» 1% (0.1 г/кг) , получаем 1 г кислоты на м3. (тут приблизительный расчёт), это в 5 раз выше смертельной дозы. Но в пластиковом костюме - не страшно.

Условия подтверждены аппаратами, совершившими посадку (либо попытку) на поверхность:
- Венера 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14;
- Вега 1, 2;
- Пионер-Венера 1, 2.


Титан

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Очень холодно, температура почти постоянна и равна - 179 С. На Земле люди периодически выдерживают - 70 С. Давление 1.5 атмосферы - будет не заметно даже. Тяготение 0.14 g - можно на себе таскать очень много кислорода и оборудования. Атмосфера - почти полностью азот и 1.6% метана + немного, но ядовитых примесей. Вдыхать даже подогретый местный «воздух» не стоит - можно хорошо травануться, а вдох холодного гарантировано убьёт. Много рек и озёр/морей жидкого этана, метана, пропана (вообщем мечта Газпрома). Из этих газов собственно состоят облака, идут дожди. Радиация приемлемая.

Подходящая форма одежды - очень тёплый непродуваемый (почти герметичный) комбинезон, с принудительным наддувом (система может состоять из насоса, тепловой спирали, батареи и нагнетая забортный воздух предотвратит поступление холодного воздуха из вне) подогретым атмосферным азотом и кислородная маска с баллоном.

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

В метановых озёрах купаться и мыть руки не следует.

Температура - 180С не такая страшная. В обычной зимней куртке, защитив глаза и задержав дыхание, можно кратковременно (минута) прогулялся по поверхности.
Теплопередача прямо пропорциональна разнице температур, соответсвенно, так как на Земле и на Титана в воздухе в основном азот, то человек будет мерзнуть всего в 3.5 раза быстрее. Можно вспомнить, что много людей пользуются криосаунами.

Условия подтверждены зондом «Гюйгенс», совершившим посадку на поверхность.


Теперь там, где условия похуже.

Для Луны/Цереры/Каллисто/Марса форма одежды одна - гермоскафандр.

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост


Марс

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Температура в среднем -63 С. Атмосфера считай отсутсвует, для человека разницы между ней и вакуумом нет. Радиация приемлема. Тяготение - 0.38 g. Пейзаж думаю всем известен.

Условия подтвердили как минимум 4-ре Марсохода и аппаратами Викинг 1, 2.


Луна

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Температура от -173 до 117 С с резким перепадом, атмосферы нет, тяготение 0.17 g, вокруг пустыня, под ногами почти песок, на полюсах попадаются куски льда.
Большой плюс - уже частично освоена астронавтами. Радиация приемлема.

Условия пребывания подтверждены астронавтами.


Церера

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Температура в среднем -106 С. Атмосферы нет. Тяготение - 0.028 g. Прыгать можно очень высоко (метров на 30), но ходить из-за этого будет тяжело. Под ногами глина с небольшой примесью льда. Радиация высока.

Посадок на поверхность не было, только пролеты.


Каллисто

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Температура в среднем -139 С
Атмосферы нет. Тяготение - 0.126 g. Под ногами - на половину лёд и металлическая руда. Радиация высокая

Посадок на поверхность не было, только пролеты.


Пояснение:
- под радиацией приемлема понимаю, что можно гулять по поверхности в своё удовольствие, но со счетчиком Гейгера и пока он не покажет предел.
- под высокой радиацией понимаю, что выходить на поверхность лишний раз не стоит. Но если надо, то ладно.


Теперь про то, где жить.

У Венеры свой путь

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Фотография дирижабля из интернета.

Создание наземной базы там исключено. Обитать там можно только а облаках. Так как сход с орбиты дирижабля жесткой конструкции в плотные слои атмосферы представляется маловозможным, то остаётся схема развёртывания относительно небольших мягких аэростатов из отсека космического корабля уже в атмосфере, после торможения.

Аэростаты из СССР в атмосфере Венеры уже успешно летали.


Для всего остального это подземные или хорошо присыпанные землей модули.

Строения должны быть похоже, как минимум, на данный проект ЕКА.

Колонизация солнечной системы Колонизация, Солнечная система, Космос, Планета, Длиннопост

Лучше, но сложнее, углубляться под поверхность.

Такая концепция решает сразу несколько проблем:
- защита от радиации;
- сохранение тепла либо предотвращение нагрева;
- защита от микрометеоритов, если нет атмосферы.

Все проекты надземных городов на Марсе и Луне обречены на провал - жить там можно, но не постоянно. Придётся слишком часто менять персонал из за получения предельных доз облучения.

Абсолютно все модули должны быть герметичными, так как снаружи либо вакуум, либо недружелюбная атмосфера.

Основная проблема внеземных колоний - получение энергии. Пока есть электричество - есть тепло, воздух, вода, возможность работы оборудования и оборудования для починки оборудования. Как только электричество пропадает - начинается обратный отсчёт.
Солнечные панели дальше Марса не эффективны. Соответсвенно на все колонии надо будет везти реакторы.

Но это уже тема инфраструктуры колоний. Об этом в следующей части (через пару постов).


PS.
Веста, Энцелад (похожие на них планеты и астероиды) не попали в список по причине малых размеров и, как следствие, низкой гравитации (0.01 g для Энцелада).

Следующий пост скорее всего будет про космическую радиацию.

Показать полностью 11
59

Ответ на пост «Колонизация солнечной системы» 

Увидел я этот пост и задумался. В стартовом посте рассматривают планеты с точки зрения пригодности/целесообразности для колонизации и добычи ресурсов. Но существует ещё одна очень важная цель космических полётов. Поиск внеземной жизни.

На данный момент нет чётких данных, доказывающих наличие жизни вне Земли. С другой стороны, есть данные подтверждающие возможность её существования(бактерии экстремофилы, обнаруженные на Земле, способны выживать в условиях близких к инопланетным, например в термальных источниках при температуре 70), также есть исследования, которые подтверждают возможность бактерий выжить при межпланетных перелётах(пруф -https://ria.ru/20200826/panspermiya-1576223147.html, в новости есть ссылки на исследования).



Основными кандидатами являются Марс, Венера и некоторые спутники, на которых может быть подлёдный океан воды.


На Венере жизнь вполне может существовать в облаках(недавно были новости об обнаружении фосфина на Венере, что может свидетельствовать о наличии там бактерий, а может и не свидетельствовать). Некоторые исследователи считают, что миллиарды лет назад на Венере были океаны и вообще она была больше похожа на Землю(пруф - https://ria.ru/20191023/1560073551.html). С этой точки зрения исследования Венеры являются ещё более интересными, так как понимание прошлого Венеры может дать ответы на вопросы о будущем Земли, станет ли Земля похожей на вторую планету от Солнца или для этого нет никаких предпосылок. Конечно, стоит понимать, что если другая жизнь и есть в Солнечной системе, она представлена какими-то очень простыми формами(скорее всего).

Так что колонизация не единственная причина для полётов к другим планетам)

Ответ на пост «Колонизация солнечной системы» Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Ответ на пост

источник фото: Wikipedia


P.S. баяномометр ругался на фото, но у меня статья не только про колонизацию Венеры или её прошлое, а про жизнь в Солнечной системе и смысл возможных полётов куда-либо.

75

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы

Миссия IMAP поможет исследователям лучше понять границу гелиосферы, своего рода магнитного пузыря, окружающего и защищающего Солнечную систему. В этой области постоянный поток частиц от Солнца, называемый солнечным ветром, сталкивается с материалом из остальной части Млечного Пути. Это столкновение ограничивает количество вредного космического излучения, входящего в гелиосферу. IMAP займется сбором и анализом частиц, которые преодолевают защитный рубеж.

«Солнце много делает для нашей защиты. IMAP имеет решающее значение для расширения нашего понимания того, как работает этот «космический фильтр», – сказал Деннис Андручик, заместитель помощника директора NASA по научным миссиям.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

Другая цель миссии – больше узнать о генерации космических лучей в гелиосфере. Местные космические лучи, а также поступившие из Галактики и из-за ее пределов воздействуют на космонавтов, могут нанести ущерб технологическим системам и кроме этого играют свою роль в существовании самой жизни во Вселенной.


Космический аппарат будет располагаться на расстоянии около 1,5 миллиона километров от Земли в первой точке Лагранжа (L1). Это позволит зонду максимально использовать инструменты для мониторинга взаимодействия солнечного ветра и межзвездной среды во внешней Солнечной системе.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

На зонде будут размещены 10 научных инструментов, предоставляемых международными исследовательскими организациями и университетами. Полетит он на Falcon 9 в октябре 2024 года. Общая сумма запуска составила примерно $109,4 млн., включая обслуживание запуска и другие связанные с миссией расходы."

Показать полностью 1
10305

Колонизация солнечной системы

Часть 1

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Кадр из фильма «Марсианин»

В первую очередь необходимо определить куда можно лететь человеку, и где можно разворачивать колонию.

Схема нашей системы, простая, но понятная (по спутникам не очень точно)

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Итого в нашей системе имеем:
- 8 планет (+ Плутон);
- 15 крупных спутников (не считая Луны и считая Харон);
- Церера в поясе астероидов.

Малые спутники колонизировать особого смысла нет. На них будет очень слабая гравитация, что очень не удобно для человека. Например, с Деймоса, спутника Марса, можно буквально «выпрыгнуть» на орбиту, а если разбежаться, то можно достичь второй космической (5.6 м/с).

Крупные спутники планет:
- Юпитер - Ио, Европа, Ганимед, Каллисто;
- Сатурн - Титан, Рея, Япет, Диона, Тефия;
- Уран - Ариэль, Умбриэль, Титания и Оберон;
- Нептун - Тритон;
- Плутон - Харон (хоть теперь Плутон не полноценная планета).

Из 17 потенциальных целей для высадки не все одинаково полезны для человека, даже в скафандре.

Напомню, основные проблемы для человека - это высокая температура, большая радиация и ускорение свободного падения больше 1.5 g. С остальным в скафандре / жилом модуле жить можно.

Краткая справка по условиям на планетах и спутниках:
- Меркурий: можно высадится на полюса х для «галочки», создавать постоянную базу нет смысла, там очень жарко и радиоактивно;
- Венера: на высоте 50 км самые комфортные условия после Земли, в облаках можно ходить в акваланге с гидрокостюмом, соответсвенно можно создать летающую базу в научных целях по типу дирижабль, которую будет мотать ветром по планете.
- Луна: первый кандидат для постоянной базы.
- Марс: второй кандидат для постоянной базы.
- Церера: условия почти как на Луне, можно добывать ракетное топливо, колонизировать можно;
- Юпитер: на химии взлететь не возможно, уйти с орбиты можно только на ионниках, сесть нельзя, но радиация убьёт быстрее, лететь не надо.
- Каллисто: условия почти как на Луне, только воды как на земле, можно добывать ракетное топливо, колонизировать можно.
- Ио, Ганимед, Европа: радиация, лететь не надо.
- Сатурн: уход с орбиты на грани возможностей химических двигателей, сесть нельзя, лететь не надо.
- Титан: ракетного топлива (метан) там, в буквальном смысле, океан (это прям мечта Газпрома), ходить можно в подогреваемых легких негерметичных скафандрах, колонизировать можно.
- Япет, Рея, Тефия, Диона: лёд, радиация и ничего интересного, лететь не надо.
- Уран: сесть нельзя, а атмосфера очень холодная и лёгкая (на дирижабле не полететь) и радиация.
- Ариэль, Умбриэль, Титания и Оберон: лед, холод, предпочтительнее Оберон, там меньше радиация, лететь долго, высадится можно для «галочки».
- Нептун: сесть нельзя, в атмосфера очень холодная и лёгкая (на дирижабле не полететь) и радиация.
- Тритон: будет тяжело сесть, на поверхности замёрзший азот ( будет испарятся от двигателей), очень холодно, лететь долго, можно высадится для «галочки».
- Плутон и Харон: на спутник проще сесть, на Плутоне на поверхности замёрзший азот, лететь долго, можно высадится для «галочки».

Для наглядности орбиты в масштабе. Как видно, до Сатурна почти в 10 раз дальше от солнца, чем Земля, а Уран уже в 2 раза дальше Сатурна.

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Итого получаем следующие точки для создания баз (разовые высадки не учитываем) с указанными соответсвенно минимальным запасом характеристической скорости (с НОО на НОО) - запасом скорости для взлета с поверхности на НОО в- среднего удаления от Земли в млн км - минимального (в оптимальное окно запуска) временем полёта от Земли по гиперболической траектории (без учета разгона):
1. Луна - 3.94 км/с - 1.73 км/с - 0.385 млн км - часы;
2. Венера (в облака) - 6.79 км/с - 9.0 км/с - 150 млн км - 40 дней;
3. Марс - 5.71 км/с - 3.8 км/с - 225 млн км - 70 дней;
4. Церера - 8.67 км/с (из них 3.12 на изменение наклона орбиты) - 0.36 км/с - 415 млн км - около 400 дней;
5. Каллисто - 12.41 км/с - 1.76 км/с - 777 млн км- 405 дней;
6. Титан - 11.43 км/с - 7.6 км/с - 1425 млн км - 560 дней.

Для справки: старт на НОО с Земли требует 9.4 км/с (с учётом атмосферы).

На Венере, Марсе, Титане можно тормозить об атмосферу - таким образом запас скорости на посадку нужен менее 1 км/с.

В ближайшей перспективе (на земле все дано реализовано, осталось это вывести в космос) технология освоения следующая:
- для взлетов/посадок с планет использование кораблей типа «Starship» на химической тяге (запас по характеристической скорости около 9 км/с при полной заправке позволяет произвести посадку и взлёт на все точки колонизации);
- для межпланетных перелетов используются ядерные буксиры типа «Нуклон» с разгоном выше гиперболических скоростей (запас по характеристической скорости от 50 км/с).

В посте Немного про ядерный буксир
разобраны скоростные возможности ядерных буксиров.

Таким образом для колонизации необходимы следующие минимальные запасы (как минимум для первых кораблей пока не будет обеспечена дозаправка местным топливом):
- 5 км/с на химические двигатели для посадки/взлёта (для редких полетов на Венеру 10 км/с), а это топлива в 1.3 раза больше чем масса самого корабля).
- 12.5 км/с для ядерных буксиров (если мы хотим лететь на Титан 6.5 лет, на Марс около 300 дней) либо больше 25 км/с (чтобы долететь до Титана быстрее, чем за 3 года, а до Марса, быстрее 150 дней).

Для тех, кто ещё не видел - время полёта по эллиптическим траекториям (минимальный запас скорости) и минимальной гиперболической (разгон от земли до 16.65 км/с).

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Использование гравитационных манёвров при массовой колонизации исключено - никто не будет ждать пару лет окно запуска, если надо доставить через полгода необходимый груз для поддержания жизни колонистов.

Получаем, что даже до Титана лететь уже под 3 года, при существующих сегодня технологиях. Очень далеко, но жить там человеку достаточно удобно (про это в части 2 будет).

Вывод этой части:
- Не там много мест в солнечной системе, которые можно колонизировать.
- Дальше Сатурна что-то осваивать смысла нет вообще, по крайней мере пока не достигнем запаса по характеристической скорости на 2 порядка.
- Современные технологии, связка ядерного буксира многоразовых кораблей с химическими двигателями, позволяют летать к другим планетам


Для подписчиков:
В части 2 будет про условия обитания в колониях.
В части 3 - про оснащение колоний, объём перелетов и возможная промышленность на других небесных телах.

Показать полностью 2
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: