822

Правды и кривды теории Большого взрыва.

Речь пойдёт о теории Большого взрыва (нет, не о сериале). Наверняка, почти каждый слышал про эту теорию, однако мало кто вдавался в детали. В этом посте я постараюсь осветить важные моменты этой теории, а также указать на её слабые места.

Теория Большого взрыва уходит корнями в глубокое прошлое. Среди философов и позднее – религиозных деятелей шёл спор, была ли Вселенная всегда (как утверждал Аристотель) или у неё было начало (что больше устраивало ранних иудеев). В 1225 году в своём трактате «О свете и о начале форм», английский теолог Роберт Гроссетест описывал рождение Вселенной во взрыве с последующей кристаллизацией материи, из которой образовались звёзды и планеты, заняв своё место на небесных сферах вокруг Земли. В 18 веке Эразм Дарвин (дед более известного Чарльза Дарвина) описывал циклически расширяющуюся, а затем – сжимающуюся вселенную. Эдгар По в своей «Эврика. Поэма в прозе», описал начало Вселенной из «первозданной частицы… по божьей воле». Согласно По, «божья воля» проявилась в расталкивающей силе, разделившей первозданную частицу на атомы. Атомы распределились в пространстве, после чего расталкивание прекратилось, и началось притяжение, в результате которого материя начала собраться в звёзды и планеты.


В начале 20 века с использованием спектроскопии удалось обнаружить красное смещение в спектрах удалённых «спиральных туманностей» (тогда их ещё не называли галактиками). На то время было сложно объяснить это явление, так как считалось, что небесные объекты размещены во вселенной более-менее стационарно.


Красное смещение первым объяснил, не Эдвин Хаббл, а Жорж Леметр (католик и иезуит). Его объяснение гласило: Вселенная не статична, а расширяется. Через два года американец Эдвин Хаббл повторил открытие и выявил закономерность, согласно которой величина красного смещения возрастает пропорционально расстоянию до объекта, это открытие назвали законом Хаббла.

В 1931 году Леметр предложил «гипотезу первобытного атома», от взрыва которого и началась Вселенная. Сам термин «Большой взрыв» (Big bang) создал, по иронии судьбы, противник теории взрыва, Фред Хойл, который предлагал альтернативное объяснение красного смещения в своей теории стационарной вселенной. Согласно ней, между разлетающимися галактиками постоянно создаётся новая материя. Хойл выступал с лекциями по третьему каналу Би-Би-Си, и, высмеивая теорию своего оппонента, ввернул фразу «…эта идея большого взрыва» (that ‘big bang’ idea).


Две теории конкурировали между собой. Обе теории могли объяснить происхождение вселенной, но теория стационарной вселенной не могла объяснить её текущее состояние. Почему, например, квазары и радиогалактики наблюдаются астрономами гораздо чаще только на больших от нас расстояниях, а рядом с нами их нет. Наконец, в 1964 году, произошло открытие, окончательно похоронившее теорию стационарной вселенной и буквально перевернувшее мир физики. Сотрудники лаборатории Белла Арно Пензиас и Роберт Вилсон при помощи такой вот рупорной антенны занимались поиском источников радиоизлучения, которые потенциально могли навредить космическим спутникам:

При калибровке установки они никак не могли избавиться от «шума» – статических помех. Куда бы они ни направляли свою антенну, отовсюду они получали помехи в микроволновом диапазоне электромагнитного излучения. Такой сигнал могло бы излучать тело, имеющее температуру 2,7 Кельвин (это чуть выше абсолютного нуля). Сигнал можно было получить с любого направления, он был буквально везде, будто бы источник этого излучения находился на внутренней стороне сферы, в центре которой мы находимся? Что же за источник у этого «света»?


Все, наверное, видели лампу накаливания или нагретый докрасна металл (например, в тостере). Это не отражённый свет, этот свет испускается самими атомами вещества (подробнее о механизме см. Как выглядит атом?). Учёные пользуются термином «абсолютно чёрное тело» – это идеализированная модель объекта, который поглощает всё электромагнитное излучение, падающее на него, не отражая ничего, и может испускать только собственный свет, длина волны которого зависит только от его температуры. Если построить график интенсивности излучения такого тела, в зависимости от его нагрева, то получится что-то вроде этого:

Свой спектр теплового излучения, в той или иной степени походящий на спектр излучения абсолютно чёрного тела, имеет любой объект в нашей Вселенной. Если мы опустим температуру тела до 2,7 К, то пик интенсивности сдвинется из видимого диапазона в микроволновый, а спектр в точности совпадёт со спектром наблюдаемого радиоастрономами излучения. И когда я говорю «в точности», это не фигура речи. Спектр открытого излучения в действительно в точности совпадал с математической идеальной моделью.


Мы знаем, что вселенная пуста, там ничего нет, что могло бы иметь температуру, да к тому же ещё и вполне определённую температуру 2,7 К. Почему открытое излучение вообще имело тепловой спектр?


Так было открыто реликтовое микроволновое излучение. По сути, Пензиас и Вилсон «увидели свет» от Большого взрыва – процесс, в ходе которого сформировались первые атомы во Вселенной около 13,5 миллиардов лет назад.


Мы знаем, что вселенная расширяется, это подтверждается красным смещением в спектре удалённых от нас объектов. Чем дальше объект от нас, тем длиннее волна дошедшего до нас излучения.

Единственное объяснение этому в рамках общей теории относительности – то, что расширяется само пространство. Чем больше расстояние, пройдённое светом, тем больше его волна будет «растянута». Мы можем использовать уравнения общей теории относительности (ОТО) и «отмотать» время назад, чтобы построить модель ранней вселенной. Согласно ОТО, получается, что когда-то вселенная умещалась в точку бесконечно малого размера – сингулярность, в момент времени t = 0, гипотетическое начало существования нашего мира.


Не все космологи склонны слепо доверять ОТО в данном случае. Дело в том, что, хотя данная теория с успехом объясняет наблюдаемые явления и предсказывает результаты научных экспериментов, она не в состоянии смоделировать квантовое состояние гравитации в этот первичный момент времени. Мы знаем, что на каком-то моменте нашей «перемотки» времени, чистая ОТО начнёт давать неверные предсказания, так как состояние вселенной на тот момент времени выйдет за рамки сферы применимости ОТО. Эти ограничения давно известны физикам и не являются чем-либо выдающимся, так что не спешите кричать о том, что Эйнштейн был неправ. Мы можем достоверно судить о состоянии Вселенной после Большого взрыва только с определённого момента.


С точностью мы можем сказать, что когда-то Вселенная была очень плотной, очень горячей, а также – непрозрачной. Где-то в возрасте 370 тыс. лет она была оранжевого цвета. В эту эпоху она была наполнена плазмой из хаотично движущихся заряженных частиц и имела температуру в несколько тысяч градусов. Это слишком большая температура для того, чтобы электроны и протоны могли сформироваться в атомы. Эта плазма излучала свет (как и любое другое нагретое вещество), однако, фотоны этого света не могли распространяться далеко из-за большой плотности вещества. Испускаемые фотоны просто сталкивались с каким-либо электроном и, либо снова поглощались, либо отскакивали как бильярдные шары. Внутри этой плазмы была практически нулевая видимость.


Но Вселенная расширялась, а плазма, соответственно, постепенно охлаждалась и настал момент, когда её температура опустилась ниже 3000 К.

Цветовая температура в 3000 К соответствует оранжевому цвету. Забавно, что художники считают более «тёплыми» цвета лампочек слева и более «холодными» – справа, хотя физически дела обстоят совсем наоборот.


При этой температуре, наконец, смогли образоваться нейтральные атомы, и свободных электронов практически не осталось. Плазма превратилась в горячий газ, а вселенная впервые стала прозрачной для электромагнитного излучения. Испущенные в этот миг фотоны уже не встречали на своём пути препятствий, и устремились во все стороны сразу. Свет этих фотонов путешествует и по сей день, но первоначально оранжевый, он со временем всё больше и больше подвергался действию красного смещения, его спектр краснел, затем перешёл в инфракрасную область спектра, а затем – в микроволновую. К настоящему моменту этот свет «остыл» до 2,7 К и фиксируется только при помощи радиотелескопа.


На рисунке ниже показаны карты реликтового излучения, где микроволновый диапазон сдвинут область видимого спектра. Надо иметь в виду, что хотя излучение и показано на подобных иллюстрациях контрастными цветами, в действительности, разница между самым холодным пятном и самым горячим составляет всего 0,8 мкК (восемь миллионных долей градуса).


Вы тоже можете увидеть его, просто включив ненастроенный телевизор. Около 1% помех на экране вашего телевизора вызваны фоновым реликтовым излучением.

Важность открытия реликтового излучения огромна для теории Большого взрыва. Наличие этого излучения можно объяснить только тем, что когда-то Вселенная была меньше, плотнее и горячее, чем сейчас.


Неравномерность излучения (пусть и выражающиеся в температурах порядка одной тысячной градуса) позволяют судить о «местах», где сформировались звёзды, галактики и галактические скопления. Чем дальше мы смотрим в космическое пространство, тем моложе эпоха, которую мы наблюдаем. Мы можем наблюдать первые галактики, сформировавшиеся сразу после Большого взрыва. Теория подсказывает нам, что мы должны наблюдать бурные процессы столкновений и слияний галактик, богатых веществом для образования звёзд, но бедных в части тяжёлых элементов, образующихся только в результате взрывов сверхновых (см. Вскрываем трупы звёзд). И астрономы наблюдают в точности такую же картину, что и предсказывает теория. Самые дальние галактики, образовавшиеся в первые 5% времени существования вселенной, выглядят совершенно не так, как галактики, более близкие к нам. Вселенная определённо эволюционирует!


Если теория Большого взрыва верна, видимая «рябь» в волнах реликтового излучения должна нести в себе «отпечаток» распределения материи в момент, когда фотоны реликтового излучения отправились в путь, и такой же рисунок должен повторяться в распределении галактик на небе.


В рамках большого Слоановского цифрового обзора неба SDSS-III (Sloan Digital Sky Survey-III) в 2014 был проведён спектроскопический обзор барионных колебаний (BOSS/ Baryon Oscillation Spectroscopic Survey). Были измерены незначительные повторяющиеся изменения плотности галактик на расстоянии до шести миллиардов световых лет от Земли (что соответствует красному смещению 0,7), когда возраст Вселенной был равен примерно половине текущего. Эти волны, вариации плотности галактик известны как барионные акустические колебания. В определённом смысле, мы можем не только «видеть» большой взрыв, но и «слышать» его.

https://www.nanowerk.com/news2/space/newsid=35104.php


Все эти эксперименты пока что позволили нам узнать, что происходило во Вселенной, начиная с «возраста» примерно в 400 тыс. лет, и заканчивая настоящим моментом (примерный возраст Вселенной – 13,5 млрд. лет).


Используя эксперименты на ускорителях и моделируя раннюю Вселенную, мы можем с уверенностью предсказать её развитие и в непрозрачную эпоху. В возрасте нескольких секунд Вселенная была гораздо горячее, чем звёздное ядро. В таком состоянии она находилась примерно 20 минут. В этот период активно проходил первичный нуклеосинтез – формировались ядра первых атомов.


Теория Большого взрыва позволяет нам предсказать температуру и длительность этой фазы. Мы можем судить об этом по наблюдаемому распределению водорода и гелия в наблюдаемой Вселенной (водород ~75%, гелий-4 ~25, дейтерий и гелий-3 меньше 0,01%). Именно столько гелия должно было синтезироваться за 20 минут времени.


Условия ранней вселенной, которые мы смогли повторить на Земле в Большом адронном коллайдере, позволяют нам с уверенностью судить о развитии Вселенной, начиная с возраста 10⁻³² секунды, когда вся наблюдаемая Вселенная была размером с песчинку. Мы смогли убедиться, что наши модели по-прежнему работают и при таких высоких энергиях.


При температурах порядка 1 квадриллиона градусов, поле Хиггса перестаёт работать. Поле Хиггса даёт частицам их массу покоя, и если его убрать, то частицы-переносчики слабого фундаментального взаимодействия – бозоны W⁺, W⁻ и Z⁰ становятся неотличимы от фотонов. Это означает, что слабое и электромагнитное взаимодействия при таких условиях объединяются в одно – электрослабое. Период времени, когда такие условия имели место, называется электрослабая эпоха.


Эти условия мы ещё можем воспроизвести, на БАК, но когда температура превышает 10²⁹ К и возрасте Вселенной 10⁻³⁸ секунды, наша уверенность в чём-либо заканчивается, так как воспроизвести подобные условия на Земле мы не можем.


Мы можем только предполагать, что на этом этапе электрослабое взаимодействие и сильное ядерное взаимодействие так же объединяются в одно. Существует несколько идей того, как это могло бы происходить, и все эти теории получили общее название теории великого объединения. По правде говоря, их проще назвать гипотезами, так как неизвестно, какая из них верна (если вообще среди них есть верные). Для их проверки требуются уровни энергии, в триллионы раз превышающие те, что мы могли достичь в Большом адронном коллайдере. Может, оно и к лучшему, что подобная энергия нам пока недоступна.


Отмотаем время ещё немного, до возраста 10⁻⁴² секунды. В этот момент, видимая нам Вселенная имела размеры 10⁻²⁰ диаметра протона – этот размер называется Планковской длиной (1,6⋅10⁻³⁵ м). И на этом рубеже, вся известная нам физика попросту перестаёт существовать. Общая теория относительности вступает в серьёзный конфликт с квантовой механикой, так как четвёртое фундаментальное взаимодействие – гравитация начинает выдавать в уравнениях одну сингулярность за другой.


Для объяснения того, что происходило в этот момент нам необходима теория квантовой гравитации, которую ещё называют «Теорией Всего», так как в её рамках действительно можно будет объяснить любой наблюдаемый процесс во Вселенной.


Вернёмся снова к моменту, когда Вселенная стала прозрачной. Её возраст составляет примерно 400 тыс. лет, её размер примерно в 1000 раз меньше её текущих размеров. Как уже было сказано, мы можем наблюдать последний свет большого взрыва в виде реликтового микроволнового излучения, однако учёным до сих пор непонятно, почему его температура настолько равномерна – она колеблется в пределах одной стотысячной градуса, будто бы всё вещество в остывающей Вселенной было тщательно перемешано. Все мы видели, как сливки смешиваются с кофе со временем, даже если их специально не перемешивать, но проблема в том, что, основываясь только на уравнениях ОТО, у расширяющейся Вселенной не было времени на то, чтобы так перемешаться до настолько однородного уровня.


Чтобы две подсвеченные области на рисунке могли прийти к тепловому равновесию, должно быть «что-то», что бы переместилось от одной области к другой и не передало энергию. Но ничто в этом мире, даже свет, не успело бы пройти данное расстояние за отведённое моделью время.

Даже если мы возьмём вселенную, размером с песчинку и возраст вселенной 10⁻³² сек., и возьмём фотон, испущенный у одного края этой песчинки, затем применим скорость расширения вселенной и умножим всё это на 400 тыс. лет, то мы поймём, что фотон просто не успевает долететь до противоположного края. Расстояние между краями нашей «песчинки» будет увеличиваться быстрее скорости света. Иными словами, противоположные края Вселенной всегда находились вне горизонта частиц друг друга. Проблему так и назвали «Проблемой горизонта».


Единственным на сегодняшний день объяснением данной проблемы является гипотеза о том, что Вселенная была изначально достаточно малого размера, чтобы «перемешаться» как следует и достичь однородности, а затем резко раздуться в размерах со скоростью, которая значительно превышает скорость, предсказанную ОТО. Данная теория получила название «инфляционная модель».


Идея в том, что Вселенная началась с субатомных размеров, имела достаточно времени, чтобы прийти к термодинамическому равновесию, а затем вошла в стадию экспоненциального взрывного роста в размерах (инфляции), в ходе которого увеличилась по меньшей мере в 10²⁶ раз, после чего расширение замедлилось до текущих темпов. Таким образом, её края были вырваны из конусов причинно-следственных связей друг друга. Данная идея объясняет Проблему горизонта, однако оставляет вопросы относительно того, что послужило причиной взрывного роста и почему потом этот рост замедлился. Тем не менее, инфляционная модель настолько хорошо объясняет столько всего, что большинство космологов соглашается с тем, что что-то подобное должно было иметь место, хотя никаких свидетельств этому нет.


В этом свете Теорию Большого взрыва стоит рассматривать не как теорию образования нашей Вселенной, а как теорию объясняющую период расширения от субатомных размеров до космических. Некоторые аспекты данной теории имеют настолько жёсткие подтверждения, что не оставляют сомнений в верности «общей картины», однако, как и у любой теории, у Теории Большого взрыва есть границы применимости. Может быть, мы сможем дополнить эту теорию, а может – процесс познания Вселенной проведёт нас гораздо дальше Большого Взрыва.


В завершении я хочу развеять несколько распространённых заблуждений, которые встречаются у людей, поверхностно знакомившихся с теорией большого взрыва:


Миф: Теория Большого взрыва описывает начало существования нашей Вселенной. На самом деле, сама теория Большого взрыва ничего не говорит о непосредственном рождении Вселенной. Текущая концепция подразумевает существование энергии, времени и пространства, и не объясняет их происхождения.


Миф: Большой взрыв был «крохотным». Многие, пытаясь визуализировать большой взрыв (я – не исключение), пытаются сравнивать Большой взрыв с повседневными объектами. Это сравнение, однако, верно только в части Наблюдаемой Вселенной, а не всей Вселенной.


Миф: Закон Хаббла нарушает специальную теорию относительности. Действительно, дальние галактики удаляются от нас быстрее скорости света. Однако, специальная теория относительности применима только к движению сквозь пространство. В данном случае, расширяется само пространство.


Миф: Красное смещение удаляющихся галактик вызвано эффектом Доплера. Астрономы часто ссылаются на космологическое красное смещение, будто это обычный эффект Доплера. Хотя они схожи по своему действию, у них разный механизм. Доплеровское красное смещение основано на специальной теории относительности, которая не принимает во внимание расширение пространства. Космологическое же красное смещение основано на общей теории относительности, которая учитывает расширение. Для относительно близких к нам галактик, они могут показаться идентичными, однако, если пытаться описать красное смещение далёких галактик эффектом Доплера, можно прийти к неверному результату.

Наука | Научпоп

9.1K постов82.5K подписчиков

Правила сообщества

Основные условия публикации

- Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

- Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

- Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

- Видеоматериалы должны иметь описание.

- Названия должны отражать суть исследования.

- Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.


- Посты-ответы также должны самостоятельно (без привязки к оригинальному посту) удовлетворять всем вышеперечисленным условиям.

Не принимаются к публикации

- Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

- Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

- Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.


Наказывается баном

- Оскорбления, выраженные лично пользователю или категории пользователей.

- Попытки использовать сообщество для рекламы.

- Фальсификация фактов.

- Многократные попытки публикации материалов, не удовлетворяющих правилам.

- Троллинг, флейм.

- Нарушение правил сайта в целом.


Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество Пикабу.

Вы смотрите срез комментариев. Показать все
5
Автор поста оценил этот комментарий
Местами будто слово в слово повторяет текст отсюда
https://youtu.be/JDmKLXVFJzk
Странное ощущение, что именно текст повторяется, а не информация другими словами. Хотя на самом деле текстовки сильно отличаются и освещают тему по-разному.
раскрыть ветку (23)
14
Автор поста оценил этот комментарий
Всё-таки значительная часть текста – из этого видео. Неплохой перевод получился, кстати. Я бы и не догадался, что это перевод, если бы не знакомство с источником (плохие переводы читаются с трудом, сквозь них просвечивает оригинал). Интересно, кто перевел. Автор поста не поставил тег [мое].
Иллюстрация к комментарию
Иллюстрация к комментарию
Иллюстрация к комментарию
Иллюстрация к комментарию
Иллюстрация к комментарию
Иллюстрация к комментарию
Иллюстрация к комментарию
Иллюстрация к комментарию
Иллюстрация к комментарию
раскрыть ветку (21)
20
Автор поста оценил этот комментарий

Перевод мой, а "моё" я ставлю, когда и весь пост мой. Но это видео использовалось только для того, чтобы осветить, что ТБВ не может объяснить.

раскрыть ветку (20)
15
Автор поста оценил этот комментарий
Хороший перевод. Обычно я бросаю читать переводы с первых абзацев, потому что у меня голова кругом идёт, когда я читаю русский текст, а «слышу» английский. В голове включается синхронист.

У тебя погрешности есть, но свойственные оригинальным текстам на русском, да и те некритичные. Я б, может, посоветовал чуть больше использовать безличные предложения: If we take... – Если взять... Для русского они более характерны, пожалуй.

Спасибо, прояснил для себя некоторые моменты, которые упустил на видео :))
раскрыть ветку (4)
14
Автор поста оценил этот комментарий

За ними всё равно надо перепроверять. Встречаются ляпы и у них. Текстовка у них хорошая, но многое остаётся за скобками, приходится дополнительно гуглить, выискивать источники и пр.

А посты я пишу эти, чтобы самому лучше разобраться. Самый лучший способ что-то понять - попытаться объяснить это другим.

раскрыть ветку (3)
13
Автор поста оценил этот комментарий
Ты по праву можешь ставить тег [мое] в таком случае.
2
Автор поста оценил этот комментарий
Блин, спасибо тебе за посты! Большая работа, всегда с большим интересом читаю!
2
Автор поста оценил этот комментарий

Спасибо вам, хоть и на элементах много раз уже читал по теме, но каждый раз выясняется, что то это то другое не понял :)

2
Автор поста оценил этот комментарий

Мне кажется если мы поймем, что такое пустота с точки зрения вселенной, то сможем уже описать всю вселенную.

Опять же, был большой взрыв. Существовала ли до большого взрыва пустота? Предположим, что пустота -это материя. Тогда сжималась ли она до большого взрыва? Разбегается ли она сейчас? Если разбегается, то что существует за «пузырем» большого взрыва?

Где был центр большого взрыва? Потому что сейчас простите ученые говорят, что вселенная разбегается, но простите наверняка разные галактики разбегаются по разному и в разных направлениях, соответственно вопрос, откуда они разбегаются?

Я иногда смотрю видео про космос и вопросов после просмотра у меня огромное количество.

раскрыть ветку (14)
2
Автор поста оценил этот комментарий
Где-то тут был пример с резинкой. Возьми резинку, повесь на неё 3 прищепки. Рястягивай. Расстояния между прещепками увеличилось, но центра разбегания нет.
раскрыть ветку (13)
0
Автор поста оценил этот комментарий

Та прищепка, что будет по центру резинки и будет центром. Остальные будут от нее разбегаться. Пример с надуванием шарика более правильный, на мой взгляд, но все равно это такие «фокусы» с двумерным пространством внутри трехмерного.


В любом случае ни фига не понятно как само пространство может растягиваться. Это ппц большой взрыв мозга.

раскрыть ветку (9)
0
Автор поста оценил этот комментарий

Возьми длинную резинку и 100 прищепок. Смотри через "рамку", в которой видно любые 10 прищепок из 100. Вот куда бы эту рамку ты не приложил, будет казаться, что прищепки разбегаются от центральной.

раскрыть ветку (8)
1
Автор поста оценил этот комментарий

Даже в таком случае скорость удаления прищепок будет неодинаковой и я смогу (как минимум) определить направление на центр. А если мне удастся достаточно точно измерить скорости прищепок и построить кривую изменения скоростей, то и расстояние до центра.

раскрыть ветку (7)
1
Автор поста оценил этот комментарий

Даже в таком случае скорость удаления прищепок будет неодинаковой

Попробуй - удивишься. Резинка (если она имеет равномерную плотность) растягивается однородно. Ни одна часть не будет растягиваться быстрее другой.

раскрыть ветку (6)
Автор поста оценил этот комментарий

Попробовал, но точности измерения не хватает (сложно точно нанести риски на резинку). Вообще очень похоже, что к краям сильнее растягивается, но не берусь утверждать.


Но тут, кстати, еще более интересный вопрос возникает (если резинка действительно растягивается равномерно: в случае с резинкой центр растяжения есть, но мы не можем его определить не видя его (ту риску, которая остается неподвижной). Может та же фигня и в случае со вселенной? Эпицентр есть на самом деле, просто мы не можем понять где он?

раскрыть ветку (5)
0
Автор поста оценил этот комментарий

Вы, если проведёте опыт правильно, то какую бы риску не выбрали за "точку отсчёта" она и будет центром. В случае с резинкой возможны дефекты самой резинки, разумеется, но если взять геометрическую абстракцию и применить равномерную трансформацию (ну, хоть, в любом графическом редакторе можно попробовать помасштабировать), то центр определить будет невозможно.


Тут ещё с воздушным шариком посоветовали, на нём даже нагляднее. Надуваем шарик в половину. Наносим "сеточку". Теперь надуваем ещё. По мере увеличения шара, точки сетки равномерно будут расходиться, и центра расширения не будет.


Вот, кстати, видео нашёл (правда, на английском, но картинка там будет понятна и без слов).

https://www.youtube.com/watch?v=DsXsJtOQnTY

раскрыть ветку (4)
0
Автор поста оценил этот комментарий

А мы можем лабораторно измерить это увеличение расстояний? Расположить два объекта на расстоянии 1км друг от друга, обеспечить их неподвижность, измерить один раз расстояние, подождать 10 лет, измерить второй раз. Возможно хотя бы теоретически заметить увеличение расстояния?

раскрыть ветку (2)
0
Автор поста оценил этот комментарий
Не про разбегание галактик, но про нарушение метрики пространства. Есть такое понятие как гравитационные волны. Это когда два массивнных тела так движутся, что вокруг пространство начинает меняться. От них идёт "рябь". Вот эти колебания так и меряют как вы написали. Нобелевку если не ошибаюсь за это дали даже (за обнаружение этой "ряби").
0
Автор поста оценил этот комментарий
Так мы и так измеряем. Красным смещением. Вся эта история и началась с того, что Леметр и Хаббл заметили убегающие галактики.
7
Автор поста оценил этот комментарий

Я пользовался этим источником при подготовке.

Вы смотрите срез комментариев. Чтобы написать комментарий, перейдите к общему списку