Темная энергия и темная материя - реалии нашей Вселенной

В1915 году Альберт Эйнштейн опубликовал свою общую теорию относительности, которая с тех пор, является основой нашего понимания Вселенной. Теория описывает Вселенную, которая должна либо сжиматься, либо расширяться.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

Альберт Эйнштейн (1879-1955) – американский, немецкий и швейцарский физик-теоретик и общественный деятель-гуманист, один из основателей современной теоретической физики.

Начало теории именно расширяющейся Вселенной положил А. А. Фридман, создав космологическую нестационарная модель вселенной и описав ее математически. Современная модель, так называемая Лямбда-CDM, по-прежнему является моделью Фридмана, но уже с учётом не только космологической постоянной, но и тёмной материи и темной энергии.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

Александр Александрович Фридман (1888-1925) – российский и советский математик, физик и геофизик, основал современную физическую космологию, первый вывел теорию нестационарной модели Вселенной (Вселенная Фридмана).

Эмпирически подтвердить факт расширения Вселенной стало возможным позже, благодаря, во первых, открытию Генриеты Ливитт, которая в начале 20-го века изучила записи тысяч пульсирующих звезд, называемых цефеидами, и обнаружила, что у более ярких из них импульсы длиннее. Используя эту информацию, Ливитт смогла рассчитать внутреннюю яркость Цефеид. Если известно расстояние только до одной из звезд–цефеид, то можно определить расстояния до других цефеид чем тусклее ее свет, тем дальше звезда. Таким образом, родилась надежная стандартная свеча, первая отметка на космическом мериле, которая используется до сих пор.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

Для измерения расстояний до звезд необходим стандартный источник света с постоянной яркостью.

И во вторых, это Закон Хаббла, основанный на наблюдении в физической космологии, согласно которому галактики удаляются от Земли со скоростью, пропорциональной их расстоянию. Другими словами, чем дальше они находятся, тем быстрее удаляются от Земли. Скорость галактик определяется их красным смещением, смещением света, который они излучают, в сторону красного конца видимого спектра. Закон Хаббла считается главной наблюдательной основой для подтверждения расширения Вселенной, и сегодня он служит одним из доказательств, наиболее часто приводимых в поддержку модели Большого взрыва.

Открытие расширяющейся Вселенной стало первым революционным шагом на пути к ставшему общепринятым представлению о том, что Вселенная была создана именно в результате Большого взрыва почти 14 миллиардов лет назад. Тогда начались и время, и пространство.

С тех пор Вселенная расширяется. Космические объекты удаляются друг от друга из-за космологического расширения.

До 1990-х годов считалось, что это космическое расширение замедлится и в конечном итоге остановится. Считалось, что гравитационная сила достаточно сильна, чтобы остановить и даже обратить вспять расширение. Таким образом, Вселенная в конечном счете прекратила бы расширяться и снова собралась бы воедино в огненном и жестоком финале.

Но наука не стояла на месте. Со времен Генриетты Ливитт было обнаружено еще много других цефеид, которые находятся гораздо дальше, найденных ранее. К сожалению, на расстояниях в миллиардах световых лет, которые необходимы астрономам для наблюдения, Цефеиды больше не видны.

Сверхновые – взрывы звезд – стали новым стандартом свечей. Более совершенные телескопы на земле и в космосе, а также более мощные компьютеры в 1990-х годах открыли возможность добавить больше кусочков к космологической головоломке.

Новейшим инструментом в арсенале астронома - стал особый вид звездного взрыва, сверхновая типа Ia. В течение нескольких недель одна такая сверхновая может излучать столько же света, сколько целая галактика. Этот тип сверхновой представляет собой взрыв чрезвычайно компактной старой звезды, такой же тяжелой, как Солнце, но такой же маленькой, как Земля, – белого карлика. Взрыв является последним этапом жизненного цикла белого карлика.

Белые карлики образуются, когда в ядре звезды больше нет энергии, поскольку весь водород и гелий были израсходованы сгорает в ядерных реакциях. Остаются только углерод и кислород. Точно так же, в далеком будущем, наше Солнце будет тускнеть и остывать по мере того, как оно достигнет своего конца в виде белого карлика.

Гораздо более захватывающий конец ожидает белого карлика, который является частью двойной звездной системы, что встречается довольно часто. В этом случае сильная гравитация белого карлика лишает звезду-компаньона ее газа. Однако, когда белый карлик разрастается до 1,4 массы Солнца, ему больше не удается держаться вместе. Когда это происходит, внутренняя часть карлика становится достаточно горячей для запуска безудержных термоядерных реакций, и звезда разрывается на части за считанные секунды.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

Слева: Взрыв сверхновой. Белый карлик крадет газ у своего соседа, используя свою гравитацию. Справа: Когда белый карлик вырастает до 1,4 массы Солнца, он взрывается как сверхновая типа Ia.

Продукты ядерного синтеза испускают сильное излучение, которое быстро возрастает в течение первых недель после взрыва, только для того, чтобы уменьшиться в последующие месяцы.

Итак, существует спешка с поиском сверхновых – их сильные взрывы кратковременны. По всей видимой Вселенной каждую минуту вспыхивает около десяти сверхновых типа Ia.

Но Вселенная огромна. В типичной галактике за тысячу лет происходит только один или два взрыва сверхновых. В сентябре 2011 года нам посчастливилось наблюдать одну такую сверхновую в галактике вблизи Большой Медведицы, видимую просто в обычный бинокль. Но большинство сверхновых находятся гораздо дальше и, следовательно, тусклее.

А исследователям приходилось сравнивать два изображения одного и того же маленького кусочка неба, соответствующего ногтю большого пальца на расстоянии вытянутой руки. Первый снимок должен быть сделан сразу после новолуния, а второй - через три недели, до того, как лунный свет затмит звездный.

Затем два изображения нужно сравнить в надежде обнаружить маленькую светящуюся точку – пиксель, среди других на ПЗС–изображении, - которая может быть признаком сверхновой в далекой галактике.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

Сверхновая 1995 г.р. Были сравнены два снимка одного и того же небольшого участка неба, сделанные с интервалом в три недели. Затем на втором снимке была обнаружена маленькая светящаяся точка.

Перед исследователями стояло множество проблем. Сверхновые типа Ia оказались не так надежны, как казалось изначально – самые яркие взрывы затухают медленнее. Кроме того, свет сверхновых необходимо было выделить из фонового света их галактик-хозяев.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

При взрыве сверхновой, большая часть света излучается в течение первых нескольких недель.

Другой важной задачей было получить правильную яркость. Межгалактическая пыль между нами и звездами изменяет звездный свет. Это влияет на результаты при расчете максимальной яркости сверхновых.

Погоня за сверхновыми бросила вызов не только пределам науки и техники, но и логистике. Во-первых, необходимо было найти правильный тип сверхновой. Во-вторых, необходимо было измерить ее красное смещение и яркость.

Кривая блеска должна была анализироваться с течением времени, чтобы иметь возможность сравнить ее с другими сверхновыми того же типа на известных расстояниях. Для этого требовалась сеть ученых, которые могли бы быстро решить, является ли конкретная звезда достойным кандидатом для наблюдения. Им нужно было иметь возможность переключаться между телескопами и без промедления предоставлять время для наблюдений в телескоп, процедура, которая обычно занимает месяцы. Исследователям нужно было действовать быстро, потому что сверхновая быстро гаснет.

Потенциальных ловушек было множество, но исследователи достигли удивительных результатов: в целом они обнаружили около 50 удаленных сверхновых, свет которых казался слабее, чем ожидалось. Это противоречило тому, что они предполагали.

Если бы космическое расширение теряло скорость, сверхновые должны были бы казаться ярче. Однако сверхновые угасали по мере того, как их уносило все быстрее и быстрее, погружая в свои галактики. Неожиданный вывод состоял в том, что расширение вселенной Вселенная не замедляется – совсем наоборот, она ускоряется.

Так что же ускоряет Вселенную? Это называется темной энергией и является вызовом для физики, загадкой, которую еще никому не удалось разгадать. Было предложено несколько идей. Самое простое - это вновь ввести космологическую постоянную Эйнштейна, которую он когда-то отверг. В то время он ввел космологическую постоянную как антигравитационную силу, чтобы противостоять гравитационной силе материи и, таким образом, создать статичную Вселенную. Сегодня космологическая постоянная, по-видимому, вместо этого ускоряет расширение Вселенной. Космологическая постоянная, конечно, постоянна и как таковая не меняется со временем.

Итак, темная энергия становится доминирующей, когда материя и, следовательно, ее гравитация ослабевают из-за расширения Вселенной в течение миллиардов лет. По мнению ученых, это объясняет, почему космологическая постоянная появилась на сцене так поздно в истории Вселенной, всего пять-шесть миллиардов лет назад. Примерно в то время гравитационная сила материи достаточно ослабла по отношению к космологической постоянной. До этого момента расширение Вселенной замедлялось.

Космологическая постоянная может иметь свой источник в вакууме, пустом пространстве, которое, согласно квантовой физике, никогда не бывает полностью пустым.

Вместо этого вакуум представляет собой бурлящий квантовый суп, в котором виртуальные частицы вещества и антивещества появляются и исчезают, порождая энергию.

Однако простейшая оценка количества темной энергии совершенно не соответствует количеству, измеренному в космосе, которое примерно в 10 в 120 степени раз больше (1, за которым следуют 120 нулей).

Это представляет собой гигантский и до сих пор необъяснимый разрыв между теорией и наблюдениями – на всех пляжах мира насчитывается не более 10 в 20 степени песчинок (1, за которыми следуют 20 нулей).

Возможно, темная энергия, в конце концов, не постоянна. Возможно, она меняется со временем. Возможно, неизвестное силовое поле лишь изредка генерирует темную энергию. В физике существует множество таких силовых полей, которые в совокупности называются квинтэссенцией, по греческому названию пятого элемента. Квинтэссенция могла бы ускорить Вселенную, но только иногда. Это сделало бы невозможным предвидеть судьбу Вселенной.

Чем бы ни была темная энергия, она, похоже, никуда не денется. Она очень хорошо вписывается в космологическую головоломку, над которой физики и астрономы работали долгое время. Согласно текущему консенсусу, около трех четвертей Вселенной состоит из темной энергии. Остальное - материя. Но обычная материя, вещество, из которого состоят галактики, звезды, люди и цветы, составляет всего ПЯТЬ процентов Вселенной.

Оставшаяся материя называется темной материей и до сих пор скрыта от нас. Темная материя - еще одна загадка в нашем, по большей части, неизвестном космосе. Как и темная энергия, темная материя невидима. Поэтому мы знаем и то, и другое только по их эффектам – одно толкает, другое притягивает. Общим у них является только прилагательное “темный”.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

Современные представления об эволюции Вселенной и соотношения материи, тёмной материи и тёмной энергии (иллюстрация The Royal Swedish Academy of Sciences).

Этими открытиями исследователи Сол Перлмуттер, Брайан П. Шмидт и Адам Г. Рисс перевернули науку с ног на голову и помогли еще немного раскрыть тайны Вселенной, которая на 95% все еще неизвестна науке. За свои исследования были удостоены Нобелевской премии по физике в 2011 году.

Темная энергия и темная материя - реалии нашей Вселенной Вселенная, Физика, Астрофизика, Астрономия, Планета, Галактика, Млечный путь, Длиннопост

Сол Перлмуттер, Брайан П. Шмидт и Адам Г. Рисс

Источник

Физика и Астрономия

29 постов24 подписчика

Добавить пост