112

Палеонтологи уточнили время появления первых членистоногих Часть первая.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Международная группа палеонтологов выпустила свежий обзор данных, касающихся появления в палеонтологической летописи первых представителей самого крупного типа животных — членистоногих. Сразу несколько дисциплин, включая молекулярную филогенетику и тафономию (науку о закономерностях захоронения ископаемых остатков), приводят к выводу, что реальным временем возникновения членистоногих был рубеж эдиакарского и кембрийского периодов, когда произошел так называемый «кембрийский взрыв». Авторы обзора отвергают конкурирующую гипотезу «долгой скрытой докембрийской эволюции», согласно которой главные ветви животных, в том числе и членистоногих, возникли гораздо раньше.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Рис. 1. Эволюционное древо панартропод, сопровожденное изображениями некоторых членов этой группы. Подробные объяснения — в тексте. Детальная структура приведенного древа в данном случае неважна, это просто одна из версий. Среди изображенных животных — два современных (тихоходка и мечехвост) и три ископаемых, из которых галлюцигения (Hallucigenia) близка к онихофорам, а керигмахела (Kerygmachela), аномалокарис (Anomalocaris) и диания (Diania) относятся к обсуждаемым ниже «стволовым эуартроподам». Стоит упомянуть, что керигмахела получила видовое название в честь великого датского философа Сёрена Кьеркегора — Kerygmachela kierkegaardi. Иллюстрация из статьи D. A Legg et al., 2013. Lobopodian phylogeny reanalised, с изменениями



Хозяева Земли

Говорят, что знаменитый английский биолог Джон Холдейн (John Burdon Sanderson Haldane) однажды оказался в компании богословов, и они задали ему вопрос: какие черты Творца обнаруживаются при изучении природы творения? Холдейн, известный своими материалистическими взглядами, проворчал: «Неумеренная увлеченность жуками» (“An inordinate fondness for beetles”; цитируется по статье: G. E. Hutchinson, 1959. Homage to Santa Rosalia or why are there so many kinds of animals?). Этот шуточный ответ был, однако, основан на биологических фактах. Широко известно, что жуки, или жесткокрылые, — это самый многочисленный отряд во всем животном царстве. Если, например, сравнить жуков и млекопитающих, окажется, что число известных на данный момент видов жуков превосходит число видов млекопитающих в 72 раза. И это несмотря на то, что млекопитающие — не отряд, а класс, т. е. группа значительно более высокого уровня.


Сказанное о жуках можно распространить и на их эволюционных родственников — от близких до дальних. Жуки относятся к насекомым, которые, в свою очередь, входят в тип членистоногих. Разнообразие этого типа поистине грандиозно. По современным подсчетам, больше 80% всех видов многоклеточных животных — это членистоногие. Другой настолько успешной эволюционной ветви просто нет в природе. Замечательная книга Эдварда Уилсона (Edward Osborne Wilson), значительная часть которой рассказывает о возникновении социальных систем у членистоногих, недаром называется «Хозяева Земли».


Неудивительно, что эволюция членистоногих занимает многих исследователей. Дело облегчается тем, что палеонтологическая летопись членистоногих сравнительно богата. Более того, ее «чтение» — работа достаточно благодарная. Согласно принципу актуализма, ключом к пониманию прошлого служит настоящее. В частности, любые выводы, касающиеся ископаемых животных, должны быть в конечном счете обязательно основаны на данных о животных современных — иначе исследователю будет просто не на что опереться. В случае с членистоногими этот принцип работает прекрасно, потому что в распоряжение ученых попадает огромное количество как современных, так и ископаемых форм, очень разнообразных, но в то же время устроенных более-менее по одному плану. Это — идеальная ситуация для палеонтолога, и естественно, что исследователи ископаемых членистоногих пользуются ей сполна (см., например: Палеоэнтомология в России).


Членистоногие — группа организмов, очень подходящая для проверки всевозможных гипотез, касающихся хода эволюции. Например, действительно ли большинство современных крупных групп животных возникло во время кембрийского взрыва, или их внезапное появление в начале кембрийского периода связано с образованием твердых скелетов, а истинные эволюционные «корни» лежат гораздо глубже? Попытки выяснить это, основываясь на материале по членистоногим, уже предпринимались (см. Членистоногие подтверждают реальность кембрийского взрыва, «Элементы», 17.11.2013). Но эволюция членистоногих, особенно ранняя, крайне интересна и сама по себе — как история, героями которой являются многие совершенно необычные с нашей современной точки зрения живые существа. Палеонтология XXI века успела сделать много открытий в этой области. Впрочем, и нерешенных вопросов тут, как всегда, еще хватает.


Усики, жвалы и хелицеры

По современным данным, тип членистоногих состоит из двух крупных эволюционных ветвей.


Одна ветвь — хелицеровые (Chelicerata), куда относятся паукообразные, мечехвосты и морские пауки. У них нет усиков, зато есть хелицеры — околоротовые придатки, оканчивающиеся клешнями, крючками или стилетами. Большинство хелицеровых, во всяком случае крупных, — хищники, потому что для других способов питания их ротовой аппарат подходит мало.


Вторая ветвь членистоногих называется жвалоносными (Mandibulata). В их ротовой аппарат входят челюсти — в том числе мандибулы, которые иначе называются жвалами, — представляющие собой не что иное, как сильно видоизмененные ходильные ноги. Этим жвалы принципиально отличаются от хелицер, которые не имеют с ногами ничего общего. Ротовой аппарат жвалоносных, оснащенный набором челюстей, позволяет осваивать предельно разнообразные способы питания, что мы и видим на примере членов этой группы — многоножек, ракообразных и особенно насекомых. Кроме того, для жвалоносных очень характерны усики, или антенны — одна или две пары. Как уже упоминалось, у хелицеровых усиков нет.


Строго говоря, тип, состоящий из жвалоносных и хелицеровых, называется Euarthropoda (эуартроподы, «настоящие членистоногие»). Это название, более точное, чем просто «членистоногие», предложил в 1904 году знаменитый английский зоолог Рэй Ланкестер (Sir Edwin Ray Lankester). Среди признаков эуартропод — четкое деление тела на отделы (тагмы) и присутствие членистых конечностей, внутри которых есть суставы.


Животные, у которых членистых конечностей нет и никогда не было, не относятся к эуартроподам, даже если по многим другим признакам они к ним близки. Существует две группы таких животных: онихофоры — наземные существа, которых иногда называют «бархатными червями» (velvet worms), — и тихоходки, мельчайшие водяные жители (см., например: Укорочение тела тихоходок связано с потерей Hox-генов, «Элементы», 04.03.2016). И у онихофор, и у тихоходок тело сегментировано почти так же, как у членистоногих, но конечности нечленистые. Поэтому диагнозу типа Euarthropoda, равно как и буквальному значению слова «членистоногие», они не соответствуют.


Тем не менее онихофоры и тихоходки, безусловно, являются близкими родственниками эуартропод. В конце XX века эуартропод, онихофор и тихоходок формально объединили в надтип Panarthropoda (букв. «все членистоногие»). Панартроподы — огромная эволюционная ветвь, которая, в свою очередь, входит в группу линяющих животных (Ecdysozoa; см., например: Китайские палеонтологи нашли древнейшего головохоботного червя, «Элементы», 04.06.2014). Таково положение членистоногих в системе животного мира.


«Стволовые эуартроподы»

До сих пор, говоря о членистоногих и их родственниках, мы упоминали только современные группы. Однако для полного понимания эволюционных событий, сформировавших самый многочисленный тип животного царства, просто необходимо учитывать палеонтологическую летопись, и прежде всего — летопись кембрийского периода, когда сформировались почти все крупные эволюционные ветви животных. В кембрии встречаются интереснейшие живые существа, совершенно не похожие на своих современных родственников (многих из них нельзя отнести ни к какому современному типу — по крайней мере, без явных натяжек). Трудность в том, что «мягкотелые» существа, у которых нет минеральных скелетов или раковин, сохраняются в ископаемом состоянии относительно редко, и к членистоногим это, увы, тоже относится. Для их захоронения нужны лагерштетты — глинистые осадочные породы, образующиеся в малокислородных условиях (там, где кислорода много, в грунт проникают роющие животные, которые сразу нарушают структуру формирующегося осадка; см. А. Ю. Журавлев, 2014. Ранняя история Metazoa — взгляд палеонтолога). Особой известностью в качестве источника кембрийских ископаемых, заключенных в лагерштеттах, пользуются канадские сланцы Бёрджесс (Burgess Shale), где раскопки ведутся уже больше ста лет. Фауна сланцев Бёрджесс настолько знаменита, что местонахождения с подобным типом сохранности обозначаются в научных статьях аббреавиатурой BST — Burgess Shale-type, «тип сланцев Бёрджесс». Палеонтология в наши дни развивается быстро, и местонахождений BST известно много, причем в некоторых из них степень сохранности просто поразительна. Это позволило неплохо изучить древнейших родственников членистоногих и, что называется, пролить свет на их происхождение. Правда, открывшуюся картину никак не назовешь простой. Но тем она интереснее.


Бросим взгляд на эволюционное древо (рис. 2). По молекулярным данным, которые в данном случае неплохо согласуются с палеонтологическими, ближайшие «внешние» родственники эуартропод, дожившие до наших дней — это онихофоры. В палеонтологической летописи онихофоры — или, во всяком случае, близкие к ним формы — тоже присутствуют. Правда, в кембрийском периоде они были еще не наземными, а морскими (см. Aysheaia). Это гусеницеобразные существа, которые передвигались по дну на множестве коротких ножек, оканчивающихся коготками. Вполне вероятно, что общие предки эуартропод и онихофор были на них похожи.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Рис. 2. Упрощенное эволюционное древо членистоногих и их родственников. Тихоходки, положение которых до сих пор остается спорным и которые в любом случае представляют собой крайне специализированную боковую ветвь, сюда не включены. Оранжевая стрелка указывает на представителя «стволовых эуартропод». У него можно видеть плавательные выросты на туловище, фасеточные глаза и длинные, мощные членистые околоротовые придатки (об этих признаках см. ниже в тексте)

Однако онихофоры вряд ли являются непосредственными предками эуартропод (во всяком случае, эуартропод в строгом и традиционном смысле этого слова). Вот тут-то и начинается самое интересное. На реальном эволюционном древе между ветвью онихофор и ветвью эуартропод находится целая совокупность весьма оригинальных полностью вымерших ветвей, члены которых обладали отдельными «эуартроподными» признаками, но еще не набрали их полного комплекса, какой мы видим у паука, сороконожки или мухи. Эти ветви можно было бы назвать переходными, но надо помнить, что для своей среды и своего времени каждое относящееся к ним животное было вполне завершенным организмом, отлично вписанным в определенную экологическую нишу (иначе бы оно не попало в палеонтологическую летопись). Хотя, конечно, с нашей современной точки зрения многие члены этих «переходных» ветвей выглядят крайне странно.


В современной научной литературе упомянутую совокупность эволюционных ветвей принято называть «стволовой группой эуартропод», или просто «стволовыми эуартроподами» (stem-Euarthropoda). Честно говоря, такое обозначение может изрядно запутать: ведь в том-то и дело, что животные, на которых оно распространяется, к эуартроподам в узком смысле этого слова не относятся (см. J. Ortega‐Hernandez, 2014. Making sense of ‘lower’and ‘upper’ stem‐group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848). Однако — тут нам поневоле придется употребить предложение, насыщенное терминами — кладистическая систематика, господствующая в современной биологии почти безраздельно, категорически запрещает вводить парафилетические таксоны. Если говорить попросту, это означает, что группа организмов, охватывающая не единственную эволюционную ветвь, а целый эволюционный уровень, не может считаться единицей классификации и иметь собственное научное название (в частности, латинское). Поскольку в данном случае такая группа налицо и как-то называть ее все же надо, исследователи используют временное обозначение, которое было сочтено корректным по формальным соображениям. Мы тоже — куда деваться — будем этим обозначением пользоваться, оставляя его в кавычках и помня, что с точки зрения классической зоологии «стволовые эуартроподы» — это не эуартроподы.


Положение «стволовых эуартропод» на эволюционном древе показано на рис. 2. Если на время оставить в стороне строгую терминологию, можно сказать, что «стволовые эуартроподы» — это эволюционный уровень, охватывающий часть древа выше онихофор и ниже эуартропод в узком смысле. Что же на этом эволюционном уровне происходило?


А происходило там много интересного. «Стволовые эуартроподы» могут поразить чье угодно воображение — настолько необычен и многообразен их облик (см. рис. 1 и 3). Их членистое туловище часто украшали ряды жаброподобных, крылоподобных или лезвиеподобных выростов, способных служить своего рода плавниками. Появлялись хитиновые головные щиты, которые в некоторых группах становились двустворчатыми. Ходильные конечности менялись во всем диапазоне от примитивных «сосочков» (или их отсутствия) до сложно устроенных длинных ног, членистых, а иногда и двуветвистых, как у ракообразных. Невероятным разнообразием отличались околоротовые придатки: членистые или нечленистые, зачаточные или очень мощные, короткие или длинные, хватательные или фильтрующие, иногда ветвящиеся, а иногда с клешнями, крючками, шипами или щупальцами. Наконец, у ряда форм возникли огромные сложные фасеточные глаза, примерно такие же, как у современных насекомых, и иногда сидящие на стебельках. И все эти признаки вступали между собой во множество сочетаний, часто неожиданных для современных зоологов.

Палеонтологи уточнили время появления первых членистоногих Часть первая. Палеонтология, Наука, Членистоногие, Копипаста, Elementy ru, Эволюция, Длиннопост

Рис. 3. Панартроподы из сланцев Бёрджесс. А — близкая к современным онихофорам Aysheaia. B — Opabinia, обладатель плавниковых выростов, фасеточных глаз и членистого хобота, в данном случае подогнутого под туловище. C — Hurdia, от которой сфотографирован только ротовой аппарат с концентрическим расположением хитиновых зубцов (у настоящих членистоногих ничего подобного не бывает). D — Anomalocaris. Хорошо видны длинные членистые околоротовые придатки. E — еще один Anomalocaris. Белые стрелки указывают на сегментарные мышцы, черные — на железистые выросты кишечника. F — Leanchoilia. Околоротовые придатки длинные и разветвленные, эти ветви служат щупами. G — Perspicaris, обладатель двустворчатого головного щита. H, I, J — Helmetia, Sidneyia и Emeraldella, вероятные родственники трилобитов. Длина масштабной линейки 5 мм на A, 10 мм на B–F и H–J и 3 мм на G. Иллюстрация из обсуждаемой статьи в PNAS



Источник: Allison C. Daley, Jonathan B. Antcliffe, Harriet B. Drage, and Stephen Pates. Early fossil record of Euarthropoda and the Cambrian Explosion // Proceedings of the National Academy of Sciences. 2018. V. 115. № 21. P. 5323–5331. DOI: 10.1073/pnas.1719962115.


Сергей Ястребов
http://elementy.ru/novosti_nauki/433315/Paleontologi_utochni...

Найдены дубликаты

0
Очень интересно, побольше бы таких постов.
0
Спасибо. Сохранил почитать на досуге.
0

Тихоходка, галлюцигения, ну и названия.

Похожие посты
107

Лисовиция

Лисовиция Палеонтология, Синапсиды, Наука, Копипаста, Elementy ru, Эволюция, Длиннопост

Представьте, что ученые внезапно обнаружили свинью размером со слона. Представьте, что нашли они ее не на соседском заднем дворе, а где-нибудь в арктической тундре, где свиньям жить вовсе не положено. Представьте, что даже сами первооткрыватели поначалу не поверили глазам, и потребовалось одиннадцать долгих лет, чтобы находку разложили по косточ... по полочкам, рассмотрели, описали и убедились, что это не обман зрения, а самый что ни на есть научный факт. Представили?..

Так вот, примерно эти же эмоции испытал весь научный мир в 2019 году, когда группой польских исследователей были опубликованы результаты их одиннадцатилетних раскопок, познакомившие человечество с лисовицией (Lisowicia bojani) — огромным растительноядным животным, жившим на территории Восточной Европы в позднем триасовом периоде. Реконструкцию внешнего вида лисовиции вы и видите на главном изображении.

Несмотря на некоторое внешнее сходство с крупными рептилиями триаса, лисовиция не является их сколь-нибудь ближней родней и вообще не относится к классу пресмыкающихся. На самом деле она принадлежит к синапсидам, или звероящерам, — группе вымерших животных, являющихся переходным звеном от древних четвероногих к современным млекопитающим. Конечно, лисовицию нельзя назвать нашей бабушкой — подобные ей дицинодонты вымерли, не оставив прямых потомков, — но она относится к достаточно продвинутой группе синапсид, просуществовавшей с середины пермского по конец триасового периода и распространенной по всему земному шару.

После Великого Вымирания на рубеже палеозойской и мезозойской эр разнообразие дицинодонтов существенно упало, и на протяжении всего триаса эти животные постепенно сокращались в числе, уступая свое место в экосистеме всевозможным растительноядным рептилиям. Размерами они при этом не блистали — в среднем были не больше откормленной свиньи, — и до недавнего времени считалось, что никого крупнее двухтонной исчигуаластии (Ischigualastia jenseni) дицинодонты за всю свою историю так и не породили... Как вдруг выяснилось, что примерно 210 миллионов лет назад на болотистых польских низменностях паслось животное, вне всяких сомнений относящееся к дицинодонтам, но весившее не одну, не две, а целых семь тонн — как очень крупный современный слон.

Лисовиция Палеонтология, Синапсиды, Наука, Копипаста, Elementy ru, Эволюция, Длиннопост

Сравнение размеров лисовиции и африканского слона. Рисунок © G. Niedzwiedzki с сайта novataxa.blogspot.com

Открытие великана произвело фурор, заставив ученых пересмотреть свои взгляды на эволюцию жизни в позднем триасовом периоде и, в частности, на становление динозавров, которые, как предполагалось раньше, были первыми гигантскими растительноядными животными, возникшими на Земле после Великого Вымирания. До недавнего времени резкое увеличение размеров динозавров в конце триасового — начале юрского периода (к примеру, барапазавр, живший около 197 миллионов лет назад, уже достигал в длину 14–18 метров и весил порядка 10 тонн) чаще всего связывалось с их анатомическими особенностями, упрощавшими появление крупных форм, — например, облегченным скелетом и парасагиттальной постановкой конечностей (когда они подведены под туловище, а не расставлены в стороны, как у ящерицы). Теперь же, после открытия лисовиции, становится ясно, что позднетриасовый гигантизм не был прерогативой динозавров: какие-то внешние экологические факторы могли повлиять на увеличение размеров всех групп растительноядных животных, включая и дицинодонтов.

Какие факторы? Предположений несколько, но, судя по строению костей лисовиции, ключевым из них была необходимость обезопасить себя от хищников. Дело в том, что гистологический анализ костей конечности показал отсутствие у дицинодонта линий остановки роста (lines of arrested growth, LAGs) на периферии костной ткани: это свидетельствует о том, что, появившись на свет, животное начинало быстро расти, не останавливаясь в этом процессе до достижения взрослых габаритов. Схожая картина наблюдается и у крупных растительноядных динозавров (см. Малыши гигантских динозавров росли очень быстро, «Элементы», 24.04.2016), что обычно связывают с необходимостью как можно скорее достичь размерного оптимума, после чего большая часть хищников просто не рискнет посягать на столь внушительное животное. Хищники же в экосистеме лисовиции встречались: в тех же местах обнаружен гигантский плотоядный архозавр смок (Smok wawelski), достигавший в длину пяти-шести метров и обладавший внушительными челюстями, способными крушить кости. На некоторых костях лисовиции обнаружены следы зубов смока, при этом повреждены в основном кости молодых животных: это указывает на то, что смок был активным хищником и представлял большую опасность для дицинодонтов, не достигших взрослых размеров.

Еще одной интересной особенностью лисовиции являются ее конечности, а если точнее, то их постановка под туловищем. Обычно среди крупных дицинодонтов встречалась полурасставленная постановка: задние ноги находились прямо под туловищем, как у млекопитающих, а вот локти передних торчали в стороны, что значительно ограничивало подвижность этих животных и вес тела, который они могли выдержать. Лишь у лисовиции передние конечности полностью подвелись под туловище, а локоть оказался ориентирован назад, как у динозавров и современных крупных млекопитающих: это существенно снизило нагрузку на суставы и увеличило скорость передвижения животного, хотя, конечно, судя по размерам и пропорциям конечностей, едва ли лисовиция была хоть сколько-нибудь проворна.

Лисовиция Палеонтология, Синапсиды, Наука, Копипаста, Elementy ru, Эволюция, Длиннопост

Комплекс позвоночных животных, обнаруженных в окрестностях деревни Липе-Слёнске (Lipie Śląskie). а — крупный хищный архозавр смок, напоминающий теропод; b — крупные темноспондильные амфибии (Cyclotosaurus sp.); c — мелкие хищные динозавры; d — темноспондильные амфибии (Gerrothorax sp.); e — некрупный базальный крокодиломорф; f — мелкое хористодероподобное животное (см. Choristodera); g — акулы-гибодонты (Polyacrodus и Hybodus); h — латимерия; i —двоякодышащая рыба (Ptychoceratodus sp.); j —лучеперые рыбы; k — лисовиция; l — мелкие диапсиды; m — динозавроморфы или ранние динозавры; n — мелкие лепидозавроморфы; o —птерозавры; p — раннее млекопитающее (Hallautherium sp.). Рисунок из дополнительных материалов к статье T. Sulej, G. Niedźwiedzki, 2019. An elephant-sized Late Triassic synapsid with erect limbs

Ко времени появления лисовиции дицинодонты уже находились на грани исчезновения: по всему миру остались лишь считаные виды этих уникальных животных, такие как североамериканская плацерия (Placerias hesternus) и марокканская могреберия (Moghreberia nmachouensis). Судя по характеру отложений, в которых обнаружена лисовиция, небольшие стада этих грузных животных паслись на прибрежной болотистой низменности, сплошь изрезанной медленнотекущими речками и старицами. Растительность в тех краях была пышной: тут и там можно было увидеть напоминающие кипарисы хвойные деревья, причудливые древние гинкго, семенные папоротники и саговники. Анализ найденных копролитов (см. картинку дня Копролиты и великое вымирание) из древней «коммунальной уборной», предположительно принадлежащей лисовициям, показал, что рацион дицинодонтов в основном состоял из мягкой растительности и веточек голосеменных растений, однако периодически они питались и древесиной: возможно, это отражает сезонные изменения рациона, и во время засухи гигантские вегетарианцы вынужденно переходили на менее калорийные источники пищи. Остается открытым вопрос: чем кормились молодые дицинодонты, которым требовалось расти как можно быстрее? Никаких свидетельств млечного вскармливания для синапсид, не относящихся к прямым предкам млекопитающих, до сих пор найдено не было, так что, возможно, юным лисовициям приходилось самостоятельно заботиться о своем рационе, потребляя в пищу насекомых, яйца и падаль.

Лисовиция Палеонтология, Синапсиды, Наука, Копипаста, Elementy ru, Эволюция, Длиннопост

Реконструкция охоты пары смоков (на данной реконструкции они представлены как рауизухиды; см. Rauisuchia) на стадо лисовиций. Рисунок © Szymon Górnicki из твиттера художника

Подвести же итог хочется словами одного из первооткрывателей лисовиции, палеонтолога Гжегожа Недзведцкого из Уппсальского университета: «Стоило потрудиться столько лет... чтобы лучше понять это животное, благодаря чему нам удалось опубликовать результаты своей работы в хорошем научном журнале, и они обязательно войдут в историю как еще одно уникальное открытие, не относящееся к динозаврам. Важно знать, что палеонтология — это не только динозавры. Миллионы лет назад было много замечательных, разных животных, о которых мало что известно».

Рисунок © Karolina Suchan-Okulska с сайта novataxa.blogspot.com


Анна Новиковская

https://elementy.ru/kartinka_dnya/1258/Lisovitsiya?from=rxbl...

Показать полностью 3
90

Их вкусы весьма специфичны...

Обнаружены пауки, которые связывают самок перед спариванием.


Самка вида Thanatus fabricii

Их вкусы весьма специфичны... Паук, Членистоногие, Спаривание, Брачные игры, The National Geographic, Животные, Наука, Исследования, Длиннопост

Группа исследователей из Чехии обнаружила, что самцы пауков-филодромидов вида Thanatus fabricii парализуют ядом и связывают своих самок перед спариванием. Ученые считают, что самцы поступают так, чтобы не быть съеденными после спаривания.


Принуждение самок во время спаривания — чрезвычайно редкое поведение у пауков, учитывая физическое превосходство самок, но чешские исследователи обнаружили, что самцы T. fabricii никогда не спаривались, если самка не была укушена и обездвижена.


Для своего исследования авторы собрали самцов и самок Thanatus fabricii на одном из участков в Израиле и поместили их вместе в лабораторные условия, чтобы наблюдать за брачным поведением этого вида.


Ученые выяснили, что самцы сначала кусали самок за ноги, вызывая у самок временный паралич. Самки подтягивали свои ноги близко к телу и становились совершенно неактивными и неподвижными.


«Пауки иногда часами заманивают самок, чтобы ухаживать за ними, но эти парни просто идут и кусаются», — Ленка Сентенска, соавтор исследования из Университета в Брно.


Затем самец садился на самку и быстро окутывал ее ноги и тело паутиной перед тем, как осеменить ее. После завершения спаривания самки в большинстве случаев лежали неподвижно в течение некоторого времени, прежде чем освободиться, разорвав шелковые нити, которыми они были покрыты.


«Иммобилизация самок, которая типична для принудительного совокупления, может быть особенно выгодна, если самцы подвергаются риску нападения и каннибализации со стороны своих партнеров во время ухаживания», — пишут авторы исследования.


Сексуальный каннибализм часто встречается у пауков и других беспозвоночных в тех случаях, когда самки крупнее. Не избежали участи быть съеденными и некоторые самцы T. fabricii.

В 11% случаев попытка самцов спариться заканчивалась неудачей, и самки съедали их перед совокуплением.


Кроме того, исследователи говорят, что, несмотря на очевидную насильственную природу такого брачного поведения, остается неясным, действительно ли самки полностью обездвижены самцами или это бездействие является просто сигналом того, что самки принимают самца и готовы к совокуплению.


Ученые также обнаружили, что временный паралич негативно сказывался на самках. Некоторое время после ухода самцов они менее охотно атаковали предложенных им муравьев и были менее подвижными. Это говорит о том, что принуждение к совокуплению не проходит для них бесследно, хотя и не наносит серьезного вреда.


Источник

Показать полностью
412

Природа не раз пыталась развить краба. И для этого есть термин – карцинизация

Природа не раз пыталась развить краба. И для этого есть термин – карцинизация Биология, Эволюция, Наука, Краб, Зоология, Зоопарк, Длиннопост

Изменения частей тела от десятиногих с длинным плеоном до краба. Слева: укорочение панциря, посередине: расширение грудины, справа: сокращение и складывание плеона.


Карцинизация является примером конвергентной эволюции, в которой ракообразное превращается в крабоподобную форму из некрабоподобной формы. Термин был введен в эволюционную биологию Л. А. Боррадейлом, который описал его как «одну из многочисленных попыток природы развить краба». Считается, что крабоподобные формы встречались независимо, по крайней мере, пять раз у десятиногих ракообразных, включая фарфоровых крабов, волосатых каменных крабов и кокосовых крабов.


Конвергентная эволюция – это процесс, посредством которого различные виды независимо развивают аналогичные структуры, потому что они должны адаптироваться к аналогичной среде. Из нашей статьи: "Анатомо-физиологические доказательства эволюции"
Природа не раз пыталась развить краба. И для этого есть термин – карцинизация Биология, Эволюция, Наука, Краб, Зоология, Зоопарк, Длиннопост

Виды 3-х родов крабов: Petrolisthes (6 видов) и родственных родов Allopetrolisthes (3 вида) и Liopetrolisthes (2 вида). (A) Allopetrolisthes spinifrons, (B) Petrolisthes tuberculosus, (C) Allopetrolisthes angulosus, (D) Liopetrolisthes mitra, (E) Liopetrolisthes patagonicus, (F) Petrolisthes granulosus, (G) Petrolisthes desmarestii, (H) Petrolisthes tuberculatus, (I) Petrolisthes laevigatus, (J) Petrolisthes violaceus, (K) Allopetrolisthes punctatus.


Наверное, крабовая форма эффективна, поэтому многие ракообразные пытаются ей соответствовать. Тем не менее, ученые предостерегают в исследовании 2017-го года, что нет никаких оснований предполагать, что «эволюционные тенденции» или любая подобная расплывчатая концепция сыграли свою роль. Они пишут, что в результате карцинизации определенные структурные согласованности привели к определенным внутренним анатомическим паттернам, обнаруживаемым у крабоподобных форм.


Источник: https://4everscience.com/2020/10/15/carcinisation/

Показать полностью 1
468

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии

Dinosaur Novataxa - мой личный проект, посвященный популяризации последних научных открытий в области изучения динозавров. Ушедший год запомнился множеством интересных находок: от загадочных и фрагментарных до древнейших представителей семейств и "переходных форм".

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

С некоторыми иллюстрациями можно ближе познакомиться здесь и здесь.

Gnathovorax cabreirai ("прожорливые челюсти") и Nhandumirim waldsangae ("маленький эму") - сразу два вида динозавров из формации Санта-Мария, Бразилия.

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

Гнатоворакс (справа) - это род ящеротазовых динозавров семейства герреразаврид, древнейших хищных динозавров. Герреразавриды не являлись тероподами, как другие хищные динозавры, они отделились от древа ящеротазовых еще до его разделения на тероподов и зауроподоморфов, либо (по версии Baron et al., 2017) были более тесно связаны с длинношеими зауроподоморфами. Найденный образец представляет собой практически полный и хорошо сохранившийся сочлененный скелет, окаменевший вместе с остатками представителей нединозавровой фауны - ринхозаврами и зверообразными цинодонтами. Открытие этого превосходного образца пролило свет на малоизученные аспекты анатомии герреразаврид, такие как особенности строения мозга. Судя по его форме, гнатовораксы вели активный хищнический образ жизни, что согласуется со строением их зубов и когтей. В течение карнийского века триаса герреразавриды занимали ниши крупных хищников, в то время как первые тероподы еще скрывались в их тени. Одним из подобных динозавров был нандумирим (на картинке слева). Он известен по единственному частичному скелету и был либо примитивным тероподом, либо одним из ранних завроподоморфов - древнейшие предки тираннозавров и диплодоков были чрезвычайно похожи друг на друга.

Adynomosaurus arcanus ("ящер со слабыми плечами") и  Pareisactus evrostos ("взломщик")

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

Оба вида динозавров были найдены в в маастрихтских отложениях в формации Тремп, на северо-востоке Испании. Формация знаменита многочисленными находками костей, следов и гнездовий динозавров, которые жили на этой территории всего за 300 тысяч лет до массового вымирания в конце мелового периода. Адиномозавр – утконосый динозавр из группы ламбеозаврин, известных своими разнообразными костными гребнями. Этот вид является вторым по счету гадрозавром, добытым в Южно-Пиренейском предгорном бассейне, и пятым в Европе. Название нового рода составлено из греческих слов «adýnamos» (слабый), «-mos» (плечо) и «sauros» (ящерица). Адиномозавр уникален среди гадрозавридов тем, что обладает лопаткой с относительно нерасширенным лезвием. Необычное уменьшение лопаточной лопасти свидетельствует о снижении силы дельтовидной и подлопаточной мышц по сравнению с другими гадрозавридами. Кроме того, материал, приписанный к новому виду, включает шейные и хвостовые позвонки, грудину, кости конечностей. К сожалению, череп адиномозавра неизвестен, реконструкция гребня отсылает к цинтаозавру, другому роду ламбеозаврин, с которым адиномозавр состоял в родстве.

Парейсактус – некрупный примитивный игуанодон. В переводе с греческого, его название означает «взломщик»: он закрался в палеонтологическую летопись, затерявшись среди сотен костей гадрозавров, и оставил после себя единственную неполную лопатку. Но даже этого материала хватило, чтобы распознать в нем представителя семейства рабдодонтид.

Vallibonavenatrix cani, или "валлибонская охотница" - род спинозавриновых теропод из испанской провинции Кастельон.

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

Это был рыбоядный хищник среднего размера, обитал во время барремского века 129.4–125 млн лет назад. Его современником, также населявшим Европу, был известный род Baryonyx, однако филогенетически валлибонавенатриксы были теснее связаны с гондванскими и азиатскими спинозавринами (Spinosaurus, Irritator, Ichthyovenator). Этот факт свидетельствует о миграции видов между континентами, происходившей в раннем меловом периоде. Также в Испании были найдены окаменевшие следы спинозаврин - судя по ним, эти полуводные хищники обладали перепонками на задних лапах и опирались на все четыре пальца стопы.

Tralkasaurus cuyi. Имя нового ящера (которое в переводе с языка мапуче означает "громовой ящер") было анонсировано в 2019, а окончательный вариант статьи с описанием вида был опубликован в 2020 году.

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

Тралказавр - хищник средних размеров (около 5 м в длину), обитал 97-93 млн лет назад и соседствовал с аргентинозавром, гиганотозавром и другими динозаврами аргентинской формации Уинкул. Находка включала в себя верхнюю челюсть, спинные, крестцовые и хвостовые позвонки, шейные ребра и плохо сохранившуюся лобковую кость. Тралказавр демонстрирует противоречивое сочетание характеристик базальных членов семейства абелизаврид со специализированными короткомордыми представителями, которых объединяют в группу Brachyrostra.

Aquilarhinus palimentus. Название нового вида отражает особенности внешнего вида динозавра - "орлиный нос с совком-подбородком".

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

Кости нижних челюстей Aquilarhinus соединяются в W-образной форме, напоминая широкий, уплощенный совок. Необычная форма клюва этого вида намекает на неизвестный ранее стиль кормления у утконосых динозавров. Фрагменты черепа были обнаружены еще в 1980-х, однако их состояние делало их на тот момент неподходящими для изучения. Исследования, проведенные в 1990-х годах, выявили изогнутый носовой гребень, который считается отличительным признаком гадрозаврида грипозавра. В то же время была обнаружена своеобразная нижняя челюсть. Однако образец провел дополнительные годы в ожидании полного описания, и только после недавнего анализа исследователи пришли к выводу, что образец был более примитивным, чем грипозавр и две основные группы утконосых динозавров. аквиларин является одним из самых примитивных из известных гадрозавридов и поэтому может помочь в понимании, как и почему развивались орнаменты на их головах, а также как происходила эволюция и миграция группы. Открытие нового рода добавляет еще одно доказательство гипотезе, что утконосые динозавры берут свое начало в юго-восточной части Северной Америки. Особенные черты аквиларина свидетельствуют, что 80 млн лет назад существовало большее число ветвей древа утконосых динозавров, чем считалось ранее. А обнаружение простого гребня в виде горба на носу подтверждает гипотезу, что такой горб имелся у общего предка всех гадрозавров.

Nemegtonykus citus ("коготь из Нэмэгэт") - альваресзавр подсемейства Parvicursorinae из монгольской формации Нэмэгэт.

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

Альваресзавры - необычная группа животных, которые, как правило, характеризуются сильно укороченными и специализированными передними конечностями с единственным увеличенным когтем и контрастно удлиненными задними конечностями с арктометатарзальной стопой. Несмотря на их почти глобальное распространение, окаменелости альваресзавров чрезвычайно редки по сравнению с другими динозаврами. Редкость полных экземпляров альваресзавров привела к трудностям в интерпретации их экологии или филогенетических отношений.

В 2008 году корейско-монгольской международной экспедицией в пустыне Гоби были найдены три скелета легко сложенных, длинноногих тероподов семейства альваресзаврид. Один из скелетов был отнесен к уже известному роду Mononykus, а две других особи оказались представителями нового вида. Nemegtonykus, как и его ближайшие родственники, был специализирован к быстрому маневренному бегу. Диету немегтоников, по наиболее популярной гипотезе, составляли насекомые, которых динозавры добывали, разрывая субстрат короткими, но сильными передними лапками. Немегтоники населяли обширные заболоченные угодья, пронизанные речными каналами и поймами. Свою среду обитания новый вид разделял как с другими альваресзаврами, так и с несколькими видами овирапторов (такими, как описанный в том же году гобираптор). Присутствие трех особей альваресзаврид в одном месте указывает на то, что численность и разнообразие этого семейства в фауне динозавров Нэмэгэту сильно недооценены.

Jinbeisaurus wangi, тираннозавроид с севера провинции Шаньси, Китай. Этот ящер последним в 2019 году получил свое имя, а окончательный вариант публикации вышел уже в 2020 году.

Полсотни новых динозавров. Подведение итогов 2019 года в палеонтологии Динозавры, Палеонтология, Иллюстрации, Рисунок, Наука, Рисунок ручкой, Рисунок карандашом, Длиннопост

Это первый нептичий теропод, известный из Шаньси. Изначально материал голотипа рассматривался как молодая особь тарбозавра, однако особенности строения костей показали, что это была взрослая особь, в своем размерном классе занимавшая промежуточное место между мелкими тираннозавроидами юрского периода и позднемеловыми гигантами. Анализ образца показывает, что Jinbeisaurus более продвинут, чем родственные тираннозавроиды, такие как Xiongguanlong, и филогенетически более развит, чем Suskityrannus, с которым его сравнивали.

Благодарю за внимание! Все рисунки авторские , так что конструктивная критика также приветствуется.

Показать полностью 7
388

Тумбага

Тумбага Наука, Химия, Археология, Золото, Медь, Копипаста, Бронелифчик, Elementy ru, Длиннопост

Перед вами женское нагрудное украшение южноамериканской доколумбовой культуры Кимбая, датированное 300–1600 гг. н. э. Оно выполнено из специфического сплава золота и меди под названием тумбага.

Тумбага (испанские конкистадоры заимствовали это название из малайского языка, tembaga означает «медь» или «латунь») — собирательное название для сплавов, состоящих главным образом из меди и золота. Тумбага широко применялась в доколумбовых цивилизациях Южной и Центральной Америки (где сплавы сходного состава назывались гуанин; см. Guanín). Из нее изготавливали церемониальные предметы, украшения, статуэтки.

По химическому составу тумбага представлена смесью золота и меди с переменным количеством серебра или других примесей. Вариации состава в различных изделиях весьма значительны — от 97% золота до 97% меди (скорее всего, состав зависел от доступности источников этих металлов в том или ином регионе). У сплава, содержащего 44% меди, температура плавления составляет 910°C, что ниже, чем у золота (1064°C) и меди (1084°C) по отдельности. Итоговый сплав, будучи тверже меди, сохраняет пластичность, и его легко обрабатывать.

Сложные изделия из тумбаги изготавливали методом литья по выплавляемым моделям. Сплав заливали в подготовленные формы, и изделие после остывания подвергали дальнейшей обработке методом золочения с истощением (см. Depletion gilding). В отличие от обычных методов золочения, когда золото наносится на поверхность изделия, метод золочения с истощением основан на удалении более активных металлов с поверхности изделия — чтобы увеличить долю золота в поверхностном слое. Изделие подвергали действию различных кислот (например, щавелевой кислоты) и нагревали, удаляя с поверхности медь. Получался тонкий поверхностный слой почти чистого золота. Считается, что эта технология была известна в Перу уже в 400 году до н. э и повсеместно использовалась по крайней мере за 1000 лет до прибытия конкистадоров.

В результате такой обработки изделие выглядело как выполненное из золота, хотя под золотой поверхностью был сплав меди и золота. Так, образцы золота, которые были отправлены Христофором Колумбом в Испанию, состояли из золота чуть больше, чем на половину. Но в полной мере испанцы столкнулись с тумбагой во время завоеваний Эрнана Кортеса, когда в руки конкистадоров попало огромное количество золотых изделий ацтеков.

Тумбага Наука, Химия, Археология, Золото, Медь, Копипаста, Бронелифчик, Elementy ru, Длиннопост

Испанцы и их союзники плавят добычу. Руки и ноги на переднем плане обозначают, как надевались украшения. Рисунок из Флорентийского кодекса (глава 17) — произведения XVI века по истории ацтеков, написанного испанским монахом Бернардино де Саагуном

Но когда они подвергли изделия переплавке, выяснилось, что в них велика доля меди. Часть таких переплавленных в слитки изделий была обнаружена в 1993 году на корабле, затонувшем около 1528 года у берегов Большого Багамы. Широкий разброс в составе слитков говорит о том, что они были изготовлены в кустарных условиях, из крайне неоднородного материала, что вполне ожидаемо в условиях сразу после завоевания.

Тумбага Наука, Химия, Археология, Золото, Медь, Копипаста, Бронелифчик, Elementy ru, Длиннопост

Один из слитков, найденных на затонувшем корабле близ Большого Багамы. На слитке видна печать, подтверждающая право собственности короля Испании Карла V Габсбурга. Фото с аукциона Daniel Frank Sedwick

Современник завоеваний Кортеса, историк Гонсало Фернандес де Овьедо писал, что индейцы знают, как позолотить изделия, изготовленные из меди и низкопробного золота, и применяют для этого сок определенного растения (скорее всего из рода кислица). Этот метод способен удалить медь, но не удаляет другие металлы, такие как серебро. Поэтому существовали другие методы золочения с истощением. Один из них заключался в нагревании предмета из тумбаги в смеси из квасцов, поваренной соли и кирпичной пыли. Смесь реагировала с поверхностью сплава с образованием хлоридов серебра и меди, которые поглощались кирпичной пылью. После охлаждения и промывки поверхность полировалась. Другой метод заключался в выдерживании изделия в течение 10 дней в растворе квасцов, поваренной соли и сульфата железа при комнатной температуре (аналог предыдущего способа, но без прогрева). Затем изделие промывалось в солевом растворе и нагревалось для получения более однородного поверхностного слоя.

Еще одно известное изделие, выполненное из тумбаги, — фигурка, изображающая плот муисков. Согласно легенде, новый правитель индейцев покрывал свое тело смолой или глиной, и помощники обсыпали его золотым песком. Затем новый правитель в сопровождении слуг на плоту выплывал на середину озера Гуатавита (расположено в Колумбии) и кидал в воду золотые дары. После этого он вплавь добирался до берега, в результате чего с правителя смывалась «золотая кожа». Испанцы были так поражены этим ритуалом, что многократно преувеличили его, передавая из уст в уста, и со временем человек превратился в город, затем — в королевство и, наконец, в империю Эльдорадо (по-испански el hombre dorado — «золотой человек»).

Тумбага Наука, Химия, Археология, Золото, Медь, Копипаста, Бронелифчик, Elementy ru, Длиннопост

Фигура, изображающая церемонию вступления на трон нового правителя муисков. Размеры плота: 19,5 см на 10,1 см, высота самой большой фигурки (скорее всего, вождя) — 10,2 см. Изделие хранится в Музее золота в Боготе, столице Колумбии. Фото с сайта en.wikipedia.org

Если верить легенде, то количество золота на дне озера Гуатавита должно быть поистине огромным. Было несколько попыток осушить озеро (последняя — в начале XX века), но все они закончились неудачей, так как обнаруженного золота не хватало на покрытие расходов. В 1965 году колумбийское правительство объявило озеро охраняемой территорией, любые попытки искать в нем золото или тем более его осушить теперь незаконны.

Сплавы на основе золота не потеряли своего значения и по сей день. Они нашли применение не только в ювелирном деле, но и как катализаторы в нанотехнологиях. Интересно, что наиболее стабильная форма наночастиц из золота и меди удивительным образом напоминает тумбагу: краевая часть обогащена золотом, а центральная часть содержит больше меди.

Тумбага Наука, Химия, Археология, Золото, Медь, Копипаста, Бронелифчик, Elementy ru, Длиннопост
a) изображение наночастицы из золота и меди, полученное с помощью электронного микроскопа; b) распределение меди в частице; с) распределение золота в частице; d) совмещенные изображения; e) EDX-спектр элементов, из которых состоит частица. Изображение из статьи G. Guisbiers et al., 2014. Gold–Copper Nano-Alloy, «Tumbaga», in the Era of Nano: Phase Diagram and Segregation

Фото с сайта en.wikipedia.org. Нагрудник хранится в Филдовском музее естественной истории, Чикаго, США.

Александр Марфин

https://elementy.ru/kartinka_dnya/1254/Tumbaga
Показать полностью 4
365

Запаздывающая хромосома

Запаздывающая хромосома Наука, Размножение, Хромосомы, Клетка, Копипаста, Elementy ru, Длиннопост

На этом фото вы видите первое деление оплодотворенной яйцеклетки (зиготы) пурпурного стронгилоцентротуса (Strongylocentrotus purpuratus) — морского ежа, обитающего вдоль североамериканских берегов Тихого океана. Клетка переходит из метафазы, когда хромосомы выстроены на экваторе клетки, в анафазу, когда две идентичные половинки хромосом — хроматиды (окрашены голубым) — расходятся к разным полюсам клетки и становятся дочерними хромосомами. Помогают процессу микротрубочки из белка тубулина (окрашен оранжевым цветом), по периферии клетки находится фосфорилированный белок миозин (окрашен зеленым). Фотография получена с помощью лазерного сканирующего конфокального микроскопа.

Но с точки зрения судьбы этого эмбриона на фотографии запечатлена надвигающаяся катастрофа. Как и при делении большинства других клеток, при делении зиготы должны получиться две идентичные клетки. Они получат всего поровну: одинаковое количество цитоплазмы с запасом питательных веществ, органелл (например, митохондрий) и, конечно же, генетического материала, заключенного в хромосомы. Здесь же ровно в середине клетки хромосома, которая направляется в дочернюю клетку, кажется, запаздывает и может не успеть на место назначения.

После оплодотворения яйцеклетка (став уже зиготой) делится несколько раз на равные по объему клетки. При этом общий объем клеток не меняется. Этот процесс называется дроблением. Каждый раунд дробления — результат двух явлений: кариокинеза (деления ядра) и цитокинеза (деления самой клетки). Оба невозможны без цитоскелета (см. картинку дня Раскрашенный цитоскелет), который состоит из микротрубочек, микрофиламентов и промежуточных филаментов.

Микротрубочки — главные участники кариокинеза. Они состоят из белка тубулина, который полимеризуется в трубчатую структуру. С одной стороны, она очень жесткая, а, с другой стороны, у нее есть интересное свойство — динамическая нестабильность (см. статью Динамические микротрубочки: от экспериментов к моделям). Длина микротрубочки может попеременно увеличиваться и уменьшаться за счет присоединяющихся или отсоединяющихся димеров тубулина. При этом в одних и тех же условиях часть микротрубочек растет, а часть — укорачивается. Растущий конец микротрубочки называют плюс-концом. Укорачиваться микротрубочка может как с него, так и с противоположного минус-конца. В неделящейся клетке микротрубочки — своего рода рельсы, по которым с помощью моторных белков передвигаются пузырьки с синтезированными белками и другими молекулами или даже целыми органеллами. При делении клетки микротрубочки берут на себя и распределение генетического материала между дочерними клетками.

Если микротрубочки — это транспортные пути, то центросома — начальник транспортного узла. Эта органелла, сама состоящая из микротрубочек и периферического матрикса, ориентирует микротрубочки так, что их минус-концы связаны с центросомой, а плюс-концы торчат наружу.

Запаздывающая хромосома Наука, Размножение, Хромосомы, Клетка, Копипаста, Elementy ru, Длиннопост

Структура и организация микротрубочек. A. Микротрубочки состоят из 13 протофиламентов из димеров α- и β-тубулина, уложенных по окружности полого цилиндра. Микротрубочки закреплены минус-концами в области центра организации микротрубочек (MTOC) с помощью γ-тубулина. B. Микротрубочки образуют динамические сети в цитоплазме (Cytoplasm), которые взаимодействуют с центром организации микротрубочек и аппаратом Гольджи (Golgi). Nucleus — ядро, ER — эндоплазматический ретикулум, centrosomal microtubules — центросомные микротрубочки, non-centrosomal microtubules — нецентросомные микротрубочки. Рисунок из статьи C. Simpson, Y. Yamauchi, 2020. Microtubules in influenza virus entry and egress

Что же происходит при делении зиготы морского ежа? В яйцеклетке морского ежа центросома отсутствует, ее при оплодотворении приносит сперматозоид. После этого центросома удваивается и организует микротрубочки так, чтобы пронуклеусы яйцеклетки и сперматозоида двигались навстречу друг другу и в итоге слились. Затем удвоенные центросомы расходятся по полюсам зиготы, чтобы скоординировать ее первое деление.

На верхнем фото вы видите пучки микротрубочек, которые расходятся от двух центросом на полюсах клетки. Микротрубочки, которые направлены от центросомы к поверхности клетки, называются астральными, они помогают правильно расположить центросомы и затем наметить плоскость, по которой клетка будет делиться.

По направлению к центру клетки тянутся два вида микротрубочек. Первые соединяются с хромосомами через структуру, которая называется кинетохор. Чтобы найти кинетохор, микротрубочки собираются и разбираются, зондируя пространство, пока не упрутся в цель. Для того чтобы сестринские хроматиды разделились правильно, микротрубочкам нужно подойти к кинетохору с противоположных сторон. Это не обязательно происходит одномоментно, но обычно разделение хроматид не начинается, пока все кинетохоры не будут соединены с микротрубочками, а хромосомы не выстроены ровно посередине клетки (это происходит на стадии метафазы).

Второй тип микротрубочек — межполюсные. Они не взаимодействуют с кинетохорами, но их плюс-концы взаимодействуют с плюс-концами микротрубочек с противоположной стороны. Вся конструкция из центросом, микротрубочек и хромосом называется веретеном деления.

Запаздывающая хромосома Наука, Размножение, Хромосомы, Клетка, Копипаста, Elementy ru, Длиннопост

Строение веретена деления в животной клетке. Рисунок с сайта ru.wikipedia.org

Разделение хроматид между двумя дочерними клетками проходит в два этапа. Сначала укорачиваются кинетохорные микротрубочки. Затем удлиняются межполюсные микротрубочки. При этом моторные белки, которые движутся к плюс-концам микротрубочек, заставляют их скользить в противоположные стороны. Полюса клетки раздвигаются, и прикрепленные трубочки медленно движутся за ними.

Тем временем клетка уже готовится к тому, чтобы разделиться на две. В этом участвуют другие элементы цитоскелета — микрофиламенты, которые состоят из белка актина, и филаменты, состоящие из белка миозина. Эти белки больше известны как белки, ответственные за сокращение мышцы. В делящейся клетке актин и одна из форм миозина — миозин II (см. Myosin II) — выполняют похожую функцию. Сокращаясь, они пережимают клетку ровно в той плоскости, где раньше (в метафазе) выстраивались хромосомы, образуя борозду дробления (см. Cleavage furrow).

Для того чтобы активировать миозин, одна из его субъединиц должна быть фосфорилирована (см. Protein phosphorylation). Это происходит примерно одновременно с началом расхождения хроматид. На верхнем фото зеленым окрашена именно активированная форма миозина II. По мере расхождения фосфорилированный миозин будет находиться всё ближе к той плоскости, по которой клетка разделится надвое.

Запаздывающая хромосома Наука, Размножение, Хромосомы, Клетка, Копипаста, Elementy ru, Длиннопост

Расположение фосфорилированных регуляторных цепей миозина в делящейся зиготе морского ежа Lytechinus pictus. На правых фото, где перекрываются изображения тубулина (Tubulin) и миозина (P-MRLC), зеленым цветом обозначен α-тубулин, красным — фосфорилированные регуляторные цепи миозина. В метафазе (хромосомы выстроены в экваториальной плоскости клетки) фосфорилированный миозин распределен по всей внутренней стороне клеточной мембраны. По мере перехода в анафазу (фазу расхождения хроматид) и к цитокинезу фосфорилированный миозин чаще встречается на месте борозды дробления. Длина масштабного отрезка — 50 мкм. Изображение из статьи A. Lucero et al., 2006. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase–anaphase transition in sea urchin eggs

Дробление, как и все клеточные процессы, состоит из множества этапов, а значит, не защищено от ошибок. Ошибки при дроблении одновременно и опасны, и встречаются чаще, чем мы думаем. Считается, что у человека 20–40% всех зачатий приводит к образованию анеуплоидных эмбрионов — эмбрионов с некратным числом хромосом. Чаще всего это происходит при образовании гамет. Однако и при делении зиготы могут образовываться клетки либо с одной лишней, либо с одной недостающей хромосомой. Конечно, мало кто изучает частоту, причины и последствия анеуплоидии у морских ежей, но изучать анеуплоидии у человека очень важно, так как их последствия могут быть очень серьезными. В результате ошибки в распределении хромосом при дроблении может родиться совершенно здоровый ребенок (так как на ранних этапах развития есть механизмы, которые убивают клетки с анеуплоидией), но та же ощибка может привести к выкидышу или, например, синдрому Дауна.

Почему же при дроблении так часто случаются ошибки? Во время этого процесса эмбрион может рассчитывать только на ресурсы от яйцеклетки. Геном пока еще не работает, а клеткам нужно провести сложную реорганизацию микротрубочек: сначала для слияния пронуклеусов, а затем, после перестройки, для распределения хроматид по дочерним клеткам. Кроме того, в делящихся клетках присутствует система контроля за правильным расхождением хроматид. Есть она и в делящейся зиготе, но, по-видимому, не такая чувствительная, как в других клетках.

Обязательно ли при делении этой клетки получится анеуплоид? Вовсе нет. При приготовлении этого препарата исследователь зафиксировал ее в одном моменте времени. Если бы клетка продолжила делиться, запаздывающая хромосома всё равно могла бы попасть по нужную сторону от борозды дробления. Но что было бы дальше — мы уже не узнаем.

Фото © George von Dassow, Орегонский университет, с сайта twitter.com.

Екатерина Грачева

https://elementy.ru/kartinka_dnya/1244/Zapazdyvayushchaya_kh...

Показать полностью 3
25

Древние пингвины были ростом с человека!

Эти создания весили около 120 кг!

Древние пингвины были ростом с человека! Птицы, Пингвины, Императорские пингвины, Древность, Палеонтология, Фоссилии, Эволюция, The National Geographic

Сравнительные размеры древнего пингвина и человека


Современные пингвины — птицы немаленькие, но в процессе эволюции стали значительно меньше. Достаточно сравнить пингвина нашего времени с древнем пингвином Норденшельда, названным так по имени открывшего его полярного исследователя. Эта птица, жившая в эоценовой эпохе, была почти с человека ростом и весила около 120 кг, тогда как самые большие представители современных пингвинов (императорские пингвины) весят не более 46 кг, а их рост не превышает 120 см.

Древние пингвины были ростом с человека! Птицы, Пингвины, Императорские пингвины, Древность, Палеонтология, Фоссилии, Эволюция, The National Geographic

Императорские пингвины - самые крупные из современных видов семейства пингвиновых.


Наиболее древним из известных ископаемых останков пингвинов не более 45 млн. лет. Все находки сделаны в основном в Новой Зеландии, южной части Южной Америки и на отделенном от неё проливом Дрейка Антарктическом полуострове.


https://nat-geo.ru/nature/birds/drevnie-pingviny-giganty-ros...

Фото императорских пингвинов - из сети.

Показать полностью 1
65

Как млекопитающим регенерировать, а графену улучшить квантовые вычисления. Дайджест новостей науки за неделю

Каждый понедельник делаем подборку из самых интересных новостей науки и рассказываем о них подробнее. Смотрите видео или включайте фоном как подкаст.

В этом выпуске мы рассказываем как изменились мозги млекопитающих и птиц через 300 миллионов лет эволюции; где обнаружена вода в жидком состоянии на Марсе; что нужно для регенерации кожи млекопитающих; как личинки мух помогут от сельскохозяйственных болезней и как графен улучшил болометры для квантовых измерений?

Содержание ролика:

00:37 Эволюция мозга млекопитающих и птиц

03:16 Озера на Марсе

05:53 Регенерация кожи

07:35 Личинки мух могут бороться с сельскохозяйственными болезнями

09:19 Графен улучшил свойства болометров для квантовых измерений


(все ссылки на пруфы и исследования под роликом на ютубе)

192

Генетический вариант, повышающий риск тяжелого протекания COVID-19, унаследован от неандертальцев

Генетический вариант, повышающий риск тяжелого протекания COVID-19, унаследован от неандертальцев Наука, Генетика, Палеогенетика, Копипаста, Elementy ru, Коронавирус, Вирус, Неандерталец, Homo sapiens, Длиннопост

Рис. 1. Частота встречаемости неандертальского генетического варианта, повышающего риск тяжелой формы COVID-19. В Африке и Восточной Азии «аллель риска» практически отсутствует, а максимальная частота наблюдается в Южной Азии, особенно в Бангладеш. Рисунок из обсуждаемой статьи в Nature (по данным проекта The 1000 Genomes Project)


На сегодняшний день генетикам удалось выявить только один участок человеческого генома, нуклеотидные вариации в котором значимо влияют на шансы заболеть тяжелой формой COVID-19. Этот фрагмент третьей хромосомы длиной около 50 тысяч пар оснований встречается у современных людей в нескольких вариантах, один из которых повышает шансы попасть в больницу с тяжелой формой COVID-19 примерно в 1,6 раз. Палеогенетики Сванте Пэабо и Хуго Цеберг показали, что этот «аллель риска» имеет неандертальское происхождение. Вместе с другими неандартальскими генами он попал в генофонд внеафриканских сапиенсов в результате гибридизации, которая происходила около 50 тысяч лет назад. Частота встречаемости «аллеля риска» сильно варьирует в зависимости от региона: в Африке и Восточной Азии она близка к нулю, в Европе составляет 8%, в Южной Азии — 30%. Столь большие различия говорят о том, что в не очень далеком прошлом аллель подвергался сильному отбору, иногда положительному, иногда отрицательному. Скорее всего, это связано с тем, что аллель влияет на устойчивость к каким-то другим патогенам помимо нового коронавируса.

Как известно, COVID-19 — болезнь избирательная: кто-то заболевает, кто-то нет, одни переносят легко, другие — тяжело, вплоть до летального исхода. Это зависит от множества негенетических факторов, среди которых особенно важны возраст, пол и наличие определенных заболеваний. Логично предположить, что и генетические различия между людьми тоже вносят свой вклад в наблюдаемый разброс по восприимчивости к COVID-19 и тяжести протекания болезни.

Несмотря на усердные поиски, на сегодняшний день генетикам удалось идентифицировать только один участок человеческого генома, связь которого с риском заполучить тяжелую форму COVID-19 не вызывает никаких сомнений. Этот участок расположен на третьей хромосоме и включает гены SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 и XCR1. Его влияние на устойчивость к новой инфекции сначала было обнаружено при помощи полногеномного поиска ассоциаций (GWAS) на основе данных по 835 больным и 1255 здоровым итальянцам и 775 больным и 950 здоровым испанцам. Это исследование проводилось во время весеннего пика заболеваемости в Европе (D. Ellinghaus et al., 2020. Genomewide Association Study of Severe Covid-19 with Respiratory Failure).

В дальнейшем результат успешно воспроизвелся в нескольких независимых исследованиях на других европейских и азиатских выборках. Метаанализ, проведенный в рамках проекта COVID-19 Host Genetics Initiative, окончательно подтвердил, что один из вариантов этого участка генома («аллель риска»), характеризующийся определенными нуклеотидами в 13 полиморфных позициях, повышает шансы человека оказаться в больнице с тяжелой формой COVID-19 примерно в 1,6 раз (это несколько упрощенная формулировка, речь идет об отношении шансов, см. Odds ratio, которое, по результатам метаанализа, составляет 1,6 с 95-процентным доверительным интервалом от 1,42 до 1,79). По-видимому, этот генетический вариант повышает и шансы подцепить умеренно тяжелую форму COVID-19 (частота этого варианта выше у людей, госпитализированных с COVID-19, чем в среднем по популяции), и риск очень тяжелого протекания болезни среди уже заболевших (среди госпитализированных пациентов, которым потребовалась искусственная вентиляция легких, частота этого варианта выше, чем у тех, кто обошелся только дополнительным кислородом).

Упомянутые 13 полиморфных позиций разбросаны по участку хромосомы длиной около 50 тысяч пар оснований. При этом нуклеотидные варианты, коррелирующие с повышенным риском тяжелого протекания COVID-19, во всех 13 позициях почти всегда присутствуют все вместе, дружно, образуя единый гаплотип. Иными словами, для них характерно то, что генетики называют «неравновесным сцеплением» (см. Linkage disequilibrium).

Именно такая картина — несколько прочно сцепленных полиморфизмов, расположенных по соседству, — характерна для фрагментов ДНК, полученных предками современных людей от неандертальцев и денисовцев в результате гибридизации.

Поэтому палеогенетики Сванте Пэабо и Хуго Цеберг (Hugo Zeberg) решили проверить, не совпадает ли этот гаплотип с неандертальскими или денисовскими геномными последовательностями. Для этого нужны геномы вымерших видов людей, прочтенные очень качественно, то есть с высоким покрытием. Таких геномов на сегодняшний день четыре: три неандертальских и один денисовский.

Результат получился вполне однозначный: из 13 полиморфизмов, характерных для «гаплотипа риска», 11 присутствуют в гомозиготном состоянии у неандертальца из пещеры Виндия в Хорватии (Vindija 33.19). Три полиморфизма есть у двух других неандертальцев с качественно прочтенными геномами — из Денисовой и Чагырской пещер на Алтае (Denisova 5 и Chagyrskaya 8, см.: Между сапиенсами и неандертальцами существовала частичная репродуктивная изоляция, «Элементы», 03.02.2014; F. Mafessoni et al., 2020. A high-coverage Neandertal genome from Chagyrskaya Cave). В денисовском геноме (см.: Геном денисовского человека отсеквенирован с высокой точностью, «Элементы», 06.09.2012) не оказалось ни одного из 13 полиморфизмов.

Этот результат уже сам по себе является убедительным доводом в пользу того, что «гаплотип риска» унаследован современными людьми от неандертальцев, близких к индивиду из пещеры Виндия. Остальные неандертальские примеси в современных геномах тоже ближе к геному хорватского неандертальца, чем к индивидам с Алтая. Объясняется это тем, что те неандертальцы, с которыми скрещивались вышедшие из Африки сапиенсы 60–50 тысяч лет назад, были более близкой родней хорватского неандертальца, чем алтайских.

Дополнительные тесты подтвердили вывод о неандертальском происхождении «гаплотипа риска». В частности, вероятность того, что такой длинный гаплотип мог быть унаследован хорватским неандертальцем и современными людьми от общего предка, оказалась, по расчетам авторов, пренебрежимо низкой. За более чем полмиллиона лет раздельного существования сапиенсов и неандертальцев гаплотип должен был бы покрошиться на мелкие кусочки из-за кроссинговера. Авторы также построили филогенетическое дерево для всех имеющихся у современных людей вариантов (аллелей) рассматриваемого участка генома. На этом дереве все современные аллели, связанные с повышенным риском тяжелой формы COVID-19 (они отличаются друг от друга лишь единичными нуклеотидными заменами), образовали единую компактную ветвь с хорватским неандертальцем, а сестринскими к этой ветви оказались неандертальские варианты с Алтая. Иными словами, «аллель риска» (во всех его незначительных вариациях) ближе к любому из трех неандертальских вариантов, чем к любому другому варианту этого участка генома, встречающемуся у современных людей. Таким образом, неандертальское происхождение «гаплотипа риска» доказано вполне надежно.

Частота встречаемости неандертальского «гаплотипа риска» в современных человеческих популяциях сильно варьирует в зависимости от региона (рис. 1). Его практически нет в Африке, что логично, поскольку приток неандертальских генов в генофонд современных африканцев, живущих к югу от Сахары, был незначительным (и, вероятно, непрямым). Почти нет его и у жителей Восточной Азии (китайцев, японцев). Это неожиданный результат, потому что других неандертальских генов у восточноазиатов немало — даже чуть больше, чем у европейцев. В Европе неандертальский гаплотип встречается с частотой около 8%, в Южной Азии — 30%. Наибольшая частота характерна для Бангладеш: 63% жителей этой страны несут по крайней мере одну копию неандертальского гаплотипа, а 13% — две копии (то есть являются гомозиготами), что дает общую частоту 13 + (63 − 13)/2 = 38%. Это согласуется с тем, что в Великобритании, по официальным данным, шансы умереть от COVID-19 у выходцев из Бангладеш примерно вдвое (95% доверительный интервал: 1,7–2,4) выше, чем у белых британцев. У выходцев из других стран ситуация заметно лучше, чем у бангладешцев.

Объяснить, почему в Восточной Азии частота встречаемости неандертальского гаплотипа почти нулевая, а в Южной — очень высокая, по-видимому, можно только сильным отбором, который действовал по-разному в разных регионах. Логично предположить, что главным фактором отбора были какие-то патогены. Может быть, неандертальский гаплотип, снижающий сопротивляемость новой короновирусной инфекции, подвергался отрицательному отбору в Китае во время каких-то прежних эпидемий, вызванных другими коронавирусами, а в дельте Ганга на него действовал положительный отбор, потому что он обеспечивал защиту от каких-то других патогенов. Но пока все это — только домыслы, потому что неизвестно, какие именно особенности неандертальского гаплотипа ответственны за повышенный риск тяжелого протекания COVID-19 и каков механизм их действия. Как уже говорилось, в состав гаплотипа входит шесть генов, среди которых не удается однозначно определить кандидата на роль главного фактора риска. Им может оказаться, например, ген SLC6A20, потому что белок, кодируемый этим геном, взаимодействует с белком ACE2 — «входными воротами» нового коронавируса. Не сняты подозрения и с генов CCR9 и CXCR6, потому что они кодируют рецепторы хемокинов, причем работа второго из них имеет прямое отношение к иммунным процессам в легких, например, при гриппе.

Когда-нибудь, возможно, мы узнаем, от каких патогенов защищал этот гаплотип неандертальцев (а также предков нынешнего населения Южной Азии), но пока фантазировать об этом рано. Одно можно сказать наверняка: в 2020 году с некоторыми нашими современниками неандертальское наследие сыграло злую шутку.


Источник: Hugo Zeberg & Svante Pääbo. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals // Nature. 2020. DOI: 10.1038/s41586-020-2818-3.


См. также: Неандертальские гены влияют на здоровье современных людей, «Элементы», 20.02.2016.


Александр Марков


https://elementy.ru/novosti_nauki/433709/Geneticheskiy_varia...
Показать полностью
57

Как одомашнить котика? Онлайн-лекция Ивана Затевахина

- Каким путем шла эволюция кошачьих?

- Можно ли считать котиков одомашненным видом?

- Почему кошачьи - идеальные хищники?

1935

Почему эволюция - это факт

Ответы на популярные вопросы креационистов о ней.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Я не буду перечислять все доказательства, многие из которых и так проходят в 11 классе. Я перечислю только те, которые отвечают на самые популярные вопросы скептиков.

"Откуда учёные вообще взяли эти миллионы лет?"


Люди с поверхностными знаниями об этой теме часто считают, что для определения возраста динозавров и прочих доисторических животных используют радиоуглеродный анализ. Они говорят, что после смерти животного радиоактивный углерод в нём распадается, и известно, с какой скоростью. Так по степени его распада устанавливают, сколько времени прошло.

Но на самом деле этот метод пригоден только для недавних ископаемых, так как данный углерод распадается относительно быстро.

Возраст динозавров обычно определяют по анализу других изотопов, например, бериллия -10. Хотя видов анализов много, их результаты сходятся на одних и тех же возрастах у одних и тех же окаменелостей. Благодаря им мы знаем, что динозавры вымерли 65 миллионов лет назад, а появились 243-233,23 млн лет назад.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Наши предки, первые млекопитающие появились 216 млн лет назад, и далее жили в тени динозавров, пока тех не убил катаклизм.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

А рыбы выползли на сушу 380 млн лет назад

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Это ископаемый тиктаалик.


"Возможно ли вообще, чтобы из примитивной обезьяны сформировался такой разумный, прекрасный человек? Или вообще из одноклеточного? Вас это не искорбляет?"


А вас не искорбляет, что когда-то вы были зиготой? Одноклеточным?

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Наш онтогенез доказывает, что превращение примитивного одноклеточного в сложное позвоночное с развитым мозгом не противоречит законам биологии.


"Почему учёные не повторят в лабораторных условиях эволюцию, если она есть?"


Учёные успешно делают это с бактериями и другими микроорганизмами.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Но размножение микробов происходит гораздо быстрее, чем у макро- животных, поэтому эволюция макро длится миллионы лет, и повторить ее в лаборатории не возможно. Однако научные факты не обязательно требуют экспериментального подтверждения. Таковы, например, многие данные астрономии и лингвистики. Есть другие виды доказательств, и у эволюции их предостаточно. Вы знаете их из школьной программы 11 класса.

"Почему животные-родители не убивали уродов с мутациями?"


Анти - эволюционисты представляют появление нового вида так: у животного родилось другое животное. Для матери оно - урод, и мать убивает/отказывается от него. Но на самом деле все происходило не так. Вот вам пример. Антилопы эволюционировали - у них удлиннились ноги.

Есть такое явление, как изменчивость - это значит, что все особи разные. Сначала за счёт изменчивости у одних антилоп ноги были на сантиметр длиннее, у других-короче. От хищников удавалось убежать тем антилопам, у которых длиннее ноги, от чего эти животные быстрее. Их потомство было длинногое, но так же с изменчивостью - у одних были ноги короче, чем у родителей, у других- длинее. Из них тоже выжили самые длинногие, их ноги были длиннее, чем у родителей.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Отбор шел в каждом следующем поколении. Миллионы лет. Так со временем у антилоп удлиннились ноги.


Нужно помнить, что изменения происходили очень долго, постепенно. Не рождается у обычной антилопы длинноногая антилопа - урод, которую мать убивает за это. Рождается антилопа с ногами на 1 см длиннее. Мать это даже не заметит.


"Почему нет никаких переходных звеньев?"


Креационисты считают, что их нет.

Многие из этих людей считают, что возможно только изменение в пределах одного вида. Вот такой пример. Кто это?

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Это козочка. Но мы вывели это существо в пределах нескольких столетий, а виды эволюционировали десятки миллионов лет. Изменения должны быть куда масштабнее. Этого достаточно, чтобы сформировались другие виды. И это доказывают переходные звенья. Вот мой любимый пример - происхождение китов.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Сильное изменение? Сильное. Наземные животные стали подводными. Вы можете проследить постепенные изменения - например, как нос перемещался на лоб. Какая между ними связь, скажете вы? А дело в том, что их возраст показывает, что именно в таком порядке они существовали. Если бог создал всех один раз, откуда эти постепенные изменения? Было много актов творения? Если это никак не связанные скелеты, то почему возраст окаменелостей говорит, что сначала был один вид, потом чуть изменившийся второй, потом чуть изменившийся третий и так далее, а не первый, и потом резко отличающийся десятый, а потом третий, и потом двенадцатый и всё в таком духе?


"Почему нет переходных звеньев-недоделок? "


Эволюция не думает наперед. Она отбирает самое совершенное существо в настоящее время. Каждый этап перехода от одного существа к другому приспособлен к жизни в его время. Например, как динозавры стали птицами. Сейчас известно, что они были теплокровными, а тероподы были пернатыми.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Учёные изучили, какие мутации и в каком порядке породили перья, но это сейчас не важно. Первый этап - перья возникли для сохранения тепла. Второй этап - для брачных игр удлиннились перья на передних лапах. Третий этап - они ещё увеличились, помогая продлевать прыжок и рулить на бегу. Четвертый этап - у древесных динозавров они пригодились для прыжков с дерева на дерево. Так они научились планировать. А потом и летать. Известно дофига переходных звеньев, но как видите, все они совершенны для своего времени. Это важнейший закон эволюции.



"Эволюция - всего лишь теория."



В простонародье слово "теория" могут употреблять в значении "гипотеза","предположение". На самом деле теория - система связанных знаний. Эти знания могут быть доказанными фактами, как в теории эволюции.



"Почему сейчас обезьяна не становится человеком?"



Начнем с того, почему предки человека стали людьми. Они были вытеснены в саванну. Адаптация к новым условиям жизни происходила за счёт развития интеллекта - с его помощью люди охотились, используя орудия, в чем им так же помогало прямохождение и свободные руки.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Остальные человекообразные обезьяны не живут в саваннах, их окружающая среда движет их эволюцию по другому пути. Каждое существо адаптируется к выживанию по-своему и не все стремятся развить именно мозг. Например, примат руконожка развила длинный средний палец, чтобы доставать им насекомых из деревьев. Вот, как она предпочла эволюционировать, чтобы выжить.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост
Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Горилла ест траву, ей не нужно охотиться.

Почему эволюция - это факт Эволюция, Биология, Наука, Животные, Антропогенез, Происхождение видов, Антилопа, Научпоп, Длиннопост

Она развила мышцы, и сможет с их помощью защититься от хищников. Зачем ей развивать мозг до нашего уровня? У нее мозг развит достаточно, чтобы общаться с сородичами. Ей этого хватает для выживания. Возможно, какой-то вид обезьян по другим биологическом причинам стремится развить мозг до нашего уровня. Но даже тогда мы этого не увидим, так как эволюция длится миллионы лет.


"Человек произошел от обезьяны или от общего предка с обезьяной?"


Не правда не первое, не второе. Человек остался обезьяной. По биологическим признакам учёные классифицируют нас как узконосых обезьян.



"Вы знаете, что переходные звенья между человеком и обезьяной - подделки?"


Существовал поддельный череп(пилтдаунский человек), которого собрали из черепов орангтутанга и человека. Но к ископаемому относились подозрительно, ведь ученые просчитали по другим черепам, как со временем череп должен был изменяться в процессе эволюции, и пилтдаунский человек в эту модель не вписывался. Фторный анализ возраста окаменелостей и генетический анализ подтвердил, что это подделка. Подделать ДНК и возраст скелетов нельзя, и остальные окаменелости успешно прошли эту проверку. Истинных окаменелостей наших предков очень много и они соответствовали прогнозам ученых. Прогнозам о том, какие переходные звенья должны быть между определенными видами и какой возраст они должны иметь. Учёные предсказали это на основе генетического древа и затем нашли данные ископаемые в соответвующих слоях земной коры. Такие же эволюционные прогнозы делали с другими животными, и они подтвержались. Это доказывает, что эволюция - факт.

Показать полностью 24
1184

Эволюция от молекул до человека. Введение

Этот пост как бы открывает запланированную мной серию постов об истории развития всего живого. Если в теме разбираетесь,  то тут ничего нового не найдёте, только основы основ основ, значения терминов и немного про Дарвина.


Начнём со стандартной картинки:

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Шимпанзе наш ближайший эволюционный родственник (из ныне живущих)  с совпадающим на 99% генетическим профилем. Многих эта цифра удивляет - всего 1% разницы, как так?


Дело в том, что бОльшая часть генетического кода отвечает за внутриклеточную молекулярную кухню, общую для всех эукариотов. Поэтому у нас с бананом около 50% общих генов, и эта цифра наглядно отражает тот факт, что у всех животных и растений когда-то был общий одноклеточный предок.

Но я немного отвлёкся. Словосочетание "теория эволюции" состоит из двух слов "эволюция" и "теория". Так вот, с этими словами по отдельности и соответственно с их симбиозом у многих есть непонятки.


Что такое эволюция? Это изменение чего-то во времени. В случае биологической эволюции это изменение всего живого, но не в процессе развития отдельных особей в течение жизни, а в поколениях.


То, что эволюция является доказанным фактом, мало кто отрицает в наше время. Доказательства у нас под ногами -  если в прямом смысле слова копнуть поглубже, то окажется что в древних стоях животные выглядят малость (или не малость) по другому.


Гигантские ленивцы:

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Гигантские стрекозы (тут естественно макет):

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Древние камбалы, один глаз у которых ещё не переполз на другую сторону, но уже начал:

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

А если совсем глубоко копнуть, то там всё ну совсем другое:

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Это эпоха под названием Кембрий, когда в мире животных грянул так называемый кембрийский взрыв (тут хоть отдельный пост пили, но я обойдусь ссылкой для пытливых).


В общем идея такая - виды меняются со временем, вымирают, появляются, одним словом, эволюционируют. Это и есть эволюция видов, с ней вроде как разобрались.


Теперь "теория". Тут имеет место один крайне печальный момент. В общепринятом значении теория означает "предположение". Типа у меня есть теория, что это сосед сверху тырит картофан из подъездного ящика (рил стори...). Поэтому часто можно услышать что ТЕОРИЯ ЭТО ВСЕГО ЛИШЬ ТЕОРИЯ.


Однако в науке термин "теория" означает не предположение, а буквально "как это работает/устроено". По сути, перечень всех знаний о неком явлении. А вот гипотеза - это уже обоснованное предположение.


Например, теория устройства солнечной системы когда-то включала в себя гипотезы ГЕЛИОцентрического и ГЕОцентрического устройства, потом одна из гипотез подтвердилась и вошла в теорию как факт (на картинке одно из самых ранних обоснований ГЕЛИОцентрической гипотезы на основе траекторий планет).

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Причём теория НЕ превращается в закон после подтверждения, как многие думают, а по определению остаётся теорией, то есть сводом всех знаний о явлении.


Помимо прочего, любая научная теория обязана объяснять существующие факты и давать проверяемые предсказания. Это главные признаки научной теории, которые отличают её от всякой псевдонаучной ерунды. Поэтому когда всякие личности в интернете пытаются опровергать существующие научные теории, рекомендую в первую очередь спрашивать -"а какие новые проверяемые предсказания эта новая теория даёт?". Обычно этот вопрос ставит опровергателей в тупик.


Например, теория эволюции на заре своего появления давала предсказание о существовании в прошлом неких переходных форм (хотя это определение весьма условно) для всех животных, которое в итоге многократно подтвердилось, в том числе и для человека.

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Сейчас не существует вида с более подробной "летописью", чем Homo Sapiens, однако до сих пор можно услышать вопросы типа "а где переходная форма между двумя этими переходными формами?". Где-где, лежит в отложениях эпохи палеолита, лопату в руки и вперёд...

Итак, мы выяснили, что фраза "теория эволюции" означает "свод знаний о том, как работает эволюция видов".  По сути, она вмещает всё, что человечество знает о таком замечательном явлении как изменение видов во времени. А на картинке эволюция кита, как пример реконструкции эволюционных изменений на основе прекрасно сохранившихся останков:

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Основу понимания процесса эволюции видов заложил сам Чарльз Дарвин, рассказавший миру о замечательной тройке, везущей эволюционную колесницу: наследственности, изменчивости и отборе.


Жизнь и эволюция пара не разлей вода. Даже определение , которое использует NASA в задачах поиска жизни во Вселенной, звучит так -  «жизнь есть самоподдерживающаяся химическая система, способная к дарвиновской эволюции». Дарвиновская эволюция это в первую очередь наследственность и изменчивость. То есть жизнь, при всём своём возможном разнообразии, сводится к химической системе, обладающей наследственностью и изменчивостью (про отбор я не забыл, он немного особняком).


Наследственность подразумевает способность организма передавать свои признаки и свойства из поколения в поколение. Даже если это одна молекула - а жизнь видимо началась именно с отдельных молекул - это способность создавать копии самой себя. И копия тоже будет уметь делать свои копии, ведь она копия молекулы, которая умеет делать копии. Тут всё предельно просто (на самом деле нет: статья для пытливых).

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

комикс о молекулярной эволюции, которому около 4 млрд лет


Если рассмотреть ситуацию в перспективе, сразу ясно, зачем в эволюции изменчивость, ведь не обладай жизнь этим свойством, всё так бы и остановилось на маленькой молекуле, которая катализирует создание собственных копий. И она бы спокойно копировала себя, пока пока хватает ресурсов и пока стабильна среда.


Однако если привычный ресурс кончается или как-то меняется среда, может оказаться, что молекула в новых условиях неэффективна или вовсе неспособна к самокопированию. Но неизбежные ошибки при копировании породят молекулы, которые отличаются от исходной - это и есть изменчивость. Возможно ошибка будет критической для способности к самокопированию - тогда тупик. А если нет, то возможны варианты, когда ошибка изменит структуру молекулы в стороны большей устойчивости или активности.

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

на картинке представитель молекул РНК, которые предположительно дали старт дарвиновской эволюции


Логика наследственности и изменчивости у отдельной молекулы так же применима для сложных многоклеточных организмов. Собственно, у них носитель генетической информации это тоже одна молекула, только побольше. И свойства организма сводятся не только к умению копировать свою генетическую информацию. Поэтому сценарии эволюции у них сложнее и интереснее.


Минутка познавательного: размотанная нить ДНК из всего 1 клетки нашего организма имеет длину 1,74 метра, а так как тело человека состоит примерно из 100 000 000 000 000 клеток, общая длина молекул ДНК всех клеток одного человека около 200 миллиардов километров, что примерно в тысячу раз больше расстояния от Земли до Солнца.

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Ну и про отбор, который бывает естественный, а бывает искусственный. Дарвин писал свои труды на английском, и в оригинале использовал понятия "selection" и "natural selection", то есть "селекция" и "натуральная селекция". Это и была основа его логики -  в природе происходит натуральная селекция, аналогичная по сути селекции, которую осознанно или не очень производит человек, когда выводит породы животных и сорта растений, отбирая в каждом поколении те из них, которые обладают нужным признаком.

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

В природе отбор неизбежен, потому что не бывает ничего бесконечного в нашем материальном мире (кроме последнего месяца службы в армии - прим. автора). Любой организм, даже помещённый в сколь угодно идеальные условия для жизни и размножения, в конце концов упирается в некую планку.


Даже компьютерные программы, вирусы или эмуляции, заполнив всю имеющуюся в их распоряжении компьютерную память окажутся в ситуации, когда размножаться некуда, ибо ресурс "свободная память" закончился. Тогда преимущество получат программы, которые приобретут способность стирать/освобождать занятую память для своих копий (если они, конечно, способны к дарвиновской эволюции с изменчивостью).


Ну а живые организмы сталкиваются с ограниченностью еды, территории, доступных партнёров для размножения. Всё ограничено и за всё приходится конкурировать. А ещё есть условия среды, которые бывает меняются не просто, а глобально. Причём иногда настолько резко, что эволюция просто разводит руками.

Эволюция от молекул до человека. Введение Наука, Научпоп, Познавательно, Биология, Теория эволюции, Эволюция, Чарльз Дарвин, Длиннопост

Ещё важный момент. Наличие отбора порождает понятие приспособленности особи, которое измеряется в количестве оставленного потомства. Если знаете фарзу "выживает сильнейший", срочно её забывайте, потому что в оригинале выживает именно самый приспособленный.


Причём с точки зрения эволюции неважно, за счёт чего организм оставил больше потомства (а значит копий своих генов) - за счёт хитрости, скорости, умения нравиться самкам или оплодотворения всего, что движется. Главное, что после смерти хозяина копии его генов, остаются в популяции, и чем больше их осталось, тем лучше (а кому лучше?).


Представьте, жизнь прошла эволюционный путь длиной 4 млрд лет, а некоторые гены, появившиеся в те времена и оказавшиеся наиболее эффективными, передались по эволюционной цепочке нам с вами, и трудятся на благо своих организмов и за счёт них несут свои копии дальше в историю.


Более подробно об этих 4 миллиардах лет - в следующих постах. Нетерпеливым - читать книги "Хлопок одной ладонью" Кукушкина и "От атомов к древу" Ястребова.


Мои предыдущие посты на тему эволюции:

Мутация, которая изменила мир, или как на самом деле работает эволюция

Разбираемся с теорией эволюции (ч. 1)

Разбираемся с теорией эволюции - 2. Чудесный язык дятла

Номинация "Эволюционная перспектива" (ч. 2)

Номинация "Эволюционная перспектива"

Номинация "Эволюционная перспектива" (ч. 3)

Открытия в эволюции. Итоги 2017 года (txt version)

PS Сейчас на пикабу проходит эксперимент по поддержке авторов #comment_162454986.

Для желающих сказать "спасибо" автору в денежном эквиваленте номер карты Сбера - 4274 3200 4968 4171 или ссылка на Яндекс-кошелек - https://money.yandex.ru/to/410012168692324.

Показать полностью 12
140

Антропология: Парантропы. Массивные австралопитеки. Станислав Дробышевский

Примерно 2.5-2.7 млн. лет назад произошли изменения в африканской саванне. Большая часть грацильных австралопитеков исчезла, а те которые продолжали жить и приспосабливаться, пошли двумя альтернативными эволюционными путями. Один из этих путей привел к появлению Homo, первых людей, а альтернативный путь привел к возникновению парантропов или массивных австралопитеков. В этом ролике антрополог и кандидат биологических наук Станислав Дробышевский расскажет про массивных австралопитеков.

Рассказчик: Станислав Дробышевский, антрополог, кандидат биологических наук, доцент кафедры антропологии биологического факультета МГУ имени М. В. Ломоносова, научный редактор ANTROPOGENEZ.RU, автор книг "Достающее звено" и "Байки из грота. 50 историй из жизни древних людей".

Группа в ВК: https://vk.com/noosphere_studio

567

Почему шимпанзе сильнее людей

Почему шимпанзе сильнее людей Обезьяна, Человек, Наука, Сила, Мышцы, Эволюция

Шимпанзе кажутся нам намного сильнее людей – еще бы, дикий зверь одних размеров с нами. Собственно, они не только кажутся: среднестатистическая обезьяна действительно сильнее среднестатистического человека. Но намного – это насколько?

Долгое время считалось, что сила шимпанзе в несколько раз превосходит человеческую – но тут, видимо, мы имеем дело с литературно-художественным преувеличением: когда Брайан Амбергер (Brian R. Umberger) из Массачусетского университета в Амхерсте и его коллеги из нескольких научных центров США проанализировали научные данные по этой теме, оказалось, что шимпанзе сильнее человека в лучшем случае всего в полтора раза.

Но за счет чего они сильнее? Чтобы разобраться в вопросе, исследователи решили напрямую сравнить, как работают мышечные волокна у шимпанзе и у человека. Образцы волокон взяли с помощью биопсии из икроножных и бедренных мышц у нескольких обезьян – и оказалось, что и у людей, и у шимпанзе отдельные мышечные волокна развивают примерно одинаковую силу. Стало ясно, что для того, чтобы понять, почему именно шимпанзе сильнее людей, нужно проанализировать строение мышечных волокон на уровне молекул и клеток.

Как известно, мышцы сокращаются благодаря специальному белку миозину, который образует длинные сократительные нити. Подробно описывать механизм мышечного сокращения мы не будем, скажем лишь, что среди миозиновых нитей, работающих в мышцах, есть нити быстрые и медленные. Чем они отличаются, понятно: быстрый миозин обеспечивает более быстрое и сильное мышечное сокращение, чем миозин медленный. Но быстрый миозин при том и быстрее устает – то есть за скорость и силу приходится платить выносливостью.

В статье в PNAS говорится, что мускулатура человека и шимпанзе отличаются как раз соотношением быстрых и медленных миозиновых волокон: если в мышцах человека в среднем 70% медленного миозина и 30% быстрого то у шимпанзе – 33% медленного и 67% быстрого миозина. Когда на основе полученных данных смоделировали виртуальные мышцы, то оказалось, что шимпанзе со своим быстрым миозином должны быть примерно в 1,35 раз сильнее человека, что в целом согласуется с более ранними работами.

Вообще среди зверей преобладание в мышцах медленного миозина, по-видимому, довольно редкая вещь: из тех животных, кого еще проверили на соотношение миозинов – а среди них были кошки, собаки, мыши, морские свинки, лошади, макаки и лемуры – похожие мышцы оказались только у медленных лори. (Кстати, медленные лори примечательны еще и тем, что умеют быстро перерабатывать алкоголь.)

По словам авторов работы, быстрый миозин более востребован просто потому, что для большинства животных важно, чтобы их мускулатура срабатывала быстро и с наибольшей силой. Если говорить о шимпанзе, то захоти он поднять камень и ударить им по ореху, или вздумай забраться на дерево, с быстрым миозином все это получиться проделать быстрее и эффективнее.

Для человека же по мере эволюции на первое место вышла выносливость: чтобы охотиться, или просто чтобы собрать какую-то еду, людям приходилось преодолевать огромные расстояния, и преимущество тут получали те, чьи мышцы долгое время не уставали. Кроме того, выносливый медленный миозин тратит меньше энергии, чем быстрый, так что сэкономленные ресурсы можно было бы направить на развитие и содержание мозга. (Кстати, о том, что мозг человека мог увеличиваться за счёт мышц, мы уже писали некоторое время назад.)

Впрочем, некоторые специалисты полагают, что для каких-то эволюционных умозаключений относительно быстрого и медленного миозина у нас пока что недостаточно данных. Во-первых, мы не знаем, что за миозин был в мышцах человеческих предков, во-вторых, сейчас в эксперименте использовали мышечные волокна только из задних конечностей шимпанзе, так что хорошо было также проанализировать еще и мышцы рук, причем не только у шимпанзе, но и у других человекообразных обезьян.

Автор: Кирилл Стасевич

Показать полностью
164

С Дробышевским - по стоянкам древних людей

Древние люди жили в самых разных местах. И места эти они выбирали не просто так! У нас есть возможность, не выходя из дома, увидеть ландшафты, в которых жили наши предки - от австралопитеков до современности.


А проводит нас в мир древнего человека Станислав Дробышевский – антрополог, кандидат биологических наук, доцент кафедры антропологии биологического факультета МГУ им. М.В. Ломоносова и научный редактор портала АНТРОПОГЕНЕЗ.RU.


Экскурсия пройдет в формате #Эффект_присутствия


Ведущие эфира: Георгий Соколов (@Antropogenez) и Виталий Краусс (@ScienceVideoLab).


Стрим проводится в рамках проекта «Научная станция».

6123

Новость №1084: Оказывается, китообразные — это потомки парнокопытных

Новость №1084: Оказывается, китообразные — это потомки парнокопытных Образовач, Комиксы, Кит, Китообразные, Эволюция, Наука, Парнокопытные

Материал о том, как сухопутные звери становились современными китообразными:


http://short.nplus1.ru/IrPTLVwHCOo

294

Охота адского муравья

Охота адского муравья Палеонтология, Наука, Насекомые, Муравьи, Янтарь, Копипаста, Elementy ru, Длиннопост

Древний хищник, терзающий жертву, — это излюбленный сюжет для палеохудожников. Какую популярную книжку по палеонтологии ни открой, обязательно увидишь в ней тираннозавра, обгладывающего трицератопса, или саблезубого тигра, вонзающего клыки в холку вымершего копытного. Увы, далеко не всегда понятно, какое отношение все эти красочные картинки имеют к реальности. Однако в этом куске бирманского янтаря вы можете наблюдать сцену доисторической охоты своими глазами, не полагаясь на воображение иллюстратора. В роли хищника тут выступает адский муравей Ceratomyrmex ellenbergeri, в роли жертвы — нимфа алиеноптеры (Alienopteridae) Caputoraptor elegans. Находка позволила ученым увидеть в действии уникальный ловчий аппарат адских муравьев, состоящий из двух серповидных челюстей и длинного рога (см. картинку дня Адские муравьи).

Адские муравьи (Haidomyrmecinae) — это вымершее подсемейство муравьев, известное из верхнемеловых янтарей, таких как бирманский (99 млн лет) и канадский (78 млн лет). Свое латинское название, которое происходит от греческого слова Ἀΐδης (Аид — царство мертвых), эта группа получила неслучайно. В отличие от остальных муравьев, у которых челюсти смотрят вперед, у их адских собратьев передние концы челюстей загнуты вертикально вверх и напоминают клинок ятагана. К тому же у нескольких родов этого подсемейства вдобавок к челюстям-саблям имеется и длинный «рог» — вырост клипеуса (наличника), то есть лицевой части головной капсулы. Ученые давно предполагали, что рог и загнутые вверх челюсти работали сообща, зажимая добычу, и новая находка стала блестящим подтверждением этой гипотезы.

Охота адского муравья Палеонтология, Наука, Насекомые, Муравьи, Янтарь, Копипаста, Elementy ru, Длиннопост

Филогенетическое древо муравьев и строение их голов и ротовых частей. 3D-реконструкции: A — Haidomyrmex, B — Protoceratomyrmex, C — Linguamyrmex, D — Ceratomyrmex, E — Dhagnathos, F — Chonidris, G — Aquilomyrmex. Фотографии в сканирующем электронном микроскопе: H — Leptanilla, I — Amblyopone; J — Anochetus, K — Aneuretus, L — Nothomyrmecia, M — Tetraponera. Оранжевым показаны челюсти, голубым — клипеус (наличник), желтым — верхняя губа и фиолетовым — лобный треугольник. Изображение из статьи P. Barden et al., 2020. Specialized predation drives aberrant morphological integration and diversity in the earliest ants

Из всех адских муравьев наиболее внушительными челюстями и рогом обладают представители рода Ceratomyrmex — именно такого муравья и посчастливилось обнаружить ученым в куске бирманского янтаря. Он вцепился в «шею», то есть суженный участок переднегруди, неполовозрелой алиеноптеры Caputoraptor elegans. Алиеноптеры — это вымерший отряд насекомых с неполным превращением, родственный тараканам и богомолам и нередко встречающийся в бирманском янтаре. У алиеноптеры Caputoraptor elegans, ставшей добычей муравья, по краям переднегруди располагались зубчики, служившие, возможно, для захвата мелких насекомых или же для удержания половых партнеров (см. картинку дня «Чужие» из янтаря). Но муравья зубчики не смутили — снизу он зажал переднегрудь алиеноптеры челюстями, а сверху — длинным рогом, исключив любую возможность сопротивления.

Охота адского муравья Палеонтология, Наука, Насекомые, Муравьи, Янтарь, Копипаста, Elementy ru, Длиннопост

Смертельная хватка адского муравья Ceratomyrmex ellenbergeri, зажавшего алиеноптеру Caputoraptor elegans. Условные обозначения: amd — передние концы челюстей муравья, e — глаз алиеноптеры, mib — медиовентральная (срединно-брюшная) лопасть челюсти муравья, pg — заглазничная часть головной капсулы алиеноптеры (гена; см. gena). Изображение из статьи P. Barden et al., 2020. Specialized predation drives aberrant morphological integration and diversity in the earliest ants

Такой борцовский захват был возможен только при условии вертикальной подвижности челюстей. Иными словами, адские муравьи могли двигать челюстями не только влево и вправо, в горизонтальной плоскости, как все остальные муравьи, но и вверх-вниз, оттягивая их и поднимая. То есть фактически челюсти адских муравьев двигались примерно так же, как и нижняя челюсть позвоночных животных. Рог при этом выступал в качестве аналога верхней челюсти позвоночных, то есть неподвижной точки опоры, к которой прижимается пища. Челюстной «сустав» подобного строения не известен ни у одного из более чем 12 000 ныне живущих видов муравьев. Но зато похожий ловчий аппарат можно найти у водных личинок жуков-плавунцов Hyphydrus. С помощью «капкана» из загнутых верх челюстей, движущихся в вертикальной плоскости, и противолежащего рога на голове они ловят остракод — рачков с округлым панцирем.

Охота адского муравья Палеонтология, Наука, Насекомые, Муравьи, Янтарь, Копипаста, Elementy ru, Длиннопост

Ближайшие ныне живущие аналоги адских муравьев — личинка жука-плавунца Hyphydrus japonicus (A–D) и личинки водных жуков с обычным строением челюстей: плавунец Platambus optatus (E) и водолюб Enochrus simulans (F). Фото из статьи M. Hayashi, S.-Y. Ohba, 2018. Mouth morphology of the diving beetle Hyphydrus japonicas (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps

Зачем личинки плавунцов стали экспериментировать с ротовым аппаратом, вполне понятно — остракоды, похожие на крошечные бобы, из стандартных, горизонтально ориентированных челюстей просто выскальзывают. Но зачем необычные челюсти-сабли вкупе с рогами понадобились адским муравьям? На каких таких особых жертв они охотились? Ведь во второй половине мелового периода существовали и муравьи с нормальным устройством ротового аппарата. Судя по данным филогенетического анализа, у двух групп адских муравьев длинные рога независимо возникли из разных частей головы (это видно на втором рисунке, A–D и E–G) — то есть это не была чистая случайность морфогенеза, тут был замешан какой-то мощный внешний стимул. Но затем этот стимул почему-то исчез, адские муравьи вымерли, и за последующие 70 млн лет никакая другая группа муравьев не выработала у себя похожего приспособления. Так что вопросов всё равно пока больше, чем ответов...

Изображение из статьи P. Barden et al., 2020. Specialized predation drives aberrant morphological integration and diversity in the earliest ants.


Александр Храмов
https://elementy.ru/kartinka_dnya/1204/Okhota_adskogo_muravy...

Показать полностью 3
1024

Как динозавры мир захватили

Динозавры являются самыми популярными ископаемыми животными в масскультуре. Но мало кто может сказать, как ужасные ящеры пришли к господству на всей планете и что было до них. А мог бы выйти хороший сериал.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Всего за 20 млн лет до первых динозавров планету населяли амфибии, звероподобные ящеры (это наши предки, если что) и небольшие рептилии. Климат был засушливым с сезонными циклами, то жарко, то холодно. Небольшие рептилии со слегка удлинёнными задними конечностями сновали там и сям. Эти крохи даже и не подозревают, что спустя пару миллионов лет вся планета загорится ярким пламенем и именно они, крошечные "ящерки" станут следующими правителями Земли.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Синапсиды или звероящеры

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Prolacerta — архозавроморф из раннего триаса


252 млн лет назад началось самое масштабное глобальное вымирание в истории планеты, Великое пермское вымирание. Планета разрывалась от колоссальной вулканической активности. Лава изливалась огромными реками по территории современной Сибири. Животные не только сгорали и умирали с голоду, но попросту задыхались из-за высокой концентрации углекислого газа в атмосфере. Катастрофа не была моментальной, она длилась десятки тысяч лет. Великое вымирание уничтожило 90% всех видов животных на планете, оставив после себя выжженную пустыню.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Планета после Великого вымирания представляла собой гигантскую пустыню


Условия для жизни на Земле стали весьма тяжкими: реки и озёра пересохли, растительность наблюдалась лишь у редких оазисов и в полярных регионах, дышать было нечем (в триасовом периоде содержание кислорода в атмосфере было в два раза меньше, чем сейчас). В экстремальных условиях требовались новые приспособления для выживания. Например, толстый панцирь, чтобы влага не испарялась или маленькие размеры и быстрые ноги, чтобы не быть сожранным медленными толстошкурыми хищниками.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Триасовая фауна Марокко


Пока многометровые крокодилоподобные хищники охотились на наших неповоротливых предков-синапсидов, у них под ногами повсюду сновали небольшие рептилии. Главное отличие этих небольших проказников крылось в задних конечностях: они были достаточны мощными, чтобы животное могло опираться только на них, и они были поставлены под тело, как у нас с вами. Это делало первых динозавров очень быстрыми и юркими. Вероятно, пищеварительная система ранних динозавров тоже претерпела изменения. В засушливом и жарком климате требуется максимальная экономия влаги в организме, но динозавры не были похожи на тех, кто сутками валялся в тени. Так что, вероятно, ЖКТ динозавров высасывал всю воду из потребляемой пищи, а ели динозавры много. Например, крупные целофизисы поедали крокодилоподобных архозавров, а более мелкие динозавры потребляли насекомых. А кто-то ел и самых первых млекопитающих.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Целофизис


Так как динозавры из столько крошечных хищников стали повелевать всем сухопутным миром мезозойской эры? На самом деле им и делать особо ничего не пришлось, они УЖЕ стали королями мира. Толстошкурые постозухи и неповоротливые терапсиды, потомки пермских синапсид, никак не угрожали динозаврам. Первые млекопитающие жили в норах, а нос на "улицу" высовывали только ночью. Первые крокодиломорфы жили на деревьях да в немногочисленных водоёмах. Птерозавры осваивали первый в истории полёт среди позвоночных, им было не до динозавров. Остальные шли ужасным ящерам на корм. Так кто мог остановить восхождение динозавров на трон мезозоя? Да никто.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Litargosuchus — триасовый предок крокодилов


И, вероятно, самый важный фактор — метаболизм динозавров. В триасовом периоде, есть такое предположение, динозавры были единственным теплокровными животными. В то время, как все маялись в жару в глуби континента Пангея, динозавры спокойно могли существовать в полярных регионах среднего триаса. Когда климат стал стабильнее и равномернее, динозавры уже были готовы составить конкуренцию тогдашним крупным хищникам.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Пангея среднего триаса


Дело оставалось за малым — ждать. Эволюция сделает своё дело. Она и сделала. Не имея конкурентов в своей нише, но имея множество преимуществ перед другими триасовыми животными (стройное, лёгкое тело, поставленное на две ноги и прочее), динозавры стали попросту вытеснять остальных, добираясь постепенно до самых крупноразмерных классов. К концу триасового периода, около 215 млн лет назад, уже появились четырёхтонные травоядные платеозавры и пятиметровые хищные годжиразавры. Но динозавры решили сорвать джекпот.

Как динозавры мир захватили Динозавры, Животные, Наука, Природа, Палеонтология, Длиннопост, Интересное, Познавательно

Gojirasaurus — позднетриасовый хищный теропод


В конце триасового периода планету постигло новое несчастье, триасово-юрское массовое вымирание. Именно оно добило остатки конкурентов динозавров и мезозойские цари стали править сушей единолично. Лишь спустя 135 млн лет огромный астероид даст шанс млекопитающим, истребив самую успешную группу животных в истории Земли. Но динозавры не вымерли, они смотрят на нас оттуда, сверху. С высоты птичьего полёта.


Автор: Мартин Авиански

___________

В посте использовались статьи:


Великое пермское вымирание https://www.sciencedirect.com/science/article/abs/pii/S0012821X07000842?via=ihub


О климате триаса https://www.sciencemag.org/news/2015/06/raging-fires-high-te...


Prolacerta https://en.wikipedia.org/wiki/Prolacerta


Платеозавр https://en.wikipedia.org/wiki/Plateosaurus


Триасовый крокодиломорф https://en.wikipedia.org/wiki/Litargosuchus

Показать полностью 7
249

Сколько было динозавров?

На сегодняшний день нам известно множество видов динозавров. От исполинских титанозавров весом в десятки тонн до крошечных пситтакозавров и компсогнатов. Известные нам динозавры описываются чуть ли не по новому виду в день. Но сколько их существовало всего? Это невероятно сложно посчитать. Мы всё ещё не можем раскопать Антарктиду, дно морей. Нам неизвестно, кто населял горы, а экспедиции в непроходимые джунгли обходятся слишком дорого. Сами же динозавры занимали все возможные сухопутные ниши: гигантские хищники, мелкие насекомоядные, специализированные рыболовы. Так давайте попробуем посчитать, сколько было динозавров за 160 млн лет их существования (птиц мы считать не будем).

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Со временем количество динозавров увеличивалось, что неудивительно. Мы не просто узнавали новые виды, но лучше понимали их природу и эволюцию. В истории эволюции динозавров остаются периоды и регионы, в которых оценки разнообразия чрезвычайно изменчивы: например, поздняя юра (~145 млн лет назад) Европы, средний меловой период (~100 млн лет назад) Северной Америки и поздний меловой период (~65 млн лет назад) Южной Америки.


Во второй половине XX века палеоэкология шагнула далеко вперёд и стала применять более качественный подход оценки видового разнообразия жизни на Земле. С 70-х по 90-е гг. были опубликованы важные исследования, которые помогли нам взглянуть на массовые вымирания и восстановления биосферы по-новому. Но сегодня мы наблюдаем второй ренессанс палеобиологии. Ведь с онлайн ресурсами, базами данных (например: https://www.paleobiodb.org) ископаемых животных мы можем составить по-новому качественную картину жизни и эволюции во времени.

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Надо понимать, какое множество факторов влияет на оценку видового разнообразия животных в принципе. С течением времени мы не просто открываем новые виды, мы не просто понимаем принципы эволюции лучше, а открываем всё новые и новые регионы, которые раньше были недоступны по многим причинам, в том числе и геополитическим.


В статье на NCBI авторы подготовили графики, на которых отображается количество описанных видов аж с середины XIX века.

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Частота (A) и совокупная частота (B) новых описанных таксонов динозавров

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Количество отменённых или пересмотренных таксонов



Сейчас в год описываются десятки новых видов, что позволяет нам лучше изучать экологию мезозойской эры. Но, конечно же, мы не могли не столкнуться с проблемами, когда два похожих динозавра описываются как новые виды, а оказываются представителями одного динозавра на разных этапах взросления. Я уже разбирал такие случаи в специальной статье для Paleonews.live. Если вкратце, то на сейчас открыто более тысячи видов, а до 30% (число актуально для позднемелового периода) из них может оказаться разными стадиями взросления уже известных видов, например дракорекс и стигимолох.
Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Пример взросление пахицефалозавра


На сегодняшний день нам известно около 1000 видов, плюс-минус, и около 150 видов (104 вида на 2012 год) приходятся на конец мелового периода. Так сколько же всего динозавров жило? Такую оценку дать очень тяжело, но попытки посчитать были. В основном подсчёты основывались на современных животных. Например, биоразнообразие позднемеловых (65 млн лет назад) динозавров насчитывает несколько сотен видов единовременно. От 628 до 1078 видов. Правда, исследователям очень не хватало данных. Так или иначе, к концу мелового периода у динозавров не было замечено кризиса, что согласуется с импактной (падение крупного небесного тела) гипотезой вымирания динозавров. Все статьи я предоставлю в конце поста, где вы сможете самостоятельно ознакомиться с материалом.

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Позднемеловой пейзаж


Вам может показаться, что число очень маленькое, ведь сегодня мы насчитываем более 5000 видов млекопитающих. Но если мы возьмём всех млекопитающих и вычтем из них всех, кто меньше 1 кг (вес самого маленького известного динозавра), а затем добавим сюда всех

известных вымерших за последние 50 000 лет, таких как мамонты, то мы и получим схожее число. Так что оценка кажется вполне адекватной. Но это было в самом конце правления ящеров, а правили они более сотни миллионов лет. Число, которое невозможно вообразить. Сравните на таймлайне, как мало живёт человек на планете и сколько прожили нептичьи динозавры:

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Слева направо: начало эволюции динозавров и млекопитающих, начало эволюции птиц, вымирание нептичьих динозавров, начало эволюции людей.


Но сколько существовало динозавров за всю их историю? По грубым оценкам, мы получим от 40 000 до 640 000 видов. Почему такой разброс? А потому, что мы не знаем о макроэволюции динозавров практически ничего. Если мы берём 1000 видов в один момент времени и прикинем, что эволюция нового вида проходит за 1 млн лет, то мы получим 160 000 видов (динозавры существовали ~160 млн лет). Но если брать минимальные оценки: 500 видов единовременно и 2 млн лет эволюции, то мы получим 40 000 за всё время. Но вот в статье Национальной академии наук, опубликованной в 2014 году на сайте Phys.org, рассказывается об эволюции трицератопсов. Исследователи изучили 50 черепов двух видов рогатых динозавров, T.horridus и T.prorsus. Найдены черепа в формации Хелл-Крик в разных слоях. Формация откладывалась 2 млн лет, а черепа этих двух трицератопсов лежат исключительно в разных слоях: T.horridus в нижних слоях, а T.prorsus – в верхних. Это свидетельствует о весьма быстрых эволюционных процессах среди динозавров, раз десятитонные монстры смогли образовать новый вид меньше чем за 2 млн лет

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

Эволюционные изменения трицератопса из формации Hell Creek Монтаны включают в себя расширение носового рога с течением времени.


Так что вполне возможно, что благоприятный и тёплый климат мог единовременно поддерживать до 2000 видов, а эволюция нового вида длилась всего 0,5 млн лет. Отсюда мы получим невообразимое число видового разнообразия динозавров в 640 000 видов, что, конечно же, маловероятно. Это всё грубые оценки без учёта сотен факторов. Здесь мы даже не учитываем, что в триасовом периоде динозавров было куда меньше, чем в позднем мелу, а динозавры с более коротким жизненным циклом могут эволюционировать быстрее тех же трицератопсов. А ведь есть ещё сотни экологических, географических и климатических факторов, которые все будут влиять на скорость появления новых видов.


Тем не менее, недавние исследования норвежцев дают оценку в 1543-2468 видов. Я не могу обойти их исследования стороной, так о них часто говорилось. Конечно же, число невероятно маленькое, но так вышло. На сегодняшний день существует 10500 видов птиц, то есть динозавров. И 2500 видов динозавров за 160 млн лет, около 1000 из которых уже открыты, выглядит совсем уж нереально. Но в этом нет вины расчётов или исследователей. Нам попросту очень мало известно о палеоэкологии и макроэволюции древних животных, а значит, всё ещё очень мало данных для расчётов, хоть палеонтология и шагнула далеко вперёд.

Сколько было динозавров? Динозавры, Палеонтология, Статистика, Эволюция, Наука, Длиннопост

___________

В посте использовались статьи:

- о дракорексе и стигомолохе https://paleonews.live/column/1436-gachin-dracorex

- об изменениях оценок с течением времени https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822849/

- о видовом разнообразии динозавров в конце мелового периода https://pubs.geoscienceworld.org/sgf/bsgf/article-abstract/1...

- об эволюции трицератопса https://phys.org/news/2014-07-insights-evolving-triceratops-...

___________

Автор: Сергей Гачин

Редактор: Вера Круз

Показать полностью 8
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: