Нейросеть анимирует персонажей в игровой среде

Исследователи из University of Edinburgh обучили нейросетевую модель анимировать игровых персонажей. Нейросеть предсказывает, как персонаж должен взаимодействовать со средой, чтобы выполнить какое-то действие. Среди действий — такие, как сидеть, стоять, передвигаться, избегать препятствия и поднимать предметы. Архитектура модели базируется на Neural State Machine.


Даже простые задачи, как сидеть на стуле, сложно моделировать с помощью обучения с учителем. Сложность заключается в том, что такая задача предполагает комплексное планирование и умение ориентироваться в среде. Neural State Machine моделирует взаимодействие игрока в сменяющихся сценах.

Нейросеть принимает на вход целевую локацию и тип действия, который необходимо совершить. На выходе модель выдает последовательность шагов для совершения целевого действия. Чтобы персонажи адаптировались к специфике геометрии среды, исследователи включили в модель метод для аугментации данных. Это позволяет случайным образом сменять 3D геометрию среды, при этом сохраняя контекст изначального действия. Благодаря такому подходу нейросеть обучается действовать в отличных друг от друга средах.


Что внутри нейросети


Архитектура системы состоит из gating сети и сети для предсказания движений. Gating сеть принимает на вход подвыборку параметров текущего состояния и вектор целевого действия. На выходе gating сеть отдает коэффициенты для блендинга предыдущих действий, которые используются для предсказания следующего действия. Сеть для предсказания движений принимает на вход переменные контроля позы и траектории персонажа и выход gating сети. Затем модель предсказывает параметры следующего действия.

Визуализация составных частей нейросети


Проверка работы модели


Исследователи сравнили Neural State Machine с MLP, PFNN, MANN, LSTM и Auto-LSTM архитектурами. Ниже видно, что NSM выдает более точные результаты, чем остальные подходы.

Средняя ошибка позиции (PE — Positional Error) и средняя ошибка вращения (RE — Rotation Error) для конкурирующих подходов


Источник

Github

Искусственный интеллект

4.6K постов11.3K подписчика

Правила сообщества

ВНИМАНИЕ! В сообществе запрещена публикация генеративного контента без детального описания промтов и процесса получения публикуемого результата.


Разрешено:


- Делиться вопросами, мыслями, гипотезами, юмором на эту тему.

- Делиться статьями, понятными большинству аудитории Пикабу.

- Делиться опытом создания моделей машинного обучения.

- Рассказывать, как работает та или иная фиговина в анализе данных.

- Век жить, век учиться.


Запрещено:


I) Невостребованный контент

  I.1) Создавать контент, сложный для понимания. Такие посты уйдут в минуса лишь потому, что большинству неинтересно пробрасывать градиенты в каждом тензоре реккурентной сетки с AdaGrad оптимизатором.

  I.2) Создавать контент на "олбанском языке" / нарочно игнорируя правила РЯ даже в шутку. Это ведет к нечитаемости контента.

  I.3) Добавлять посты, которые содержат лишь генеративный контент или нейросетевой Арт без какой-то дополнительной полезной или интересной информации по теме, без промтов или описания методик создания и т.д.


II) Нетематический контент

  II.1) Создавать контент, несвязанный с Data Science, математикой, программированием.

  II.2) Создавать контент, входящий в противоречие существующей базе теорем математики. Например, "Земля плоская" или "Любое действительное число представимо в виде дроби двух целых".

  II.3) Создавать контент, входящий в противоречие с правилами Пикабу.


III) Непотребный контент

  III.1) Эротика, порнография (даже с NSFW).

  III.2) Жесть.


За нарушение I - предупреждение

За нарушение II - предупреждение и перемещение поста в общую ленту

За нарушение III - бан