-8

Квантовая связь?

Наткнулся тут на видео: https://www.youtube.com/watch?v=8ORLN_KwAgs


И вот что мне подумалось: допустим, Алиса находится у нижней (на схеме в видео) части установки и у неё есть рычаг, включающий/выключающий зеркала у детекторов A и B. Рычаг в положении 0 -> зеркала отражают -> Боб, находящийся у верхней части установки, видит интерференционную картину, записывает в блокнот нолик. Рычаг в положении 1 -> зеркала прозрачные (или тупо убираются) -> Боб видит две полосы, записывает в блокнот единичку. Картинка на экране не меняется в течение заранее оговорённого времени -> несколько идущих подряд нулей или единичек. Бум! Алиса передала Бобу информацию. Быстрее скорости света. Для наглядности увеличим установку, чтобы Боб с экраном остался на Земле (генератор фотонов тоже на Земле), а Алиса с рычагом была у Альфы Центавра. Как объяснено в видео, эффект на экране виден даже если нижняя часть установки длиннее верхней (то есть нижние фотоны достигают зеркал и детекторов позже, чем верхние экрана). Следовательно, теперь Боб может увидеть на экране последовательность нажатий, которые Алиса произведёт на Альфе Центавра четыре года спустя. Дальше ещё интереснее. Системой из зеркал заставляем фотоны с нижней части установки бегать по кругу -> теперь Алиса может их хранить, пока они не понадобятся, а значит посылать сообщения не только ровно на 4 года назад. Допустим, установку построили в 3000 году и сразу посмотрели на экран. Фотоны с нижней части отправили на Альфу Центавра, где в 3004 году их получили и положили в ящик для хранения. В 3010 с Земли вылетает Алиса и прибывает на Альфу Центавра в 3020. Она берёт эти фотоны из ящика и телеграфирует ими на Землю: "мне здесь не нравится, не посылайте меня сюда". Но на Земле-то спутанные с ними фотоны наблюдали ещё в 3000, значит ещё тогда должны были получить это сообщение. Получив его, они передумывают посылать на Альфу Центавра Алису. Но тогда она не сможет отправить это сообщение. Парадокс!


Вот не пойму, то ли я только что сверхсветовые коммуникации, то ли я что-то делаю не так?

Рассуждения мои, тег моё.

Дубликаты не найдены

+1

Неважно, что наблюдать спутанные фотоны на Земле начали ещё в 3000 году. Важно, когда эти фотоны изменят состояние, а земляне это пронаблюдают.

Состояние "земных" запутанных фотонов изменится ТОЛЬКО после того, когда Алиса на Альфа-Центавре изменит состояние своих (прибывших туда) фотонов. Т.е. пока она не окажется на Альфа-Центавре и не отправит сообщение - земляне ничего не получат. Отправила в 3020 году - получили в тот же миг, в 3020 году, а не в 3000-м.  Причинно-следственная связь.

раскрыть ветку 1
0

Не, всё не так.

Во-первых, фотоны не меняют состояние с 0 на 1. Они находятся в суперпозиции (одновременно 0 и 1), пока их не измеришь, но вне зависимости от того, в каком порядке измеряешь, из запутанной пары один всегда будет 0, другой - 1. То есть если в 3000 году мы измерили 0, то мы уже знаем, что в 3020 парный ему будет измерен как 1. Хотя информацию так передать всё равно нельзя.

Но тут вступает во-вторых: я и не предлагаю измерять состояние фотонов. Посмотрите видео: там показывают эксперимент, где прозрачность зеркал в одной части установки влияет на наличие интерференционной картины на экране в другой части установки, причём говорится, что часть установки с экраном может быть короче, и это всё равно сработает. Вот я и предлагаю не измерять состояния фотонов, а смотреть на наличие интерференционной картины (есть она или нет её), которое должно сообщить информацию о том, в какой режим включены зеркала на другой части установки.

Однако, я уже нашёл ответ, почему это не сработает, в другом видео на том же канале. Напишу отдельным комментарием, чтобы сразу под постом было.

0

Итак, я нашёл ответ в другом видео на том же канале (во второй половине видео): https://www.youtube.com/watch?v=MuvwcsfXIIo

Суть в том, что фотоны, парные тем, что приходят на датчик C, находятся в противофазе тем, которые парны приходящим на датчик D. В результате две интерференционные картины накладываясь друг на друга дают сплошной шум как при отсутствии интерференции. Увидеть интерференционную картину можно только узнав, какие фотоны пришли на C, а какие на D (а это Боб раньше Алисы сделать не может) и выбрав на экране фотоны парные только тем, что пришли на C, либо только тем, что пришли на D.

раскрыть ветку 36
0

Можно проще сказать - пока информация не придёт на альфа центавру, вы информацию не получите.

раскрыть ветку 35
0

Наоборот: с Альфы Центавра должны прислать информацию о том, которые фотоны пришли на детектор C, а которые - на детектор D. Это будет как будто ключ к шифру.

раскрыть ветку 34
0

Скорее всего что-то подобное уже проверялось (можно ведь проверить на меньших расстояниях)... если мы не видим "магических" экспериментов, то, возможно, что-то не учитываем, что учитывают ученые.


Проверка на меньших расстояниях (то что придумал)

1. один экспериментатор, фотоны в нижней части идут через среду, где они идут медленнее, чем бегает экспериментатор (так я сконструировал ваш ящик)

2. пускаем фотон. видим интерференцию - бежим к рычагам (быстрее фотона) и отключаем quantum eraser. видим что частицы были - бежим к рычагам и включаем quantum eraser.

3. Что происходит?

раскрыть ветку 1
0

Вот я и написал этот пост в надежде, что мне объяснят, чего я не учёл.

0

Вот смотри, есть два носка. Как только ты надеваешь один из них на правую ногу, второй сразу же становится левым, вне зависимости от расстояния. То-же самое с запутанными фотонами. Они не передают ничего друг другу. Как только становится известно состояние одного из них, становится известным и состояние другого. Не более того.

раскрыть ветку 5
0

Вот в комментариях на ютубе ту же пургу несут.

Но это я понимаю прекрасно.

Но тут принцип совершенно другой.

Принципиально другой принцип.

Нам пофиг, правые носки или левые.

Мы раскидываем по комнате тысячу носков. И в зависимости от того, повёрнут ли рычаг в другой комнате, они кучкуются по-разному. Правые или левые - вообще по барабану.

раскрыть ветку 4
0

Они не меняют состояние от поворота рычага.

раскрыть ветку 3
Похожие посты
651

Легко понять, когда учитель умеет объяснять

Легко понять, когда учитель умеет объяснять Комментарии на Пикабу, Квантовая запутанность, Квантовая физика, Юмор, Носки

#comment_87710283

Легко понять, когда учитель умеет объяснять Комментарии на Пикабу, Квантовая запутанность, Квантовая физика, Юмор, Носки

Баянометр ругается на картинку - не обращайте внимания, картинка как предыстория.

Основное содержание поста в скриншоте комментариев.

432

Разгадан величайший парадокс квантовой механики

Разгадан величайший парадокс квантовой механики Физика, Квантовая физика, Парадокс, Наука, Ученые, Китай, Квантовая механика, Открытие

Китайские ученые успешно проверили гипотезу, называемую квантовым дарвинизмом, которая объясняет трудноразрешимые противоречия между квантовой механикой и классической физикой, в том числе парадокс кота Шредингера. Исследователи протестировали одно из основных положений концепции, согласно которому одно из состояний квантовой системы многократно «отпечатывается» в окружающей среде, с которой эта система взаимодействует. Об этом сообщает издание Science Alert.


Для объяснения, как возникает классическая физика, исследователи предположили существование особенно устойчивых к декогеренции состояний, называемых состоянием указателя (pointer states). Конкретное местоположение частицы или ее скорость, значение ее спина или поляризация могут быть зафиксированы как устойчивое положение стрелки на измерительном устройстве. Иными словами, взаимодействие с окружением разрушает одни состояния, а другие оставляет, например, положение частицы. Это называется суперселекцией, индуцированной средой.

Согласно второму условию квантового дарвинизма, способность человека наблюдать какое-либо свойство зависит от того, насколько хорошо оно «отпечатано» в окружающей среде. Ученые подсчитали, что частица пыли в один микрометр за одну микросекунду «отпечатается» в фотонах около ста миллионов раз, что и обуславливает ее классические свойства. Разные наблюдатели видят пылинку в одном и том же месте благодаря «копированию» информации о наиболее устойчивом состоянии (в данном случае местоположении).


Ученые создали квантовую систему (фотон) в искусственной среде, состоящей всего из нескольких частиц (других фотонов). Согласно предсказанию квантового дарвинизма, наблюдая только за средой, можно получить всю информацию о классическом поведении частицы. Результаты проверки этого положения показали совместимость наблюдаемых свойств с теорией. Однако для доказательства последней необходимы дальнейшие исследования.


Декогеренцией называют процесс, когда квантовая система, которая находится в состоянии суперпозиции (ее альтернативные состояния наложены друг на друга), начинает проявлять классические свойства. Именно поэтому кот Шредингера, который, согласно мысленному эксперименту, является одновременно живым и мертвым, при открытии коробки оказывается лишь в одном из двух альтернативных состояний. Квантовая система запутывается с окружающей средой, взаимодействуя с огромным числом атомов, в результате чего ее состояния прекращают быть наложенными друг на друга. Если окружающая среда состоит из миллиарда атомов, то декогеренция происходит почти мгновенно, а кот не может быть одновременно живым и мертвым на отрезке времени, который поддается измерению.

Так себе источник: https://m.lenta.ru/news/2019/07/25/quantum/amp/

Показать полностью
1722

Опубликован первый в истории снимок квантовой запутанности

Ученые из Университета Глазго (Шотландия) сообщили об уникальном эксперименте, во время которого им удалось запечатлеть на снимке квантовую запутанность. Их работа опубликована в журнале Science Advances.

Опубликован первый в истории снимок квантовой запутанности Квантовая физика, Квантовая запутанность, Ученые, Наука
Опубликован первый в истории снимок квантовой запутанности Квантовая физика, Квантовая запутанность, Ученые, Наука

Квантовая запутанность возникает в тот момент, когда две частицы становятся неразрывно связанными, — и то, что происходит с одной, сразу же влияет на другую, несмотря на расстояние между ними. Это явление столь странное, что еще великий физик-теоретик XX века Альберт Эйнштейн называл его «жутким действием на расстоянии».

В ходе эксперимента команда физиков создала систему, которая взорвала поток запутанных фотонов — элементарных частиц света. При создании фото ученые расщепили запутанные фотоны и пропустили один луч через кристалл бета-борат бария, вызывая четыре фазовых перехода.

Камера запечатлела момент, когда обе частицы сместились одинаково, хотя были разделены, тем самым наглядно подтвердив существование квантовой запутанности и нарушив неравенство Бэлла. Строго говоря, снимок составлен из нескольких изображений фотонов, переживающих серию фазовых переходов.


«Наш результат открывает путь к новым методам квантовой визуализации», — написали ученые.

Источник: https://advances.sciencemag.org/content/5/7/eaaw2563

Показать полностью
408

Является ли гравитация квантовой?

Перевод статьи с портала Scientific American.

Ссылки, по возможности, русифицированы.


Продолжающийся поиск гравитона – предполагаемой фундаментальной частицы, несущей гравитационную силу – это ключевой шаг физиков в долгом путешествии к «теории всего».

Является ли гравитация квантовой? Наука, Гравитация, Квантовая физика, Квантовая механика, Гравитационные волны, Гравитон, Длиннопост

Художественное представление гравитационных волн, создаваемых сливающимися нейтронными звездами. Ранняя Вселенная является еще одним источником гравитационных волн, которые, если их обнаружить, смогут помочь физикам разработать квантовую теорию гравитации. Р. Херт, Caltech-JPL.


Все фундаментальные силы Вселенной, как известно, следуют законам квантовой механики, кроме одной: гравитация. Открытие способа, позволяющего соотнести гравитацию с квантовой механикой, позволило бы ученым ближе подобраться к «теории всего», которая могла бы полностью объяснить работу космоса с самых основ. Важным первым шагом в этих поисках является обнаружение давно постулируемой элементарной частицы гравитации, гравитона. В поисках гравитона физики теперь обращаются к экспериментам с участием микроскопических сверхпроводников, свободно падающих кристаллов и послесвечения Большого взрыва – [реликтового излучения, прим. перев.].

Квантовая механика предполагает, что все сделано из квантов или порций энергии, которые могут вести себя и как частица, и как волна — например кванты света, называемые фотонами. Обнаружение гравитонов, гипотетических квантов гравитации, докажет, что гравитация является квантовой. Проблема заключает в том, что гравитация необычайно слаба. Чтобы непосредственно наблюдать мельчайшее воздействие гравитона на материю, здорово подметил физик Фримен Дайсон, детектор гравитона должен быть массивным настолько, что самостоятельно коллапсирует, образовав черную дыру.

«Одна из проблем всех теорий квантовой гравитации заключается в том, что их предсказания, как правило, практически невозможно экспериментально проверить», - говорит квантовый физик Ричард Норте из Делфтского технического университета в Нидерландах. «Это основная причина, по которой существует столько конкурирующих теорий и почему нам пока не удалось понять, как все на самом деле работает».

В 2015 году, однако, физик-теоретик Джеймс Квош на этот раз в Аделаидском университете в Австралии, предложил способ обнаружить гравитоны, воспользовавшись их квантовой природой. Квантовая механика предполагает, что вселенная по своей природе неопределенная, например, никогда нельзя точно знать положение и импульс частицы одновременно. Одним из следствий этой неопределенности является то, что вакуум никогда не бывает полностью пустым, а вместо этого гудит с «квантовой пеной» так называемых виртуальных частиц, которые постоянно появляются и исчезают. Эти призрачные сущности могут быть любыми квантами, включая гравитоны.

Десятилетия назад ученые обнаружили, что виртуальные частицы могут создавать силы, которые можно обнаружить. Например, эффект Казимира — притяжение или отталкивание между двумя зеркалами, расположенными близко друг к другу в вакууме. Эти отражающие поверхности движутся под действием силы, создаваемой виртуальными фотонами, мигающими и выходящими из существования. Предыдущие исследования показали, что сверхпроводники могут отражать гравитоны сильнее, чем нормальная материя, поэтому Квош вычислил, что поиск взаимодействия между двумя тонкими сверхпроводящими листами в вакууме может выявить гравитационный эффект Казимира. Результирующая сила должна быть примерно в 10 раз сильнее, чем ожидается от стандартного эффекта Казимира на основе виртуального фотона.

Недавно Норте и его коллеги разработали микрочип для проведения этого эксперимента. Этот чип содержал две микроскопические пластины с алюминиевым покрытием, которые охлаждались почти до абсолютного нуля, становясь сверхпроводящими. Одна пластина была прикреплена к подвижному зеркалу, после чего зеркало обстреливали лазером. Если бы пластины перемещались из-за гравитационного эффекта Казимира, частота света, отражающегося от зеркала, заметно бы изменялась. Как подробно описано 20 июля в журнале Physical Review Letters, ученые не смогли увидеть никакого гравитационного эффекта Казимира. Этот нулевой результат не обязательно исключает существование гравитонов и, следовательно, квантовую природу гравитации. Это скорее может означать, что гравитоны не взаимодействуют с сверхпроводниками так сильно, как это оценивали в предыдущих работах, говорит квантовый физик и лауреат Нобелевской премии Фрэнк Вильчек из Массачусетского технологического института, который не участвовал в этом исследовании и не удивлен его нулевыми результатами. Несмотря на это, Квач говорит, что «это была смелая попытка обнаружить гравитоны».

Является ли гравитация квантовой? Наука, Гравитация, Квантовая физика, Квантовая механика, Гравитационные волны, Гравитон, Длиннопост

Художественное представление эксперимента (Мориц Форш, Институт Нанонауки Кавли, Делфтский технический университет)

Хотя микрочип Норте не показал, является ли гравитация квантовой, другие ученые используют множество подходов к поиску гравитационных квантовых эффектов. Например, в 2017 году в двух независимых исследованиях было показано, что если гравитация является квантовой, то она может создавать связь, известную как «запутанность» между частицами, так, что одна частица мгновенно воздействует на другую, где бы она ни находилась в космосе. Маленький эксперимент с использованием лазерных лучей и микроскопических алмазов мог бы помочь в поиске такой гравитационной запутанности. Кристаллы содержались бы в вакууме, чтобы избежать столкновений с атомами, поэтому они могли бы взаимодействовать друг с другом только по гравитации. Ученые позволили бы этим алмазам одновременно падать, и, если гравитация является квантовой, то гравитационное притяжение, которое каждый кристалл оказывает на другого, может запутать их вместе.

Исследователи будут искать запутанность, направляя лазеры в сердце каждого алмаза после броска. Если частицы в центрах кристаллов будут вращаться в одну сторону, то они будут флуоресцировать, если же частицы будут вращаться в другую сторону, то флуоресценции не будет. Если вращения в обоих кристаллах синхронны чаще, чем предсказывает вероятность, то это говорит о запутанности. «Экспериментаторам всего мира любопытно принять вызов», - говорит исследователь квантовой гравитации Анупам Мазумдар из Гронингенского университета в Нидерландах, соавтор одного из исследований запутанности.

Другая стратегия поиска доказательств для квантовой гравитации — это взгляд на космическое микроволновое фоновое излучение, слабое послесвечение Большого Взрыва, утверждает космолог Алан Гут из M.I.T. Кванты, такие как гравитоны, флуктуируют подобно волнам, а самые короткие длины волн будут иметь наиболее интенсивные флуктуации. Когда космос колоссально расширился в размерах в течение секунды после Большого взрыва, в соответствии с широко поддерживаемой космологической моделью Гута, известной как инфляционная модель, эти короткие длины волн растянулись бы до более длинных по всей Вселенной. Такое свидетельство квантовой гравитации может быть увидено как завихрения в поляризации или выравнивании фотонов космического микроволнового фонового излучения - [также реликтового излучения, прим. перев].

Однако, интенсивность узоров этих завихрений, известных как B-моды, во многом зависит от энергии и времени инфляции. «Некоторые версии инфляции предсказывают, что эти B-моды должны быть найдены в ближайшее время, в то время как другие версии предсказывают, что B-моды настолько слабы, что никогда не будет никакой надежды обнаружить их», - говорит Гут. «Но, если они будут найдены, и свойства будут соответствовать ожиданиям от инфляции, это будет очень убедительным доказательством того, что гравитация квантована».

Еще один способ выяснить, является ли гравитация квантовой — смотреть прямо на квантовые флуктуации в гравитационных волнах, которые, как полагают, состоят из гравитонов, появившихся вскоре после Большого взрыва. Лазерно-интерферометрическая гравитационно-волновая обсерватория (LIGO) впервые обнаружила гравитационные волны в 2016 году, но она недостаточно чувствительна для обнаружения флуктуирующих гравитационных волн в ранней вселенной, инфляция которой растянулась до космических масштабов, утверждает Гут. Гравитационно-волновая обсерватория в космосе, такая как Лазерно-интерферометрическая космическая антенна (LISA), потенциально может обнаружить эти волны, добавляет Вильчек.

Является ли гравитация квантовой? Наука, Гравитация, Квантовая физика, Квантовая механика, Гравитационные волны, Гравитон, Длиннопост

Художественное представление одного из спутников LISA

Однако в статье, недавно принятой журналом «Classical and Quantum Gravity», астрофизик Ричард Лиу из Университета Алабамы в Хантсвилле утверждает, что LIGO уже должна была обнаружить гравитоны, если они несут столько энергии, сколько предполагают некоторые современные модели физики частиц. Может быть, гравитон просто содержит меньше энергии, чем ожидалось, но Лиу предполагает, что это также может означать, что гравитона не существует. «Если гравитона вообще не существует, это будет хорошей новостью для большинства физиков, поскольку у нас при разработке теории квантовой гравитации было ужасное время», - говорит Лиу.

Тем не менее, разработка теорий, которые исключают гравитон, может быть не проще, чем разрабатывать теории, которые его учитывают. «С теоретической точки зрения, очень трудно представить себе, как гравитацию можно было бы квантовать», - говорит Гут. «Я не знаю никакой разумной теории о том, как классическая гравитация может взаимодействовать с квантовой материей, и я не могу себе представить, как такая теория может работать».

Показать полностью 2
341

Ученые хотят выяснить, являемся ли мы квантовыми компьютерами

Ученые хотят выяснить, являемся ли мы квантовыми компьютерами Квантовый компьютер, Компьютер, Длиннопост, Квантовая запутанность, Квантовая физика

Есть гипотеза, точнее множество гипотез, согласно которым наш мозг представляет собой не что иное, как биохимический квантовый компьютер. В основе этих идей лежит предположение о том, что сознание необъяснимо на уровне классической механики и может быть объяснено только с привлечением постулатов квантовой механики, явлений суперпозиции, квантовой запутанности и других. Ученые из Калифорнийского университета в Санта-Барбаре через серию экспериментов решили выяснить - действительно ли наш мозг является квантовым компьютером.

На первый взгляд может показаться, что компьютер и мозг работают одинаково – оба обрабатывают информацию, могут ее сохранять, принимают решения, а также имеют дело с интерфейсами ввода и вывода. В случае мозга этими интерфейсами выступают наши органы чувств, а также способность управлять различными объектами, не являющимися частью нашего тела, например, искусственными протезами.

Мы многого не знаем о том, как работает наш мозг. Но есть люди, которые считают, что многообразие процессов работы нашего мозга, которое невозможно объяснить с точки зрения классической механики, можно объяснить с позиции квантовой механики. Другими словами, они уверены, что такие аспекты квантовой механики, как квантовая запутанность, явление суперпозиции и все остальные вещи, на основе которых работает квантовая физика, на самом деле могут управлять процессами работы нашего мозга. Разумеется, не все согласны с такой формулировкой, но так или иначе ученые решили это проверить.
Немного базовой теории. В мире квантовых вычислений все подчиняется квантовой механике, позволяющей объяснить поведение и взаимодействие самых крошечных объектов во Вселенной - на квантовом уровне, где не действуют правила классической физики. Одной из ключевых особенностей квантовых вычислений является использование так называемых кубитов (квантовых битов) в качестве носителя информации. В отличие от обычных битов, которые используются в обычных компьютерах и представляют собой двоичный код в виде «нулей» и «единиц», кубиты могут одновременно приобретать значения и нуля, и единицы, то есть находиться в так называемой суперпозиции, которая упоминалась выше.

Если исходить из вышеописанного, то квантовые компьютеры обещают просто невероятный потенциал в компьютерных вычислениях, который позволит справляться с задачами (в том числе и в науке), на которые не способны даже самые мощные, но при этом обычные компьютеры.

Что же касается нового исследования ученых из Калифорнийского университета, которое вот-вот начнется, то оно будет направлено на поиск «мозговых кубитов».

Одной из основных особенностей «обычных» кубитов является то, что для их работы требуется среда с очень низкой температурой, приближающейся к абсолютному нулю, однако исследователи предполагают, что это правило может не распространяться на кубиты, которые могут находиться в человеческом организме.

В рамках одного из грядущих экспериментов ученые постараются выяснить, можно ли хранить кубиты внутри спина атомного ядра, а не среди электронов, которые его окружают. В частности, объектом исследования должны будут стать атомы фосфора - вещества, содержащегося в наших организмах, - по мнению ученых, способных играть роль биохимических кубитов.
В рамках других экспериментов ученые хотят взглянуть на потенциал декогеренции, которая происходит в результате нарушения связей между кубитами. Во время протекания этого процесса у самой квантовой системы начинают появляться классические черты, которые соответствуют информации, имеющейся в окружающей среде. Другими словами, квантовая система начинает смешиваться или запутываться с окружающей средой. Для того чтобы наш мозг можно было рассматривать в качестве квантового компьютера, в нем должна иметься система, которая позволяла бы защищать наши биологические кубиты от этой декогеренции.

Задачей еще одного эксперимента станет исследование митохондрий – клеточных субъединиц, отвечающих за наш метаболизм и передачу энергии внутри нашего организма. Ученые предполагают, что эти органеллы могут играть существенную роль в квантовой запутанности и обладать квантовой связью с нейронами.

В общем и целом нейромедиаторы (активные химические вещества, с помощью которых происходит перенос электрохимических импульсов) между нейронами и синаптические связи, возможно, создают в нашем мозге объединенные квантовые сети. Фишер и его команда хотят это проверить, попытавшись воспроизвести такую систему в лабораторных условиях.

Процессы квантовых вычислений, если они действительно присутствуют в нашем мозге, помогут нам объяснить и понять самые загадочные его функции, например, его способность переводить память из кратковременной в долговременную, или же приблизиться к понимаю вопросов о том, откуда же на самом деле берутся наши сознание, осознание и эмоции.

Все это – очень высокий уровень, очень сложная физика, наряду с биохимией, поэтому здесь никто не будет гарантировать, что мы сможем получить все ответы на поставленные выше вопросы. Даже если окажется, что мы пока еще не достигли нужного уровня, который позволил бы нам ответь на вопрос о том, является ли наш мозг квантовым компьютером, запланированные исследования могут привнести большой вклад в понимание того, как работает самый сложный орган человека.

Показать полностью
500

Квантовый эксперимент в космосе доказал: реальность - это вопрос личного выбора

Команда физиков провела необычный эксперимент с космическим спутником и выяснила, что благодаря квантовой механике прошлое может определяться настоящим, а принцип причинно-следственных связей ставится под сомнение.


Необычный космический эксперимент подтвердил, что, как и утверждает квантовая механика, реальность — это то, что выбрал сам человек. Физикам давно было известно, что квант света (фотон) будет вести себя как волна и как частица в зависимости от того, как именно ученые измеряют ее. Теперь же, успешно отразив фотон от орбитального спутника, команда исследователей подтвердила, что наблюдатель может решить этот вопрос даже тогда, когда световой квант уже прошел через «точку принятия решений». По словам ученых, подобные эксперименты с отложенным выбором в будущем позволят исследовать границы между квантовой теорией и теорией относительности.


Подобный эксперимент уже проводился в лабораторных условиях, однако на этот раз исследователи доказали, что природа фотона остается неопределенной даже если частице приходится преодолевать тысячи километров. Филипп Гранджи, физик из Института оптики в Палесо, Франция, который в прошлом как раз принимал участие в лабораторном эксперименте, утверждает, что подобные опыты отлично подходят для «осуществления квантовой физики в космосе».


Квантовый дуализм: может ли настоящее определять прошлое?


Так в чем же суть опыта? Напомним, что фотон может проявлять свойства или частицы, или волны, в зависимости от того, какой метод измерения предпочитают ученые. В конце 1970-х годов знаменитый теоретик Джон Арчибальд Уилер понял, что экспериментаторы могут отложить свой выбор до тех пор, пока фотон почти полностью не пройдет сквозь устройство, настроенное на то, чтобы подчеркнуть то или иное свойство частицы. Это показывает, что поведение фотона в данном случае не предопределено. Чтобы проверить свою гипотезу, Уилер предложил по одиночке пропускать фотоны через так называемый интерферометр Маха-Цендера, подчеркивающий волновую природу света. Благодаря зеркальному «расщепителю лучей», устройство разделяет квантовую волну входящего светового потока на две части и направляет их по двум разным путям. После этого второй расщепитель рекомбинирует волны, что вызывает состояние интерференции и активирует два детектора. То, какой детектор поймает сигнал первым, зависит от разницы длин двух световых потоков — ожидаемое поведение для интерферирующих волн.

Квантовый эксперимент в космосе доказал: реальность - это вопрос личного выбора Наука, Квантовая механика, Эксперимент, Квантовая запутанность, Физика, Фотон, Длиннопост

Но что, если второй разделитель попросту удалить из системы? В таком случае свет перестает проявлять свойства волны: первый разделитель просто отправит фотон по тому или иному направлению, как обычную частицу. А поскольку эти пути пересекаются там, где раньше был второй разделитель, детекторы сработают с одинаковой вероятностью, вне зависимости от длины пройденного фотоном пути. Уилер же предлагает удалить вторую часть устройства уже после того, как первая расщепит световой поток. Это звучит странно, поскольку создает парадокс: решение, принятое в настоящем времени (убрать или не убрать второй разделитель) определяет событие прошлого (расщепляется ли фотон как волна или же проходит по одной траектории как частица). Современная квантовая теория избегает комментариев по этому поводу, предполагая, что до самого факта измерения фотон остается как частицей, так и волной.


Новый эксперимент: путешествие в космос и обратно


Новая команда исследователей во главе с Франческо Ведовато и Паоло Виллорези из Университета Падуи в Италии провела свою версию эксперимента с использованием 1,5-метрового телескопа в Лазерной обсерватории «Матера» на юге Италии. Идея была в том, чтобы отправить фотоны в космос, после чего те отразятся от спутника. Дело в том, что, как отмечает Виллорези, на таких огромных расстояниях физики не могут провести свет двумя идеально параллельными путями — расширяющиеся в пространстве лучи будут неизбежно сливаться и перекрывать друг друга. Вместо этого они пропускают фотон через интерферометр Маха-Цендера на Земле, настроенный на траектории выхода разной длины. Разница между импульсами составляет 3,5 наносекунды, а сами вылетающие частицы телескоп выпускает в небо.


Как только импульсы отразятся от спутника и вернутся на нашу планету, физики снова пропускают его через интерферометр. Устройство при этом может отметить или временной сдвиг (что означает, что импульсы перекрыли друг друга и фотон повел себя как волна), или его отсутствие (то есть фотоны ведут себя как частицы). Когда импульсы в первый раз покидают устройство, они обладают различной поляризацией. Чтобы отметить сдвиг во времени, физики сначала должны провести очень быструю электронную реполяризацию, а чтобы доказать его отсутствие, достаточно просто не проводить никаких манипуляций.


В результате все прошло так же, как и в лабораторных условиях. Когда на фотоны воздействовали ученые, кванты света вели себя как волны; когда их оставляли в покое — как частицы. Таким образом, физики сами решали природу света уже после (!) того, как тот отразится от спутника и будет на полпути обратно, о чем и рассказали на страницах журнала Science Advances.


Значение и критика эксперимента


Сам по себе эксперимент пусть и не является идеально точным и строгим отображением идеи Уилера, все же заслуживает внимания. Это отличный пример работы принципов «квантовой оптики» и в будущем подобные открытия могут оказать огромное влияние на технологии связи. За примером далеко ходить не надо: уже в мае 2017 года китайские физики использовали спутник для создания квантовой связи (т. н. «квантовой запутанности») между двумя фотонами, отправленными в разные города, значительно отстоящие друг от друга.


Строго говоря, эксперимент все же не нарушает причинно-следственные связи. Следует выразиться точнее: он проливает определенный свет на границу, разделяющую квантовую теорию и теорию относительности. Фактически, физикам удалось доказать, что измерения в настоящем может значительно повлиять на прошлое — вернее, на то, как человек воспринимает это самое прошлое. По словам Жан-Франсуа Роха, физика в Высшей школе стандартизации в Париже, который в 2007 году провел аналогичный, но более точный тест, в данном случае речь идет о малоизученной области физики, в которой две фундаментальные теории вступают во взаимодействие и порождают нечто совершенно новое.



https://www.popmech.ru/science/394092-kvantovyy-eksperiment-...

Показать полностью 1
71

Загадка наблюдателя: 5 знаменитых квантовых экспериментов

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов — медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики — объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

(С) https://theoryandpractice.ru/posts/8507-quantum-experiment

Если было интересно, то продолжу, ибо ещё 4 эксперимента :)

339

Квантовые шахматы

Квантовые шахматы Физика, Квантовая физика, Шахматы, Квантовая суперпозиция, Квантовая запутанность

Я недавно написал свою реализацию квантовых шахмат. Для тех, кто не в курсе – это модификация обычных шахмат, добавляющая на шахматную доску законы квантовой механики.


Фигуры могут находиться на нескольких клетках одновнеменно; быть одновременно живыми и мёртвыми, как кот Шредингера; проходить "сквозь" друг друга; находиться в состоянии квантовой запутанности и мгновенно коллапсировать при измерении. Чтобы выиграть, нужно съесть вражеского короля.


Подробное описание и правила игры см. на geektimes:

https://geektimes.ru/post/287024/


Альфа-версия хостится по вот этому адресу:

https://truly-quantum-chess.sloppy.zone



**Важно:** чтобы сделать квантовый ход, нажимаем два раза подряд на фигуру (она подсвечивается фиолетовым).


Там можно поиграться самому с собой, либо отправить ссылку на доску другу и сыграть партию.


Цель проектика – обеспечить возможность "прочувствовать" эффекты квантовой механики на таком известном предмете как шахматная доска. Ну и просто for fun, конечно.


Прошу не придираться к интерфейсу (он, хоть и на мой взгляд довольно удобный, не без недостатков). Изменять интерфейс у меня сейчас нет времени.

Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: