Как организм реагирует на приближение зимы и можно ли ему как-то помочь

Как организм реагирует на приближение зимы и можно ли ему как-то помочь Биоритмы, Осень, Зима, Режим, Организм, Здоровье, Длиннопост

По мере сокращения светового дня многие животные впадают в спячку, а люди начинают чувствовать себя сонными и унылыми. Как это связано с недостатком солнечного света? И значит ли это, что физиологически мы слабеем зимой? «Чердак» составил краткий путеводитель по биологическим ритмам человека и рассказывает, отчего и куда они могут сдвинуться.

Биоритмы — это смена сна и бодрствования?

Не совсем. Биоритм (или циркадный ритм) — это цикл, по которому физиологические процессы в организме сменяют друг друга. Привычный нам цикл сна и бодрствования — это циркадный ритм центральной нервной системы. Но часики тикают и на более глубоких уровнях. Например, около 10% генов, экспрессирующихся в каждой клетке организма, делают это циклично (то есть пик экспрессии приходится на определенное время суток). При этом только 1-3% этих генов общие у клеток разных типов, скажем печени и сердца, остальные отвечают за специфические для конкретного органа функции.

Разница между днем и ночью известна каждой клетке нашего организма. Во-первых, днем на них действует ультрафиолетовое излучение, а значит, копятся повреждения ДНК. Это особенно актуально для клеток кожи, которым было бы выгоднее делиться ночью, чтобы не множить мутации. Во-вторых, днем клетки получают больше еды. Именно поэтому и делиться им приходится тоже в светлое время суток, несмотря на опасность. В-третьих, днем большинство наших органов работает интенсивнее — сосуды, мышцы, почки, печень. Поэтому клеткам удобен режим, при котором днем активны одни гены, а ночью — другие.

И мозг все их контролирует?

Это тоже не совсем так. У каждой клетки есть собственный циркадный ритм — периферические часы, за открытие которых в 2017 году вручили Нобелевскую премию по физиологии и медицине. Если кратко, они устроены так: есть гены-активаторы, а есть гены-репрессоры. Первые активируют вторых, а вторые кодируют белки-репрессоры. Когда белков накапливается достаточно много, они полностью останавливают работу генов-активаторов. Но постепенно белки-репрессоры распадаются, и тогда снова начинают экспрессироваться гены-активаторы. Таким образом, система регулирует сама себя. Гены-активаторы и гены-репрессоры запускают работу других генов, переводя клетку в «дневной» или «ночной» режим.

Почему возникает рассинхронизация и чем это грозит?

Большинство клеток организма сидит в нашем теле глубоко и света белого не видит. Поэтому о времени суток им приходится судить по косвенным свидетельствам, например по температуре окружающей ткани и наличию еды. В зависимости от того, насколько хорошо топят и как давно последний раз кормили, клетка «подкручивает» свои часы. Поэтому, когда мы начинаем есть или заниматься физкультурой по ночам, периферические биоритмы перестраиваются. Клеточное утро наступает ночью, а к настоящему утру активность падает. И когда снова появляется еда, уже запланированная, клетка оказывается не готова ее поглощать и переваривать.

Как синхронизировать всех обратно?

Для этого нужны центральные часы, те самые, которые работают в мозге. Роль часов играет группа (около 20 тысяч) нейронов, расположенных в супрахиазматическом ядре гипоталамуса. В каждом из нейронов работают свои периферические часы (гены-активаторы и гены-репрессоры), но импульсы, которые они могут самостоятельно генерировать, довольно слабые. Под действием света активируются другие нейроны — в сетчатке глаза, которые посылают сигнал в гипоталамус и стимулируют нейроны центральных часов, в результате чего импульсы становятся сильнее. Все эти 20 000 клеток замкнуты в сеть, которая обеспечивает чистоту сигнала и четкую периодичность.

На выходе центральные часы генерируют импульс, который сигнализирует организму о времени суток. Мы пока точно не знаем, чем именно отличаются дневные сигналы от ночных — только ли силой, или частотой, или чем-то еще, но можно представить себе часы, которые днем бьют громко, а ночью тикают еле слышно. На сигнал реагируют разные отделы мозга. Один из них — эпифиз, или шишковидная железа — под действием импульса перестает выделять мелатонин, который мы знаем как «гормон сна». А дальше наличие/отсутствие мелатонина вместе с сигналами вегетативной нервной системы (которая управляет активностью внутренних органов) стимулируют или тормозят работу генов в отдельных клетках.

Что с нашими ритмами станет зимой?

Многие люди жалуются на бессонницу в середине зимы (midwinter insomnia). Это больше характерно для северных широт, в частности для России (81% мужчин и 77% женщин!). Полагают, что дело в отсутствии четкого светового стимула утром: вставать приходится затемно, организм раскачивается медленно и циркадный ритм сдвигается вперед, поэтому спать начинает хотеться позже, отсюда и бессонница.

Впрочем, это зависит и от места жительства. В больших городах ритмы в целом чаще сдвинуты вперед, чем в сельской местности, из-за искусственного освещения. Этот эффект воспроизводится и у племен охотников и собирателей Аргентины, которые получают доступ к электрическому свету. Поэтому жители крупных городов могут не так сильно заметить перемены.

Я «сова» и привык жить в темноте. Мне будет проще зимой?

Как ни печально это звучит, «совам» вообще по жизни сложнее. У этих людей поздние ритмы определяются генетически: их белок-репрессор отличается от такового у «жаворонков», поэтому распадается в цитоплазме с другой скоростью. В результате цикл норовит «уехать» подальше. А учитывая, что «совы» в среднем встают позже, то слабее реагируют на утренние световые стимулы. И ритмы получаются в целом менее устойчивыми. Поэтому «совы» чаще подвержены различным заболеваниям вроде диабета и ожирения, им бывает сложнее учиться или водить машину, и среди них чаще встречаются люди с неустойчивой психикой.

Источник Чердак

Бессонница связана с разрушением белого вещества мозга

Как помочь организму пережить зиму