Физики создают настраиваемую систему для улучшенного квантового зондирования!
Типичный эксперимент со столешницей. Размер более или менее соответствует размеру обычного обеденного стола.
Учёные из Института Нильса Бора в Копенгагенском университете создали новую настраиваемую систему, которая поможет делать измерения намного точнее. Эта разработка может быть полезна во многих областях — от изучения космоса до диагностики болезней в нашем теле. Результаты работы опубликованы в авторитетном журнале Nature.
Сегодня технологии, основанные на измерениях с помощью света, уже широко используются. За последние годы учёные приблизились к пределу точности, который называется стандартным квантовым пределом. Этот предел связан с тем, что при очень точных измерениях всегда появляется некоторый шум — небольшие помехи, которые нельзя полностью убрать обычными способами.
Чтобы преодолеть этот предел и сделать измерения ещё более точными, нужны специальные квантовые технологии. Например, можно использовать «сжатый свет» — особый свет, в котором уменьшен шум, или «запутанность» — уникальное квантовое явление, при котором частицы связаны между собой особым образом.
Обычно такие квантовые эффекты наблюдаются в очень маленьких системах, например, с отдельными атомами или фотонами. Но новая система учёных из Института Нильса Бора впервые использует запутанность на большом уровне — с большим количеством фотонов и большим числом атомов, объединённых в так называемый спиновый ансамбль.
Это сочетание позволяет динамически уменьшать шум в широком диапазоне частот — то есть делать измерения точными и надёжными для разных задач. Это очень важно, например, для обнаружения гравитационных волн — слабых колебаний в пространстве-времени, которые возникают при столкновениях чёрных дыр или нейтронных звёзд.
Как это работает? Сжатый свет проходит через группу атомов, которые меняют его свойства в зависимости от частоты. Благодаря этому шум уменьшается по-разному на разных частотах, что позволяет получить более чистый сигнал. Кроме того, атомы могут «переключать» шум с положительного на отрицательный, что ещё сильнее снижает помехи.
Профессор Юджин Ползик объясняет, что датчик и атомы взаимодействуют с двумя запутанными световыми лучами. После этого сигналы от них объединяются, и получается очень точное измерение, которое превосходит традиционные ограничения.
Ещё одно важное преимущество этой системы — её компактность. Раньше для таких точных измерений нужны были огромные установки: например, детекторы гравитационных волн, как LIGO в США, используют оптические резонаторы длиной сотни метров. Для будущих проектов, таких как телескоп Эйнштейна в Европе, понадобятся ещё более длинные резонаторы — километровые. Новая система же может работать на небольшой лабораторной установке, что значительно упрощает её использование.
Эта технология может применяться в разных сферах. Например, в медицине она поможет улучшить качество магнитно-резонансной томографии (МРТ), что позволит раньше обнаруживать болезни мозга и другие заболевания. Также она повысит чувствительность биосенсоров, используемых для диагностики.
В космосе эта система поможет лучше улавливать гравитационные волны — слабые сигналы, которые рассказывают нам о событиях, происходящих в далёкой Вселенной, и помогут понять, как формировалась наша галактика и сама Вселенная.
Кроме того, разработка может быть полезна в квантовых коммуникациях и вычислениях. Её можно использовать для создания квантовых ретрансляторов — устройств, которые усиливают сигналы для безопасной передачи данных на большие расстояния, а также для квантовой памяти — хранения информации в квантовых сетях.
В целом, новая система учёных из Института Нильса Бора — это универсальный и компактный инструмент, который открывает новые возможности для точных измерений и квантовых технологий в самых разных областях.

Край Будущего
968 постов348 подписчиков
Правила сообщества
Запрещено: Спам, Мат, Унижение, Политика!