Если нарисовать 65537-угольник с длиной одной стороны 1 см, то его диаметр будет больше 200 м.
Если нарисовать 65537-угольник с длиной одной стороны 1 м, то разница между радиусами его вписанной и описанной окружностей (диаметр каждой из которых будет около 10 км) составит всего лишь около 0,024 мм.
Если нарисовать 65537-угольник диаметром 20 см, то длина одной его стороны окажется менее одной десятой толщины самого тонкого человеческого волоса.
Имеется апокрифическая байка о том, как сверхстарательному аспиранту было предложено построить в своей диссертации 65 537-угольник, после чего тот появился вновь лишь двадцать лет спустя. Реальность почти столь же курьезна: Ж. Эрмес из Лингенского университета посвятил этой задаче десять лет, закончив ее в 1894 году; его неопубликованная работа хранится в Геттингенском университете. К сожалению, Джон Хортон Конуэй — быть может, единственный из математиков нашего времени, когда-либо взглянувший на эти документы, — сомневается, что там все верно.
(с) Стюарт Иэн - "Истина и красота. Всемирная история симметрии."
Я думал, он просто на доске нарисует круг и скажет, что толщина мела не позволяет изобразить мелкие детали.
Если нарисовать 65537-угольник с длиной одной стороны 1 см, то его диаметр будет больше 200 м.
Если нарисовать 65537-угольник с длиной одной стороны 1 м, то разница между радиусами его вписанной и описанной окружностей (диаметр каждой из которых будет около 10 км) составит всего лишь около 0,024 мм.
Если нарисовать 65537-угольник диаметром 20 см, то длина одной его стороны окажется менее одной десятой толщины самого тонкого человеческого волоса.
Этим аспирантом был Альберт Эйнштейн.
Пф. Неправильная толщина линий. Идите переделывайте.
Имеется апокрифическая байка о том, как сверхстарательному аспиранту было предложено построить в своей диссертации 65 537-угольник, после чего тот появился вновь лишь двадцать лет спустя. Реальность почти столь же курьезна: Ж. Эрмес из Лингенского университета посвятил этой задаче десять лет, закончив ее в 1894 году; его неопубликованная работа хранится в Геттингенском университете. К сожалению, Джон Хортон Конуэй — быть может, единственный из математиков нашего времени, когда-либо взглянувший на эти документы, — сомневается, что там все верно.
(с) Стюарт Иэн - "Истина и красота. Всемирная история симметрии."