6

Не повредит ли компьютеру постоянная работа?

оригинал статьи расположен здесь.

http://distributed.org.ua/index.php?go=distribredir&url=...


Существуют аргументы как за, так и против, поэтому решать вам придется самостоятельно.

Среднее время между сбоями постоянно работающих жестких дисков составляет 10 лет, и обычно диск или умирает через несколько месяцев, или продолжает работать практически вечно. Для большинства жестких дисков их включение и выключение приводит к большему ущербу, чем круглосуточная работа. Мне известны некоторые случаи, когда старое оборудование (десятилетней давности файл-серверы), выключалось в процессе подготовки к встрече ошибки 2000 года. Увеличившаяся нагрузка на диски при их включении затем привела к выходу дисков из строя.


Частота обращений к диску на самом деле имеет мало отношения к его сбоям. Большинство дисков, ломавшихся на моих машинах, были предназначены для резервного копирования и использовались относительно редко.


Большинство людей сейчас пришло к выводу, что простейший способ обеспечения надежной работы компьютерной техники - поставить компьютер в холодное место с низкой влажностью и оставить его там постоянно включенным. Нагрузки при старте гораздо опаснее чем обычное использование. На мой взгляд, основными факторами продолжительности жизни жестких дисков, являются фоновые вибрации, влажность и охлаждение.


На самом деле постоянно работающий компьютер имеет чуть МЕНЬШЕ (НАСКОЛЬКО - по прежнему активно обсуждается экспертами) шансов на выход из строя, поскольку он не испытывает бросков питания при запуске, и ему не нужно раскручивать диски.


Раскручивание дисков с нуля - наиболее критичное время в жизни жестких дисков, поскольку, в зависимости от конкретного диска, для раскрутки диска может потребоваться чуть ли не стократное количество энергии по сравнению с поддержкой вращения в холостом режиме (это в худшем случае, обычное соотношение - 3-5 раз). Внезапный сбой в источнике питания в этот момент сам по себе может вызвать сбой всей системы.

В то же время, держать постоянно включенным ноутбук - не такая уж хорошая идея, они не проектируются для постоянной работы. У большинства нет достаточного охлаждения, и они гораздо нежнее стандартных компьютеров.


Большинство сбоев в полупроводниках происходит из-за медленного рассеивания атомов примесей в кристаллической матрице подложки (кремния/германия). Степень рассеивания увеличивается с температурой, и даже при использовании охлаждающих вентиляторов это происходит быстрее в случае работающей машины.


У меня есть и хорошие новости: этот эффект обычно минимальный, и у машины гораздо больше шансов просто морально устареть, чем сломаться при круглосуточной работе.

Как кто-то упоминал, избыточный ток вбивает примеси из N-слоя в P-слой полупроводника в месте их соединения, что может привести к выводу транзистора из строя. Я читал, что это может произойти за пару лет использования процессора в режиме агрессивного разгона, или за 10 и более лет в штатном режиме. Если вы используете разогнанный процессор, но только изредка используете его на полную мощь, он проживет дольше. Linux и некоторые другие операционные системы используют инструкцию halt в своем цикле простоя для перевода процессора в ждущий режим с низким потреблением энергии.


Постоянная работа клиента не обязательно приведет к поломке машины быстрее, чем ее работа в режиме простоя. Режим простоя означает только то, что процессор перегоняет через свои регистры нули, но по-прежнему выполняет какие-то команды, хотя и ничего не делающие.


Озаботился ли кто-нибудь взглянуть на дополнительную нагрузку процессора, на котором не запущен клиент? Например, рассмотрим сервер, который обычно простаивает, но периодически получает порцию работы. Процессор на этом сервере должен быть холодным в промежутке между заданиями, потом быстро разогревается при начале работы и охлаждается при ее завершении. Всевозможные колебания температуры в процессе этих циклов нагрева/охлаждения увеличивают термонагрузку на процессор. Эти удары могут вызвать мелкие сбои в микросхеме, которые в какой-то момент могут привести к обрыву серьезной цепи и выходу процессора из строя. При работе клиента процессор постоянно занят, так что колебания температуры минимальны.


Мой опыт работы показывает, что сбои в полупроводниках гораздо чаще происходили в местах контактов, и вызывались скорее термической усталостью, а постоянно высокой температурой. Возможно, за эти годы контакты значительно улучшились - да их не так уж и много осталось в современной технике. Любое оборудование, которое я хочу сохранить работающим, просто постоянно включено. На мой взгляд, большинство сбоев в электронике происходит из-за нагрузок при включении/выключении.


Я подозреваю, что в первую очередь потенциальным местом для сбоем в компьютерной системе должны быть ее механические составляющие, такие как жесткий диск или блоки питания.


Микросхемы, успешно пережившие период "детской смертности" (обычно 48 часов), должны прожить 10-20 лет вне зависимости от того, что с ними делают. На них не должны значительно влиять температурные колебания, и примеси не должны существенно рассеиваться при типичных температурах переходов порядка 100°C.


Два основных механизма сбоя работающих микросхем - инжекция горячих электронов и электромиграция. Горячие электроны возникают при переключении состояния транзисторов. Они вынуждают заряд оставаться в затворе транзистора, в конце концов (через многие годы) меняют поведение транзистора и приводят к его выходу из строя.


Постоянная работа вашей системы ускоряет ее смерть по этой причине. Однако, как я уже заметил, я считаю, что гораздо раньше выйдут из строя другие компоненты. Степень этой инжекции также пропорциональная напряжению и частоте, на которой работает процессор, так что на нее можно повлиять разгоном. Электромиграция происходит при слишком высокой концентрации проводников. Поток электронов может сместить металл проводников так, что в конце концов вызовет короткое замыкание. Обычно это происходит только в плохо спроектированных цепях и не должно нас волновать.


Я также встречал сбои, вызванные случайными специфичными дефектами микросхем. Однако, причиной их смерти не были ни температурные колебания, ни электрические поля. Большинство этих дефектов выявляются на этапе "детской смертности".

Автор не оставил комментариев в своем посте