1

Как фальшивые ИИ-статьи проходят ИИ-рецензирование с долей принятия до 82%

Было много шума про мусорные ИИ-статьи в научных журналах, но новое исследование с arXiv бьёт в самое сердце. Авторы создали BadScientist - фреймворк, где ИИ генерирует статьи-фальшивки без единого реального исследования и являются сфабрикованными.

Использовали пять приёмов:

  • TooGoodGains - завышают метрики до неправдоподобных цифр;

  • BaselineSelect - подбирают слабые базовые модели (бенчмарки) для сравнения;

  • StatTheater - рисуют идеальные графики и p-значения;

  • CoherencePolish - шлифуют текст до академического блеска;

  • ProofGap - прячут тонкие ошибки в доказательствах.

Тестировали на GPT-5 (генерация) и o3, o4-mini, GPT-4.1 (рецензия), калибруя пороги по данным с конференции по машинному обучению ICLR 2025. Результат: 82 % фальшивок приняты! ИИ-рецензенты фиксируют подозрительные моменты - странные данные, логические провалы, но пропускают через свой фильтр.

При одновременном применении всех пяти приёмов детекция остаётся слабой: статья остается максимально «убедительной» - сочетает нереальные приросты, подтасованные сравнения, идеальные визуалы, безупречный стиль и скрытые логические дыры.

На последнем этапе добавили ReD (рецензия + детекция) и DetOnly (только детекция) - точность получилась выше 50 %, но не статистически приемлемой.

  • ReD: обычный анализ + обязательная бинарная метка «фабрикация/нет» + цитаты-доказательства. Увеличивает замечания (с 57,3 % до 86 %), но парадоксально повышает принятие (с 28 % до 44 %), потому что сигналы целостности не влияют на итоговый балл.

  • DetOnly: только детекция без рецензии. Средняя точность 45-67 %, что лишь на 5-17 % лучше случайной вероятности в 50%.

Авторы предлагают внедрять многоуровневую защиту:

  • проверка происхождения - обязательная верификация кода, данных, репозиториев;

  • учитывать маркеры достоверности - если рецензент ставит маркер риска в достоверности/добросовестности, его балл снижается или блокирует принятие;

  • обязательный человеческий надзор - старший редактор/рецензент-человек проверяет все статьи с маркерами.

Без этого научные журналы превратятся в свалку убедительных, но пустых работ. И это не будущее - это уже происходит.

Ссылка на статью

Искусственный интеллект

4.8K постов11.4K подписчика

Правила сообщества

ВНИМАНИЕ! В сообществе запрещена публикация генеративного контента без детального описания промтов и процесса получения публикуемого результата.


Разрешено:


- Делиться вопросами, мыслями, гипотезами, юмором на эту тему.

- Делиться статьями, понятными большинству аудитории Пикабу.

- Делиться опытом создания моделей машинного обучения.

- Рассказывать, как работает та или иная фиговина в анализе данных.

- Век жить, век учиться.


Запрещено:


I) Невостребованный контент

  I.1) Создавать контент, сложный для понимания. Такие посты уйдут в минуса лишь потому, что большинству неинтересно пробрасывать градиенты в каждом тензоре реккурентной сетки с AdaGrad оптимизатором.

  I.2) Создавать контент на "олбанском языке" / нарочно игнорируя правила РЯ даже в шутку. Это ведет к нечитаемости контента.

  I.3) Добавлять посты, которые содержат лишь генеративный контент или нейросетевой Арт без какой-то дополнительной полезной или интересной информации по теме, без промтов или описания методик создания и т.д.


II) Нетематический контент

  II.1) Создавать контент, несвязанный с Data Science, математикой, программированием.

  II.2) Создавать контент, входящий в противоречие существующей базе теорем математики. Например, "Земля плоская" или "Любое действительное число представимо в виде дроби двух целых".

  II.3) Создавать контент, входящий в противоречие с правилами Пикабу.


III) Непотребный контент

  III.1) Эротика, порнография (даже с NSFW).

  III.2) Жесть.


За нарушение I - предупреждение

За нарушение II - предупреждение и перемещение поста в общую ленту

За нарушение III - бан