Битва за гиперзвук. Часть 2
Научно-технический задел России – гиперзвуковые самолёты
Гиперзвуковой Ту-2000
В СССР работы над гиперзвуковым самолётом начались в ОКБ Туполева в середине 1970-х годов, на основе серийного пассажирского самолёта Ту-144. Проводилось исследование и проектирование самолёта, способного развивать скорость до М=6 (ТУ-260) и дальностью полёта до 12000 км, а также гиперзвукового межконтинентального самолёта ТУ-360. Его дальность полёта должны была достигать 16000 км. Был даже подготовлен проект пассажирского гиперзвукового самолёта Ту-244, рассчитанного на полёт на высоте 28-32 км со скоростью М=4,5-5.
В феврале 1986 года в США начался НИОКР по создание космоплана Х-30 с воздушно-реактивной силовой установкой, способного выходить на орбиту в одноступенчатом варианте. Проект National Aerospace Plane (NASP), отличался обилием новых технологий, ключевой из которых был двухрежимный гиперзвуковой прямоточный воздушно-реактивный двигатель, позволяющий летать на скоростях М=25. По полученным разведкой СССР сведениям, NASP прорабатывался для гражданских и военных целей.
Ответом на разработку трансатмосферного X-30 (NASP) стали постановления правительства СССР от 27 января и 19 июля 1986 о создании эквивалента американскому воздушно-космическому самолёту (ВКС). 1 сентября 1986 года Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). По этому техзаданию МВКС должен был обеспечить эффективную и экономичную доставку на околоземную орбиту грузов, высокоскоростную трансатмосферную межконтинентальную транспортировку, решение военные задач, как в атмосфере, так и в ближнем космическом пространстве. Из представленных на конкурс работ ОКБ Туполева, ОКБ Яковлева и НПО «Энергия» одобрение получил проект Ту-2000.
В результате предварительных исследований по программе МВКС выбиралась силовая установка на основе отработанных и проверенных решений. Существующие воздушно-реактивные двигатели (ВРД), использовавшие атмосферный воздух, имели ограничения по температуре, они использовались на самолётах, скорость которых не превышала М=3, а ракетные двигатели должны были нести большой запас топлива на борту и не годились для продолжительных полётов в атмосфере. Поэтому было принято важное решение – чтобы самолёт мог летать на сверхзвуковых скоростях и на всех высотах, его двигатели должны иметь черты и авиационной, и космической техники.
Оказалось, что наиболее рациональным для гиперзвукового самолёта является прямоточный воздушно-реактивный двигатель (ПВРД), в котором нет вращающихся частей, в комбинации с турбореактивным двигателем (ТРД) для разгона. Предполагалось, что для полётов с гиперзвуковыми скоростями наиболее подходит ПВРД на жидком водороде. А разгонный двигатель - это ТРД работающий или на керосине, или на жидком водороде.
В результате, за рабочий вариант была принята комбинация экономичного ТРД, работающего в диапазоне скоростей М=0-2,5, второго двигателя - ПВРД, разгоняющего летательный аппарат до М=20 и ЖРД для выхода на орбиту (разгон до первой космической скорости 7,9 км/с) и обеспечения орбитальных манёвров.Из-за сложности решения комплекса научно-технических и технологических задач по созданию одноступенчатого МВКС программа была разбита на два этапа: создание экспериментального гиперзвукового самолета со скоростью полета до М=5-6, и разработка прототипа орбитального ВКС, обеспечивающего проведение лётного эксперимента во всём диапазоне полетов, вплоть до выхода в космос. Помимо этого на втором этапе работ МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б, который проектировался как двухместный самолёт с дальностью полёта 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6-8 на высоте в 30-35 км.
По данным специалистов ОКБ им. А.Н.Туполева, стоимость постройки одного ВКС должна была составить около 480 млн. долларов, в ценах 1995 года (при затратах на ОКР 5,29 млрд. долларов). Предполагаемая стоимость запуска должна была составить 13,6 млн. долларов, при количестве 20 пусков в год.
Первый раз макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92». До остановки работ в 1992 году, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.
Из-за сложности решения комплекса научно-технических и технологических задач по созданию одноступенчатого МВКС программа была разбита на два этапа: создание экспериментального гиперзвукового самолета со скоростью полета до М=5-6, и разработка прототипа орбитального ВКС, обеспечивающего проведение лётного эксперимента во всём диапазоне полетов, вплоть до выхода в космос. Помимо этого на втором этапе работ МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б, который проектировался как двухместный самолёт с дальностью полёта 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6-8 на высоте в 30-35 км.
По данным специалистов ОКБ им. А.Н.Туполева, стоимость постройки одного ВКС должна была составить около 480 млн. долларов, в ценах 1995 года (при затратах на ОКР 5,29 млрд. долларов). Предполагаемая стоимость запуска должна была составить 13,6 млн. долларов, при количестве 20 пусков в год.
Первый раз макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92». До остановки работ в 1992 году, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.
Атомный М-19
Давний «конкурент» по стратегическим летательным аппаратам ОКБ им. Туполева – Экспериментальный машиностроительный завод (сейчас ЭМЗ им. Мясищева) также занимался разработками одноступенчатого ВКС в рамках НИОКР «Холод-2». Проект получил название «М-19» и предусматривал проработку по следующим темам:
Тема 19-1. Создание летающей лаборатории с силовой установкой на жидком водородном топливе, отработка технологии работ с криогенным топливом;
Тема 19-2. Проектно-конструкторские работы по определению облика гиперзвукового самолета;
Тема 19-3. Проектно-конструкторские работы по определению облика перспективного ВКС;
Тема 19-4. Проектно-конструкторские работы по определению облика альтернативных вариантов ВКС с ядерной двигательной установкой.
Работы по перспективному ВКС проводились под непосредственным руководством Генерального конструктора В.М. Мясищева и Генерального конструктора А.Д. Тохунца. Для выполнения составных частей НИОКР были утверждены планы совместных работ с предприятиями МАП СССР, в том числе: ЦАГИ, ЦИАМ, НИИАС, ИТПМ и многими другими, а также с НИИ Академии наук и Министерства обороны.
Облик одноступенчатого ВКС М-19 определился после исследования многочисленных альтернативных вариантов аэродинамической компоновки. В части исследований характеристик силовой установки нового типа проводились испытания моделей ГПВРД в аэродинамических трубах на скоростях, соответствующих числам М=3-12. Для оценки эффективности будущего ВКС были также проработаны математические модели систем аппарата и комбинированной силовой установки с ядерным ракетным двигателем (ЯРД).
Использование ВКС с комбинированной ядерной двигательной установкой предполагало расширенные возможности интенсивного освоения как околоземного космического пространства, включая удаленные геостационарные орбиты, так и области дальнего космоса, в том числе Луну и окололунное пространство.
Наличие на борту ВКС ядерной установки позволяло бы также использовать её в качестве мощного энергетического узла для обеспечения функционирования новых типов космического оружия (лучевое, пучковое оружие, средства воздействия на климатические условия и т. п.).
Комбинированная двигательная установка (КДУ) включала в себя:
Маршевый ядерный ракетный двигатель (ЯРД) на основе ядерного реактора с радиационной защитой;
10 двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и форсажной камерой;
Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД);
Два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ;
Распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.
В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД.
В завершенном виде концепция М-19 выглядела так: взлет и первоначальный разгон 500-тонный ВКС совершает как атомный самолёт с двигателями замкнутого цикла, причем в качестве теплоносителя, передающего тепло от реактора к десяти турбореактивным двигателям, служит водород. По мере разгона и набора высоты, водород начинает подаваться в форсажные камеры ТРД, чуть позже в прямоточные ГПРВД. Наконец, на высоте 50 км, при скорости полёта более 16М, включается атомный ЯРД с тягой 320 тс, который обеспечивал выход на рабочую орбиту высотой 185-200 километров. При взлетной массе около 500 тонн ВКС М-19 должен был выводить на опорную орбиту с наклонением 57,3° полезную нагрузку массой порядка 30-40 тонн.
Необходимо отметить малоизвестный факт, что при расчетах характеристик КДУ на турбопрямоточном, ракетно-прямоточном и гиперзвуковом режимах полета использовались результаты экспериментальных исследований и расчетов, проведенных в ЦИАМ, ЦАГИ и ИТПМ СО АН СССР.
«Аякс» - гиперзвук по-новому
Работы по созданию гиперзвукового самолёта проводились и в СКБ «Нева» (г. Санкт-Петербург), на основе которого было образовано Государственное научно-исследовательское предприятие гиперзвуковых скоростей (ныне ОАО «НИПГС» ХК «Ленинец»).
В НИПГС к созданию ГЛА подошли принципиально по-новому. Концепция ГЛА «Аякс» была выдвинута в конце 80-х гг. Владимиром Львовичем Фрайштадтом. Суть её состоит в том, что у ГЛА отсутствует тепловая защита (в отличие от большинства ВКС и ГЛА). Тепловой поток, возникающий при гиперзвуковом полёте, впускается внутрь ГЛА для повышения его энергоресурса. Таким образом, ГЛА «Аякс» представлял собой открытую аэротермодинамическую систему, которая часть кинетической энергии гиперзвукового воздушного потока преобразовывала в химическую и электрическую, попутно решая вопрос с охлаждением планера. Для этого были спроектированы основные компоненты реактора химической регенерации тепла с катализатором, размещаемыми под обшивкой планера.
Обшивка самолета в наиболее термонапряженных местах имела двухслойную оболочку. Между слоями оболочки размещался катализатор из термостойкого материала («мочалки из никеля»), который представлял собой подсистему активного охлаждения с реакторами химической регенерации тепла. Согласно расчётам, при всех режимах гиперзвукового полета температура элементов планера ГЛА не превышала 800-850°С.
В состав ГЛА входит интегрированный с планером прямоточный воздушно-реактивный двигатель со сверхзвуковым горением и основной (маршевый) двигатель - магнито-плазмохимический двигатель (МПХД). МПХД предназначался для управления воздушным потоком, с помощью магнито-газодинамического ускорителя (МГД-ускорителя) и выработки электроэнергии с помощью МГД-генератора. Генератор имел мощность до 100 МВт, что вполне хватало для питания лазера, способного поражать на околоземных орбитах различные цели.
Предполагалось, что маршевый МПХД будет способен изменять скорость полёта в широком диапазоне полетного числа Маха. За счет торможения гиперзвукового потока магнитным полем создавались оптимальные условия в сверхзвуковой камере сгорания. При испытаниях в ЦАГИ было выявлено, что созданное в рамках концепции «Аякс» углеводородное топливо сгорает в несколько раз быстрее, чем водород. МГД-ускоритель мог «разгонять» продукты сгорания, увеличивая максимальную скорость полета до М=25, что гарантировало выход на околоземную орбиту.
Гражданский вариант гиперзвукового самолёта рассчитывался на скорость полёта 6000-12000 км/ч, дальность полёта - до 19000 км и перевозку 100 пассажиров. О военных разработках проекта «Аякс» сведений нет.
Российская концепция гиперзвука – ракеты и ПАК ДА
Работы, проведенные в СССР и в первые годы существования новой России по гиперзвуковым технологиям позволяют утверждать, что оригинальная отечественная методология и научно-технический задел сохранены и задействованы для создания российских ГЛА – как в ракетном, так и самолётном исполнении.
В 2004-м году, во время проведения командно-штабных учений «Безопасность 2004», президент России В.В. Путин сделал заявление, до сих пор будоражащее умы «общественности». «Были проведены эксперименты и кое-какие испытания… Вскоре российские Вооруженные силы получат боевые комплексы, способные действовать на межконтинентальных расстояниях, с гиперзвуковой скоростью, с большой точностью, с широким манёвром по высоте и направлению удара. Эти комплексы сделают бесперспективными любые образцы противоракетной обороны – существующие или перспективные».
Некоторые отечественные СМИ интерпретировали это заявление в меру своего понимания. Например: «В России была разработана первая в мире гиперзвуковая маневрирующая ракета, запуск которой был произведен со стратегического бомбардировщика Ту-160 в феврале 2004 года, когда проводились командно-штабные учения «Безопасность 2004»…
На самом деле на учениях было запущена баллистическая ракета РС-18 «Стилет» с новым боевым оснащением. Вместо обычной боеголовки на РС-18 находилось некое устройство, способное менять высоту и направление полета, и, тем самым, преодолевать любую, в том числе американскую, противоракетную оборону. Судя по всему, испытанный во время учений «Безопасность 2004» аппарат являлся малоизвестной гиперзвуковой крылатой ракетой (ГКР) Х-90, разработанной в МКБ «Радуга» в начале 1990-х годов.
Судя по ТТХ этой ракеты, стратегический бомбардировщик Ту-160 может брать на борт две Х-90. Остальные же характеристики выглядят так: масса ракеты — 15 тонн, маршевый двигатель — ГПВРД, ускоритель — РДТТ, скорость полета – 4-5 М, высота пуска – 7000 м, высота полёта – 7000-20000 м, дальность пуска 3000-3500 км, число боеголовок — 2, мощность боеголовки — 200 кт.
В споре о том, что лучше самолёт или ракета, чаще всего проигрывали самолёты, так как ракеты оказывались быстрее и результативнее. А самолёт стал носителем крылатых ракет, способных поражать цели на расстоянии 2500-5000 км. Запуская ракету по цели, стратегический бомбардировщик не заходил в зону противодействующей ПВО, поэтому делать его гиперзвуковым не имело смысла.
«Гиперзвуковое соревнование» между самолётом и ракетой сейчас близится к новой развязке с предсказуемым результатом - ракеты вновь опережают самолёты.
Оценим ситуацию. На вооружении дальней авиации, входящей в ВКС России, состоят 60 турбовинтовых самолётов Ту-95МС и 16 реактивных бомбардировщиков Ту-160. Срок службы Ту-95МС истекает через 5-10 лет. Министерство обороны приняло решение об увеличение количества Ту-160 до 40 единиц. Ведутся работы по модернизации Ту-160. Таким образом, в ВКС скоро начнут поступать новые Ту-160М. ОКБ Туполева также является основным разработчиком перспективного авиационного комплекса дальней авиации (ПАК ДА).
Наш «вероятный противник» не сидит, сложа руки, он вкладывает деньги в развитие концепции Prompt Global Strike (PGS). Возможности военного бюджета США по объёму финансирования значительно превышают возможности бюджета России. Министерство финансов и Министерство обороны спорят о размере финансирования Госпрограммы вооружений на период до 2025 года. И речь идёт не только о текущих расходах на закупку нового ВВТ, но и о перспективных разработках, к которым относятся ПАК ДА и технологии ГЛА.
В создании гиперзвуковых боеприпасов (ракеты или снаряда) не всё однозначно. Явное преимущество гиперзвука – скорость, короткое время подлёта к цели, высокая гарантия преодоления систем ПВО и ПРО. Однако немало и проблем – дороговизна одноразового боеприпаса, сложность управления при изменении траектории полёта. Эти же недостатки стали решающими аргументами при сокращении или закрытии программ по пилотируемому гиперзвуку, то есть по гиперзвуковым самолётам.
Проблема дороговизны боеприпаса может решаться решается наличием на борту самолёта мощного вычислительного комплекса расчётов параметров бомбометания (пуска), который превращает обычные бомбы и ракеты в высокоточное оружие. Аналогичные бортовые вычислительные комплексы, установленные в боеголовках гиперзвуковых ракет, позволяют приравнять их к классу стратегического высокоточного оружия, которое, по мнению военных специалистов НОАК, способно заменить комплексы МБР. Наличие ракетных ГЛА стратегической дальности поставит под вопрос необходимость содержания дальней авиации, как имеющей ограничения по скорости и эффективности боевого применения.
Появление в арсенале любой армии гиперзвуковой зенитной ракеты (ГЗР) вынудит стратегическую авиацию «прятаться» на аэродромах, т.к. максимальное расстояние, с которого могут применяться крылатые ракеты бомбардировщика, такие ГЗР преодолеют за несколько минут. Повышение дальности, точности и манёвренности ГЗР позволит им сбивать МБР противника на любых высотах, а также срывать массированный налёт стратегических бомбардировщиков до выхода их на рубежи пуска крылатых ракет. Пилот «стратега», возможно и обнаружит запуск ГЗР, но увести самолёт от поражения вряд ли успеет.
Разработки ГЛА, которые сейчас интенсивно ведутся в развитых странах, свидетельствуют, что ведется поиск надежного инструмента (оружия), которое может гарантированно уничтожить ядерный арсенал противника до начала применения ядерного оружия, как последнего аргумента при защите государственного суверенитета. Гиперзвуковое оружие может применяться и по основным центрам политического, экономического и военного могущества государства.
Гиперзвук в России не забыт, идут работы по созданию ракетного оружия на основе этой технологии (МБР «Сармат», МБР «Рубеж», Х-90), но делать ставку только на один вид вооружения («чудо-оружие», «оружия возмездия») было бы, как минимум, не правильно.
В создании ПАК ДА ясности нет до сих пор, так как до сих пор неизвестны основные требования по его назначению и боевому применению. Существующие стратегические бомбардировщики, как составляющие ядерной триады России, постепенно теряют свое значение из-за появления новых видов оружия, в том числе и гиперзвукового.
Курс на «сдерживание» России, провозглашенный главной задачей НАТО, объективно способен привести к агрессии против нашей страны, в которой будут участвовать подготовленные и вооружённые современными средствами армии «Североатлантического договора». По количеству личного состава и вооружений НАТО превосходит Россию в 5–10 раз. Вокруг России выстраивается «санитарный пояс», включающий военные базы и позиции ПРО. По сути, проводимые НАТО мероприятия в военных терминах описывается как оперативная подготовка театра военных действий (ТВД). При этом главным источником поставок вооружений остаётся США, как было и в Первую, и Второю мировые войны.
Гиперзвуковой стратегический бомбардировщик может в течение часа оказаться в любой точке земного шара над любым военным объектом (базой), с которого обеспечивается снабжение ресурсами группировок войск, в том числе и в «санитарном поясе». Малоуязвимы для систем ПРО и ПВО, он может уничтожить такие объекты мощным высокоточным неядерным оружием. Наличие такого ГЛА в мирное время станет дополнительным сдерживающим фактором для сторонников глобальных военных авантюр.
Гражданский ГЛА может стать технической основой прорыва в развитии межконтинентальных перелётов и космических технологий. Научно-технический задел проектов Ту-2000, М-19 и «Аякс» по-прежнему актуален и может быть востребован.
Каким же будет будущий ПАК ДА – дозвуковым с СГКР или гиперзвуковым с доработанным обычным оружием, решать заказчикам – Министерству обороны и Правительству России.
«Кто ещё до сражения побеждает предварительным расчетом, у того шансов много. Кто ещё до сражения не побеждает расчетом, у того шансов мало. У кого шансов много – побеждает. У кого шансов мало – не побеждает. Тем более тот, у кого шансов нет вовсе». /Сунь Цзы, «Искусство войны»/
Военный эксперт Алексей Леонков
Авиация и Техника
10K постов17.8K подписчиков
Правила сообщества
Правила Пикабу