3

Аксиоматика множества призрачных чисел1

Тут внезапно всплыло, что у множества действительных чисел R, на которое я так опрометчиво опирался при определении призрачных, есть очень недальновидный изъян, в виде того, что там коммутативность умножения кто-то когда-то сгоряча в аксиомы закинул, от чего потом и получилось, что умножение на 0 стало давать 0.

Так что пришлось определить своё множество чисел с преферансом и куртизанками, на которых работает призрачная алгебра. Я назвал его J или ямайкамурровы числа.

Непустое множество J называется множеством ямайкамурровых чисел, если на нём заданы операции сложения (+: J×J→J), умножения (*: J×J→J), отказа (∅: J×→J), и отношения порядка, удовлетворяющие следующим аксиомам:

  1. ∀a,b∈J: a+b=b+a.

  2. ∀a,b∈J: (a+b)+c=a+(b+c).

  3. ∃0∈J ∀a∈J: a+0=a.

  4. ∀a∈J ∃(−a)∈J: a+(−a)=0

  5. ∃1∈J ∀a∈J: a*1=a

  6. ∀a∈J\{0}: 0*a=0

  7. ∀a,b∈J\{0}: a*b=b*a

  8. ∀a∈J: a∅=0

  9. ∀a∈J b,c∈J∖{0}: (a*b)*c=a*(b*c)

  10. ∀a∈J∖{0} ∃(1/a)∈J: a*1/a=1

  11. ∀a,b∈J c∈J∖{0}: (a+b)*c=a*c+b*c

  12. ∀a,b∈J: a⩽b ∨ b⩽a

  13. ∀a,b∈J: (a⩽b ∧ b⩽a)⇒a=b

  14. ∀a,b,c∈J: (a⩽b ∧ b⩽c)⇒a⩽c

  15. ∀a,b,c∈J: (a⩽b⇒a+c⩽b+c)

  16. ∀a,b,c∈J, c>0: (a⩽b⇒a*c⩽b*c)

  17. Пусть A и B такие непустые подмножества J, что

    ∀a∈A,b∈B:a⩽b. Тогда ∃c∈J ∀a∈A,b∈B:a⩽c⩽b.

Замечание. a⩽b⇔b⩾a. a⩽b при a≠b⇔a<b или b>a.

Вообще-то это по большей части копия аксиоматики действительных чисел - вся разница выделена жирным шрифтом. Имеем 2 полностью новые аксиомы и 4 старые, но с изменёнными условиями.

Аксиома 6 определяет умножение 0 на любое не равное 0 число (не наоборот).

Аксиома 8 определяет унарную операцию отказа, на тот случай, если вам надо обнулить имеющуюся информацию.

Можно заметить, что в ямайкамурровых числах не определено ни деление на 0, ни умножение на 0.

B тут в дело врывается призрачная алгебра:

Непустое множество G называется множеством призрачных чисел, если на нём заданы операции сложения (+: G×G→G), умножения (*: G×G→G), отказа (∅: G×→G), и отношения порядка, удовлетворяющие следующим аксиомам:

  1. ∀a∈J 0∈J ∃g(0)a∈G: a=g(0)a

  2. ∀a∈J 0, -1∈J: a*0=g(-1)a

  3. ∀a∈J 0,1∈J ∃(1/0)∈G: a*1/0=g(1)a

  4. ∀a,b,c∈J: g(a)g(b)с=g(a+b)c

  5. ∀a,b,c∈J: g(a)b+g(a)c=g(a)(b+c)

  6. ∀a,b,c,d∈J: g(a)b*g(c)d=g(a+c)(b*d)

  7. ∀a,b,c,d∈J: g(a)b*1/g(c)d=g(a-c)(b*1/d)

  8. ∀a∈G: a∅=0

Ну, вроде бы справился! Хотя проверять тут ещё и перепроверять.

Не очень уверен насчёт того, верно ли записал аксиому 3. Но суть её такова, что при делении числа на 0 получается призрак первого порядка со значением этого числа.

В общем, кто шарит, вы не стесняйтесь, подтягивайтесь.

Лига математиков

819 постов2.5K подписчиков

Вы смотрите срез комментариев. Показать все
0
Автор поста оценил этот комментарий

@moderator, очень прошу, замените пожалуйста в посте то, что указано на скриншоте, на это:

∀a∈J: 0*a=0

Это очень-очень важно!

Иллюстрация к комментарию
раскрыть ветку (7)
0
Автор поста оценил этот комментарий

@moderator, простите ещё раз: на ∀a∈JJ\{0}: 0*a=0

раскрыть ветку (3)
0
Автор поста оценил этот комментарий

Да блин! Там описка: не ∀a∈JJ\{0}: 0*a=0, а ∀a∈J\{0}: 0*a=0

раскрыть ветку (2)
0
Автор поста оценил этот комментарий

У вас не получается самостоятельно отредактировать?

раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Всё получилось, спасибо!

0
Автор поста оценил этот комментарий

Здравствуйте. Вы можете самостоятельно отредактировать пост. Как это сделать - https://pikabu.ru/go/help_post_edit

раскрыть ветку (2)
0
Автор поста оценил этот комментарий
Иллюстрация к комментарию
раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Поправил

Вы смотрите срез комментариев. Чтобы написать комментарий, перейдите к общему списку