Нейросеть научили убирать ананасы с пиццы

Нейросеть научили убирать ананасы с пиццы Nplus1, Нейронные сети, Машинное обучение, Mit, Пицца, Ананас

Американские разработчики представили pizzaGAN — алгоритм, который умеет пошагово рисовать изображение пиццы, добавляя или убирая отдельные ингредиенты (в том числе может убрать с пиццы спорные кусочки ананаса). Архитектура такой системы основана на генеративно-состязательной нейросети, каждый слой в которой меняет предшествующее изображение, добавляя на него новый ингредиент. Подробности о работе алгоритма описаны в препринте, опубликованном на arXiv.
Сегодня алгоритмы, основанные на работе нейросетей, умеют достаточно качественно составлять изображения объектов на основе текстового описания. Это касается, например, рецептов блюд: подобный алгоритм в начале года представили израильские ученые. При этом понимание того, как выглядит готовое блюдо, не означает, что информация о приготовлении блюда доступна: для этого необходимо понимать пошагово, как готовится блюдо, что произойдет, если один ингредиент убрать, а другой — добавить, и как изменится цвет, консистенция и вид продукта при термической обработке.
Такой алгоритм решили разработать исследователи из Массачусетского технологического института под руководством Дима Пападопулоса (Dim Papadopoulos). Они решили сосредоточиться на пицце — блюде, которое подразумевает достаточно простой порядок приготовления из нескольких ингредиентов. Для этого они создали pizzaGAN — разновидность генеративно-состязательной нейросети, каждый слой в котором используется для добавления отдельного ингредиента или другого этапа приготовления блюда. Такая архитектура позволяет не только добавлять ингредиенты в пиццу, но и откатывать ее приготовление на шаг назад, имея пример того, как выглядело блюдо без него.
Для обучения модели исследователи создали датасет «синтетической пиццы» — цифровых изображений пиццы с различными начинками, расположенными на пицце в определенном порядке. Каждая начинка представлялась в виде специальной маски ингредиентов: как они расположены на блюде и сколько их. Для создания итогового изображения пиццы использовались реальные фотографии блюда.
В результате алгоритм научился достоверно добавлять ингредиенты на пиццу и убирать их, а также показывать, как та или иная пицца выглядит до и после приготовления в печи. Датасеты с «синтетической» и реально пиццей, примеры того, как меняется изображение при добавлении и исключении ингредиентов, а также изображения до и после приготовления пиццы в печи доступны на сайте проекта.
Успехов разработчики добились и в выполнении обратной задачи: два года назад исследователи представили алгоритм, который умеет составлять примерный рецепт блюда по его фотографии.
Источник

Искусственный интеллект

4.6K постов11.3K подписчика

Правила сообщества

ВНИМАНИЕ! В сообществе запрещена публикация генеративного контента без детального описания промтов и процесса получения публикуемого результата.


Разрешено:


- Делиться вопросами, мыслями, гипотезами, юмором на эту тему.

- Делиться статьями, понятными большинству аудитории Пикабу.

- Делиться опытом создания моделей машинного обучения.

- Рассказывать, как работает та или иная фиговина в анализе данных.

- Век жить, век учиться.


Запрещено:


I) Невостребованный контент

  I.1) Создавать контент, сложный для понимания. Такие посты уйдут в минуса лишь потому, что большинству неинтересно пробрасывать градиенты в каждом тензоре реккурентной сетки с AdaGrad оптимизатором.

  I.2) Создавать контент на "олбанском языке" / нарочно игнорируя правила РЯ даже в шутку. Это ведет к нечитаемости контента.

  I.3) Добавлять посты, которые содержат лишь генеративный контент или нейросетевой Арт без какой-то дополнительной полезной или интересной информации по теме, без промтов или описания методик создания и т.д.


II) Нетематический контент

  II.1) Создавать контент, несвязанный с Data Science, математикой, программированием.

  II.2) Создавать контент, входящий в противоречие существующей базе теорем математики. Например, "Земля плоская" или "Любое действительное число представимо в виде дроби двух целых".

  II.3) Создавать контент, входящий в противоречие с правилами Пикабу.


III) Непотребный контент

  III.1) Эротика, порнография (даже с NSFW).

  III.2) Жесть.


За нарушение I - предупреждение

За нарушение II - предупреждение и перемещение поста в общую ленту

За нарушение III - бан