35

NASA может высадить человека на Луну без орбитальной станции Gateway

Лунная орбитальная станция Lunar Orbital Platform-Gateway — один из инструментов, который позволит вернуть человека на спутник Земли. При этом в NASA не хотят зависеть от нее и рассматривают вариант высадки на лунную поверхность без использования станции.

NASA может высадить человека на Луну без орбитальной станции Gateway NASA, Космос, Луна, Gateway, Космонавтика, Космическая станция

Как заявил глава департамента исследований человека NASA Дуг Ловерро (Doug Loverro), космическое ведомство хочет обезопасить будущую высадку человека на Луну от возможных рисков, связанных с перспективной станцией Lunar Orbital Platform-Gateway.


Таким образом, она перестанет быть критически важным элементом для реализации программы «Артемида», предполагающей полеты к Луне и высадку на спутнике примерно в 2024 году.


При этом NASA не отказывается от Gateway как таковой. Более того, недавно космическое ведомство выбрало два первых инструмента, которые получит орбитальная станция. Один из них будет анализировать космическую погоду, а второй призван ответить на вопросы, связанные с радиацией на орбите Луны. ссылка

Дубликаты не найдены

+4
...если не предполагается забирать его обратно
+1
Не успевают в сроки?
0
Фигня все это. Я в Space Engineers прямо в скафандре на луну и садился и взлетал. Одного баллона водорода всего хватает. А тут придумывают какие то платформы и хитрости, лишь бы денег с налогоплательщиков больше содрать.
раскрыть ветку 2
+1
Не знал, что SE - настолько аркадная игрушка.
раскрыть ветку 1
-1

ясен пень, там выйти на орбиту = подняться на определенную высоту.

-1

Очередной виток срачей? Какие аргументы на этот раз?

раскрыть ветку 3
+2

они уже отвозили туда автомобиль, а гаража так и не построили. американцы не могут без гаража.

раскрыть ветку 2
-4
Пиар кстати шикарен, и продвинуть теслу, хомячки охотнее разбирают авто, запущенное в космос и представить наса свой носитель, но у наса своя корова и они сами ее доят, поэтому слс до сих пор жив если не ошибаюсь
раскрыть ветку 1
-2

Мет Деймон, у нас есть для тебя работа

-2
Ну не нужен им этот человек. Не нравится. Мексиканец наверное. Возьмут и высадят.
-7

Да-да-да, всё было уже: постоянные корректировки программы, неудачные испытания, переносы сроков, а потом - хуяго! А мы были на Луне!

раскрыть ветку 1
-1
Расскажи нам, какая космическая программа обошлась без неудачных испытаний и переносов сроков?
И только у тех, кто мало знает, американцы неожиданно оказались на Луне.
-12
"Вернуть человека на луну" Можно подумать они там были когда то.
раскрыть ветку 11
+6
Вообще то были. Это должен знать каждый приличный человек.
ещё комментарии
0

Правильно! Я тоже, как и ты, верю, что луна - это фонарь над плоской землёй приколоченный к небесной тверди! ведь не осталось оригинальных плёнок ни лунных миссий, ни Гагаринского полёта. Держись товарищ! Веруй и не поддавайся на еретические доводы!

ещё комментарии
Похожие посты
95

NASA развернуло огромные зеркала телескопа "Джеймс Уэбб"

NASA планирует запустить новый мощный телескоп «Джеймс Уэбб» в следующем году. Прежде устройство должно пройти ряд тестов, которые позволят специалистам убедиться, что телескоп готов к работе.

В ходе недавних тестов инженеры NASA проверили механизм развертывания гигантских зеркал «Джеймса Уэбба».Телескоп будет иметь крупнейшее составное зеркало, когда-либо запущенное в космос: в ширину оно составляет 6,5 метра. Чтобы такое зеркало поместилось в ракету-носитель, оно должно быть свернуто — позже, уже в космосе, телескоп сможет полностью его развернуть.

Испытания прошли успешно. «Развертывание обоих крыльев телескопа при полностью собранной обсерватории — это очередной значительный рубеж, который демонстрирует, что «Джеймс Уэбб» произведет развертывание в космосе должным образом», — отмечает Ли Файнберг (Lee Feinberg), один из специалистов, работающих над телескопом.

Как уже указывалось, на данный момент NASA планирует запуск «Джеймса Уэбба» в следующем году, однако пандемия коронавируса теоретически может сместить сроки. ссылка | nasa

NASA развернуло огромные зеркала телескопа "Джеймс Уэбб" NASA, Телескоп Джеймса Уэбба, Телескоп, Космос, Видео, Длиннопост
32

NASA и SpaceX провели полную симуляцию полета Crew Dragon с экипажем к МКС

Привет всем подписчикам сообщества SpaceX!

Продолжается подготовка к испытательному полету Demo-2 пилотируемого корабля SpaceX Crew Dragon к МКС. Этот ключевой тестовый полет астронавтов Боба Бенкена и Дага Херли состоится в мае. Специалисты NASA и SpaceX проверили координацию и полную схему полета. Симуляция охватывала весь полет: от предстартовой подготовки до стыковки корабля с МКС. Этой полной симуляции предшествовала отработка отдельных этапов полета.

NASA и SpaceX провели полную симуляцию полета Crew Dragon с экипажем к МКС SpaceX, Dragon 2, Астронавт, NASA, Космос, Подготовка

«Моделирование дало прекрасную возможность попрактиковаться в процедурах и скоординировать принятие решений командой управления миссией, особенно что касается погодных условий, - сказал менеджер операционной интеграции программы Commercial Crew Program Майкл Хесс. – Супервайзеры по симуляции проделали большую работу, отобрав такие условия, которые заставляют команду думать и обсуждать решения. Это очень важно. Потому что это будет первый запуск астронавтов с территории США с момента окончания программы шаттлов в 2011 году. К тому же это первый корабль, построенный не NASA и подрядчиками, а частной компанией. Нас ждут еще дополнительные симуляции, проверка готовности к полету. Мы должны гарантировать, что все системы и подсистемы готовы к испытательному полету с экипажем». источник

NASA и SpaceX провели полную симуляцию полета Crew Dragon с экипажем к МКС SpaceX, Dragon 2, Астронавт, NASA, Космос, Подготовка
183

Все о надвигающемся астероиде

В начале марта стало известно, что потенциально опасный астероид под номером 52768 (1998 OR2) приблизится к Земле в конце апреля. На максимально близкое расстояние небесное тело приблизится к нашей планете 29 апреля. Специалисты отмечают, что астероид будет находиться в 6,29 млн км от Земли. Это расстояние в 16 раз больше, чем дистанция от нашей планеты до Луны.


NASA готовится нанести кинетический удар по астероиду, но не в связи с его опасностью, а в качестве тренировки действия при более опасных обстоятельствах.

Все о надвигающемся астероиде Астероид, Земля, NASA, Длиннопост, Космос

(Сверху вниз — эксперимент 1991 года, модель Бенца-Асфога и псевдопластичная. Слева — вид сбоку, справа — в разрезе)

Моделирование защиты от астероидов состыковалось с экспериментом

Физики выявили самую реалистичную модель ударного разрушения астероида. Для этого они перебрали много возможных вариантов и сравнили их с реальным экспериментом, имитировавшим сбитие метеорита. В результате выяснилось, что современная наука действительно может достаточно точно моделировать такие события. Статья опубликована в журнале Earth and Space Science.


Падение на Землю крупного астероида — событие крайне маловероятное. Тем не менее, несмотря на исчезающе маленькие шансы, урон от него может быть огромен. Так, знаменитый Тунгусский взрыв был эквивалентен водородной бомбе, и лишь по счастливой случайности он упал вдали от населенных пунктов. Для проработки возможной в будущем защиты от таких угроз проводятся научные исследования. Так, NASA планирует миссию DART — это попытка отклонить астероид, протаранив его зондом. Но, для того, чтобы эти эксперименты имели смысл, необходимо уметь достаточно точно рассчитывать такие столкновения.


Тэйн Ремингтон (Tane Remington) из Ливерморской национальной лаборатории и ее коллеги решили проверить, какая из современных моделей деформации твердого тела лучше всего подходит для расчета столкновения с астероидом. Естественный способ проверки модели — сравнение с реальностью. Поскольку эксперимент с настоящим астероидом еще только планируется, исследователи решили обратиться к испытаниям 1991 года, в ходе которых японские ученые сняли на высокоскоростную камеру выстрел по круглому шестисантиметровому куску базальта, имитирующему астероид, пластиковой пулей, летящей со скоростью 3,2 километра в секунду.


Примечательно, что при контакте с противоположной стороны камня образовывался характерный откол (spall), и что, не мотря на огромную энергию соударения, не весь базальт рассыпался на мелкие осколки: сохранилась крупная сердцевина камня. Это дало исследователям эффективный способ оценки тестируемых моделей, так как в первую очередь они проверяли, дают ли расчеты неповрежденное ядро и откол сзади.


Применяемые физиками компьютерные модели твердого тела дискретны: объекты в них не непрерывные, а разбиты на небольшие трехмерные фрагменты. Чем больше в модели фрагментов, тем точнее расчет, но и выше вычислительная сложность. Поэтому, первым шагом ученых стало определение необходимого количества «пикселей». Для этого они начали моделирование столкновения с заведомо низкой детализацией, и постепенно ее увеличивали, при этом рос получаемый виртуальным астероидом урон. Число фрагментов увеличивали до тех пор, пока рост урона не вышел на плато, то есть пока увеличение детализации не перестало приносить пользу. В итоге виртуальный астероид состояил из почти двух миллионов фрагментов при диаметре в 150 фрагментов.


Следующей проблемой был выбор принципа расчета механического напряжения базальта, для чего исследователи рассмотрели две актуальные модели: деформационную модель Бенца-Асфога (Benz-Asphaug) и псевдопластическую модель деформации. Только первая модель давала наблюдаемую в живом эксперименте целую сердцевину и скол на обратной стороне. В ней урон будто бы огибал центр, в то время как в псевдопластической модели разрушения проходили сквозь все тело.


Два оставшихся ключевых элемента для расчетов — прочность материала и параметр распределения Вейбулла для дефектов в твердых хрупких материалах — подобрали перебором, стараясь получить виртуальные осколки, похожие на реальные. Итоговая модель весьма точно воспроизводит эксперимент 1991 года и авторы рассчитывают, что ее можно будет применить в запланированных экспериментах по отклонению орбиты астероида.


Сценарии падения на Землю крупного метеорита более ста лет не сходят со страниц спекулятивной публицистики. Тем не менее, это не исключает, что однажды эта угроза может стать реальной, и чтобы к ней готовыми астрономы разных стран активно изучают небо. В начале этого года они обнаружили у Земли новый псевдоспутник, а в ходе миссии OSIRIS-Rex картографировали астероид Бенну, о котором можно прочитать в  материале Небесное тело алмазной формы.

Показать полностью
50

НАСА изучит механизмы образования гигантских солнечных бурь

Американское космическое агентство НАСА анонсировало миссию SunRISE для изучения солнечно-протонных штормов, 30 марта сообщается на сайте агентства.


НАСА изучит механизмы образования гигантских солнечных бурь Космос, NASA, Солнце, Солнечная система

Солнечная активность [nasa]

Новая миссия SunRISE (Sun Radio Interferometer Space Experiment) представляет собой группу из шести кубсатов, работающих как один очень большой радиотелескоп. НАСА выделило $62,6 млн на проектирование, сборку и запуск SunRISE не ранее 1 июля 2023 года.


НАСА выбрало SunRISE в августе 2017 года в качестве одной из двух заявок «Миссии возможностей» (Mission of Oportunity) для разработки концепции миссии в течение 11 месяцев. В феврале 2019 года агентство продлило дальнейшую проработку миссии еще на один год. SunRISE возглавляет Джастин Каспер из Мичиганского университета в Анн-Арборе. Миссия управляется Лабораторией реактивного движения НАСА в Пасадене в штате Калифорния.


«Мы очень рады добавить к нашему парку космических аппаратов новую миссию, которая поможет лучше понять Солнце, а также то, как наша звезда влияет на межпланетную космическую среду», — сказала директор отдела гелиофизики НАСА Никола Фокс. «Чем больше мы знаем о том, как происходят выбросы солнечного вещества во время событий космической погоды, тем больше мы можем сделать для смягчения их влияния на космические корабли и астронавтов», — добавила Фокс.


Проект миссии основан на шести кубсатах размером с тостерную печь, питающихся от солнечных батарей. Космические аппараты будут одновременного наблюдать радиоизображения низкочастотного излучения солнечной активности и передавать их на Землю через Сеть дальней космической связи НАСА. Кубсаты будут лететь в пределах около 10 км друг от друга над земной атмосферой, которая блокирует радиосигналы в наблюдаемом диапазоне. Вместе шесть зондов создадут трехмерные карты для точного определения, где на Солнце возникают гигантские всплески частиц и как они развиваются по мере своего расширения в космос. Это, в свою очередь, поможет понять механизмы возникновения и ускорения этих гигантские потоков частиц. Также совместная работа шести аппаратов позволит впервые отобразить картину линий магнитного поля, идущих от Солнца в межпланетное пространство.


«Миссия возможностей» является частью программы «Эксплорер», которая является старейшей продолжительной программой НАСА, предназначенной для обеспечения частого и недорогого доступа к космосу с помощью возглавляемых ведущими исследователями космических наблюдений, имеющих отношение к астрофизическим и гелиофизическим программам Управления научных миссий НАСА.


ИА Красная Весна

Показать полностью
264

NASA готовит удар по летящему к Земле астероиду

Астероид не представляет опасности для планеты.

NASA готовит удар по летящему к Земле астероиду NASA, Космос, Астероид, Tvzvezdaru

© Фото: Bridget Caswell, NASA

Американское Национальное управление по аэронавтике и исследованию космического пространства (NASA) готовится нанести кинетический удар по летящему к Земле астероиду.


Несмотря на то, что астероид очень мал и никак не угрожает планете, удар, при помощи которого специалисты изменят траекторию полета астероида, послужит тренировкой для системы защиты Земли от его более крупных «собратьев», сообщает Science Alert.


Отмечается, что из-за ситуации с распространением коронавируса NASA уже отменило несколько пусков, но старт миссии по перехвату астероида, получившей название DART (Double Asteroid Redirection Test) обязательно состоится. Запуск запланирован на 22 июля 2021 года.

Кирилл Васин

Источник:


https://tvzvezda.ru/news/vstrane_i_mire/content/20203311028-...

147

Луна, 30 марта 2020 года, 21:35

Луна, 30 марта 2020 года, 21:35 Луна, Астрофото, Астрономия, Космос, Starhunter, Анападвор

Оборудование:

-телескоп-астрограф Meade 70 мм Quadruplet APO

-монтировка Meade LX85

-фильтр ZWO IR-cut

-камера ZWO ASI 183MC (1800х1800@48fps)

Обработка: Autostakkert (сложение 250 кадров из 2769), деконволюция в Astra Image.

Место съемки: Анапа, двор.

314

NASA провело последнюю проверку экспериментального вертолета, который отправится на Марс

Вертолет Mars Helicopter прошел заключительные функциональные испытания в Космическом центре имени Кеннеди во Флориде. Он будет прикреплен к марсоходу Perseverance, но является самостоятельной экспериментальной миссией и должен стать первым летательным аппаратом, который поднимется в атмосфере другой планеты.

NASA провело последнюю проверку экспериментального вертолета, который отправится на Марс NASA, Марс, Космос, Исследования, Марсоход

Вертолет с двумя роторами, работающими на солнечной энергии, после посадки ровера будет оставаться в капсуле, его развернут, когда руководители миссий определят приемлемую зону для проведения испытательного полета рядом с Perseverance.

Ровер сядет в кратер Jezero на Марсе 18 февраля 2021 года. Запуск состоится ближайшим летом с мыса Канаверал на ракете-носителе Atlas V 541. источник

NASA провело последнюю проверку экспериментального вертолета, который отправится на Марс NASA, Марс, Космос, Исследования, Марсоход
42

Как наблюдать Луну и планеты

Наблюдение за Луной и планетами очень интересно. Наблюдению планет не мешает световая засветка и их можно наблюдать прям из города. Для наблюдения планет не требуются окуляры с большим полем зрения. Даже недорогие окуляры Плёссла могут обеспечить продуктивный результат визуальных наблюдений.

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Юпитер, Сатурн и Марс являются, пожалуй, самыми доступными планетами, для астрономических наблюдений. Я до сих пор помню трепет и удивление от первого взгляда на Сатурн, который я увидел более 20 лет назад, в 80мм «Большом Школьном Рефракторе». Однако часто поступают сообщения от начинающих любителей, о первых наблюдениях, в частности Юпитера и Марса, в которых присутствует доля разочарования. «Я просто вижу шар света без деталей», или «Я вижу маленький диск, на котором не могу полностью сфокусироваться». «Мой телескоп неисправен?» Именно дня начинающих любителей астрономии может быть полезной данная статья. В ней подробно описываются тонкости и особенности визуальных наблюдений планет Солнечной системы.


Планеты — это точки света в небе, а вот Луна большая и очень яркая. Однако Луна имеет много мельчайших деталей, так вот для их рассматривания необходимо использовать те же методики, что используются и для наблюдения планет. Есть несколько важных факторов, которые необходимо учитывать, чтобы получить наилучшее изображение с помощью вашего телескопа:

1) Увеличение


2) Разрешение


3) Блеск


4) Рассеяние света


5) Контрастность


6) Резкость


Увеличение


Самый неоднозначный фактор. Планеты маленькие, так что чем больше увеличение, тем лучше!? Не совсем. Вам необходимо использовать оптимальное увеличение для вашего телескопа. Самый простой способ найти его — рассчитать по оптимальному выходному зрачку телескопа. Выходной зрачок — это размер сфокусированного изображения, которое вы видите через окуляр в вашем телескопе.


Выходной зрачок высчитывается следующим образом: диаметр объектива в телескопа в мм, делим на увеличение, даваемое с тем или иным окуляром. Напомню, увеличение высчитывается делением значения фокусного расстояния объектива в мм, на фокусное расстояние применяемого окуляра.


Фокусное отношение (F/D) объектива телескопа высчитывается так: делим фокусное расстояние объектива делим на его диаметр (апертуру)


Получается, что для человеческого глаза 1 мм выходной зрачок обеспечивает наилучшее разрешение для хорошо освещенных объектов. Допустим, у вас есть 90 мм рефрактор с фокусным расстоянием 900 мм и соотношением фокусов F/D-10. В этом случае для получения наилучших видов Луны или планет необходимо использовать 10-миллиметровый окуляр. Для F/D-5 следует использовать 5 мм окуляр, для F/D-8, 8 мм окуляр и так далее. Используя данное увеличение, большую часть ночей вы сможете наслаждаться прекрасным видом планет.

Есть два исключения:


1) Если видимость (прозрачность и стабильность атмосферы, подробней будет сказано позже) действительно хорошее и ваш оптический телескоп имеет достаточно качественную оптику, вы можете поднять увеличение к 0,5 мм выходному зрачку (чтобы лучше видеть мелкие детали). Для объектива с фокусным отношением F/D-10 это 5 мм окуляр или 10 мм с 2-кратной линзой Барлоу.


2) Если видимость плохая и на выходе 1 мм зрачка, картинку планеты «струит и размывает», вам нужно снизить увеличение и перейти на 1,5 или 2 мм зрачек (чтобы увидеть хотя бы некоторые из основных деталей объекты). Для объектива F/D -10 это были бы окуляры 15 мм или 20 мм., соответственно.


Разрешение


Разрешение зависит от двух факторов: диаметра объектива телескопа (чем больше, тем лучше) и видимости. Видимость (синг)- это мера стабильности атмосферы. Если она устойчива, вы увидите больше деталей; если в атмосфере много турбулентности, то мелкие детали будут «замылены». Если видимость плохая, 10-дюймовый телескоп не покажет вам более 4-дюймового. На самом деле, небольшие инструменты справляются с плохой атмосферой несколько лучше. Так же, проведение наблюдения как можно выше от поверхности земли и вдали от источников тепла (например, крыш) поможет уменьшить негативный эффект «струения изображения». В советской литературе рекомендуется подниматься минимум на 300м. от уровня моря, на вершины холмов, предгорные плато и т. п., для исключения негативного влияния на изображение приземного теплового слоя. Но надо знать, что вершины ОТДЕЛЬНОСТОЯЩИХ холмов будут плохим выборов из-за турбуленции воздуха.

Блеск


Луна и большинство планет очень яркие. Часто мельчайшие детали теряются при интенсивном освещении окуляра, ярким пятном, которое строит объектив, в своей фокальной плоскости. Как это контролировать? Самый простой способ— создать световое загрязнение. Ночная адаптация глаз бывает контрпродуктивна, когда дело доходит до наблюдения Луны и планет. Включите свет на крыльце, балконе или в любом другом месте, где вы проводите наблюдения. А еще лучше наблюдать в тот момент, когда небо еще синее. Лучшие виды Юпитера у меня были прямо перед закатом. Если этого недостаточно, вы можете либо применить диафрагму перед объективом (особенно рекомендуется по Луне, в случае отсутствия специализированного фильтра), либо использовать фильтры. Установка диафрагмы достаточно эффективна для светосильных телескопов, с фокусным отношением F/D-4...F/D-6. Для менее светосильных инструментов, с меньшей апертурой, такие как: F/D-8...F/D-15, я не рекомендую это делать, так как это уменьшает разрешение. Фильтры будут более эффективными (подробнее о выборе фильтра позже).


Рассеяние света


Рассеяние света происходит, когда яркий свет Луны, планет или звезд падает на стеклянную поверхность вашего телескопа. Эффекты рассеяния похожи на блики, потерю контрастности и разрешения. К сожалению, вы не можете контролировать рассеяние света с помощью фильтров. Единственный способ справиться с этим — выбрать диагональ, Барлоу, окуляры и фильтры с хорошим контролем уровня рассеяния света. Проще говоря хорошего качества, диагональ рекомендую выбирать с диэлектрическим покрытием поверхности зеркала.


Контраст

Цель наблюдения планет и Луны заключается в обеспечении высокой контрастности. Это достигается за счет контроля бликов и рассеяния света, а также выбора окуляров с хорошей контрастностью. Вы также можете улучшить контраст некоторых деталей поверхности Луны и планет, используя соответствующие фильтры (подробнее об этом ниже). Так же при применении больших увеличений можно заметить снижение контрастности.


Резкость


Некоторые оптические телескопы способны строить более «острое» изображение, чем другие. Предположу, что у вас, вероятно, уже есть телескоп, в этом случае лучше сосредоточиться на осознанном выборе окуляров и линзы Барлоу. Многие модели окуляров выдают «замыленную» картинку, при высоких увеличениях. К сожалению, некоторые из них продаются как планетарные окуляры. Ортоскопические окуляры — являются самыми лучшими окулярами для наблюдения планет. Бюджетные окуляры также могут ухудшить резкость изображения.

Рекомендации по выбору телескопа и аксессуаров к нему:


Телескоп


В ключе планетных наблюдений можно использовать любой телескоп, независимо от размера и оптической схемы. Однако, если вы делаете покупку специально для наблюдений Луны/планет, длиннофокусные инструменты, с соотношением F/D-8…F/D-15 дадут более качественные результаты. Конструкция без хроматических аберраций предпочтительна, так как ХА снижает разрешение, особенно при применении больших увеличений.


С точки зрения производительности можно порекомендовать:


80-120мм длиннофокусные ахроматические рефракторы и небольшие 80-100мм APO/ED рефракторы.


Так же можно порекомендовать катадиоптрические телескопы (Максутов, Шмидт-Кассегрен) диаметром 5-11 дюймов. Но использовать их потенциал, к сожалению, удастся не часто, из-за нестабильности атмосферы.


Более крупные рефракторы APO способны дать высококачественные, большие увеличения, но они дорогие. Крупные телескопы Ньютона и катадиоптрики потенциально могут обеспечить наилучшие виды планет. Однако, чтобы воспользоваться преимуществами большей апертуры (диаметр объектива), для получения большого разрешения, необходимо выбирать ночи с исключительной стабильностью атмосферы. Это происходит не очень часто, и в среднестатистическую ночь использование меньшего диаметра объектива, будет более практичным.


Фильтры

Фильтры должны быть вашим следующим приоритетом после телескопа, и они должны быть хорошего качества. Держитесь подальше от современных планетарных фильтров, выполненных из пластмассы, продаваемых многими производителями. Они ухудшают разрешение и увеличивают рассеяние света. Для покупки рекомендую стеклянные фильтры Baader, Lumicon или НПЗ. Можно поискать б/у на ебэй, астробарахолках и т.п., главное что бы фильтры небыли поцарапанными


Нейтральная плотность и поляризационные фильтры часто рекомендуются для Луны и планет. Я использовал их вначале, но понял, что цветные фильтры дают лучшие результаты.


Цветные фильтры не только уменьшают блики, но и улучшают контрастность деталей поверхности. Оранжевый № 21 — лучший фильтр для полумесяца Луны и для Сатурна, так же он хорошо работает по Марсу. Лучшие фильтры для Марса — красный №23A и для больших апертур — красный №25. Синий №80A подходит для Венеры и Меркурия, а зеленый №58 — для полнолуния. Юпитер был самым непростым, в плане подбора лучшего фильтра. За эти годы я испробовал много фильтров. Среди цветных фильтров мне на помощь пришел только синий №80A.


Есть пара специальных фильтров от Baader, которые я настоятельно рекомендую для Юпитера, Сатурна и Марса (хотя они слишком слабы для Луны, Венеры и Меркурия). Baader Moon and Sky Glow — лучший фильтр для Юпитера, намного лучше, чем синий №80A. Для Сатурна и Марса получить лучшие результаты можно с контрастным фильтром Baader Contrast Booster. Когда планеты очень яркие (вблизи противостояния), можно использовать два фильтра: Baader Moon and Sky Glow и Baader Contrast Booster вместе и использовать их для всех трех планет. Что мне особенно нравится в этих фильтрах, так это то, что они уменьшают блики и усиливают контраст, но не изменяют в значительной степени естественные цвета поверхности планет.


Окуляры


Ортоскопики! Независимо от того, какое бы у вас увеличение не было самым рабочим, я настоятельно рекомендую приобрести хотя бы один из них для планет. Ортоскопические окуляры сочетают в себе резкость, высокую контрастность и превосходное снижение рассевание света. Подержанные ортоскопы можно легко найти в диапазоне $40-60. Большинство из них производятся она дном или двух заводах в Японии, поэтому контроль качества, как правило, хороший. Если вы предпочитаете покупать новые, то лучшее соотношение цены и качества — это Baader Classic Orthos (BCO). BCO также имеют 50 градусное поле зрения, что гораздо больше, чем у обычных ортоскопических окуляров, а также окуляров Плёссла.


Двумя ограничениями ортоскопической схемы являются узкое поле зрения (40-50 градусов) и короткий вынос зрачка при малых фокусных расстояниях. Например, 18-миллиметровый ортоскопический окуляр имеет удобный вынос зрачка~14 мм. При использовании вместе с 2x Барлоу, эффективное фокусное расстояние становится 9 мм (применяется в телескопах с фокусными соотношениями F/D-8…F/D-10. При использовании 3x Барлоу, эффективное фокусное расстояние становится 6 мм (используется в телескопах с фокусными соотношениями F/D-5…F/D-7).


За эти годы я попробовал много окуляров, в диапазоне цен от начального, до среднего уровня. Некоторые из них имеют размытую картинку на высоких увеличениях, низкий контраст и ужасное рассеяния света. Ортоскопы — лучшее решение для планет. Однако, если вы предпочитаете более широкое поле зрения (особенно актуально для владельцев телескопа Ньютона, на монтировке Добсона, без возможности ведения за объектом при помощи микрометрическими винтами) или большой вынос зрачка, можно порекомендовать Vixen SLV, TeleVue Radians и Delites, Explore Scientific 68 и 82 серии и Meade 5000 UWAs как высококачественные Луна / планетарные окуляры. При очень ограниченном бюджете, можно обойтись и окулярами Плёссла, но только надо брать качественные.


Кто-то сказал бы: «Мои окуляры отлично работают по Луне», так оно и есть. Луна — очень легкий для наблюдения объект. Если ваш окуляр строит несколько размытое изображение, вы все равно увидите много деталей. Тем не менее, тестирование резких, топовых и совсем бюджетных окуляров, рядом друг с другом будет откровением. Подобно переключению с хорошего аналогового телевидения на HD вещание, разница весьма выразительная


Линзы Барлоу

Вам не нужна Барлоу, если у вас есть окуляры в нужном диапазоне фокусных расстояний. Кроме того, бюджетные линзы Барлоу могут ухудшить контрастность и увеличить рассеяние света. Тем не менее, хорошие, качественные Барлоу могут быть полезны. Чтобы получить 1 мм или меньше выходного зрачка в короткофокусном телескопе, необходимо использовать окуляр с коротким фокусным расстоянием. В этом случае может оказаться неудобным вынос зрачка. Лучшим вариантом, в данном случае, может быть использование 2-кратной или 3-кратной Барлоу, совместно с более длиннофокусным окуляром. Кроме того, Барлоу увеличивает эффективное фокусное расстояние телескопа, в результате чего можно получить более устойчивые планетарные изображения при комбинации линзы Барлоу + окуляр, по сравнению короткофокусным окуляром. Можно настоятельно рекомендовать Baader Q barlow 2.25x barlow, а в премиальном сегменте TeleVue 2x и 3x barlow.


Диагональ


Часто упускаемая из виду часть в оптическом тракте это диагональ. Она может быть причиной менее «звездных видов в окуляре телескопа». Одним из главных приоритетов должно стать повышение диаметра диагонали. Если у телескопа 2х-дюймовый фокусер, целесообразно перейти на 2-дюймовую диэлектрическую диагональ, что позволит улучшить изображение, как для DSO (Deep-Sky объектов), так и для планет. У меня был хороший опыт работы со средней по цене, диэлектрической диагональю от GSO. Так же можно рекомендовать производителей: Celestron, Orion, Explore Scientific.


Если вы ищете лучшую диагональ для Луны и планет, я бы выбрал призму хорошего качества. Призмы рассеивают меньше света, чем диэлектрические зеркальные диагонали и более предпочтительны для Луны и планет. С точки зрения соотношения производительности и цены, я бы порекомендовал призму Baader T2.


Наблюдение


Луна

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

На Луне большинство деталей видно на границе освещенной и не освещенной поверхности нашей спутницы. Поскольку терминатор (линия по которой идет граница дня и ночи) меняет свое местоположение каждый день вместе с фазой Луны, вы можете каждую ночь наслаждаться новыми видами. Даже в самые маленькие телескопы и бинокли можно увидеть много кратеров на поверхности Луны. Увеличение апертуры позволяет разрешить более мелкие детали. С моим 8-дюймовым телескопом Шмидт-Кассегрена, в среднем за ночь, я могу разобраться в деталях до ~1 км и провести всю наблюдательную сессию в одном кратере, изучая сложные формы стен, центральной горки, микрократеров и других мельчайших деталей.

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост
Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Меркурий и Венера

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Эти планеты не видны месяцами. Всего лишь на короткий промежуток времени они наблюдаются как «утренняя или вечерняя звезда». Меркурий труднее обнаружить, так как даже в периоды удаления от Солнца, он все равно расположен довольно близко к нашей звезде. Поиск Меркурия невооруженным глазом — это уже достижение. В редкие дни, совпадающие с элонгацией Меркурия (максимальным отдалением от Солнца), со спокойной, ясной атмосферой, планету можно заметить вблизи горизонта. Фазу Меркурия можно увидеть даже в небольшие инструменты.


Венеру увидеть легче. Элонгации планеты длятся неделями. Даже самый маленький бинокль способен показать фазы Венеры. В больших телескопах, с применением фильтров, иногда можно разрешать более темные облака в атмосфере Венеры.


Марс

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

В течение года Марс довольно быстро перемещается по зодиакальным созвездиям. Если он находится в небе, большую часть времени вы можете увидеть только маленький оранжевый диск планеты, без каких-либо деталей. Однако раз в два года Марс вступает в оппозицию (противостояние с Солнцем), когда его кажущиеся размеры значительно увеличиваются. Следующая оппозиция состоится 13 октября 2020 года, так что готовьтесь! :) Начинать наблюдения планеты можно уже с июля!

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Марс — самая трудная планета для наблюдения из-за низкой контрастности деталей поверхности. Фильтры и окуляры обязательно должны быть хорошими. Но даже при наличии 80 мм телескопа и терпения, во время противостояния, можно разобраться во многих деталях на его поверхности. Фокус наблюдения в в том, что надо не торопиться, держать планету в поле зрения телескопа и ждать момента, когда детали поверхности «прорисуются» более отчетливо, в моменты успокоения атмосферы. Это, кстати, общая стратегия наблюдения за такими планетами как: Юпитер, Марс и Сатурн.


Юпитер

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Юпитер обычно виден в течении 4-5 месяцев, каждый год. Благодаря динамичному квартету своих спутников и богатой деталям поверхности, Юпитер является одним из самых интересных объектов в астрономии. Даже бинокли с оптической схемой 10x50 разрешают диск планеты и 4 его спутника. Применяя большие увеличения и диаметр объективов бинокля (например 15х70, 20х80), можно без проблем увидеть пару основных полос на его диске. При наблюдении с применением высококачественных фильтров и окуляров, даже в 80 мм телескоп, появляется возможность увидеть сложную систему полос Юпитера. Вы также можете наблюдать транзиты Большого Красного Пятна и тени спутников Юпитера, по диску планеты. Увеличение диаметра телескопа до 8 дюймов и более, увеличит насыщенность цветов Юпитера, покажет больше мелких деталей в поясах и полярных регионах газового гиганта (включая небольшие штормы и фестоны). А также разрешит спутники планеты на маленькие диски. Наблюдение за Юпитером — это отличный навык, с практикой вы научитесь видеть больше.


Сатурн

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Как Юпитер, Сатурн виден в течении 4-5 месяцев каждый год. Но в отличии от Юпитера, его видимый размер меньше. В бинокли 10x50 выглядит как яйцо, с некоторой практикой и резкой оптикой, в бинокль 15x70, вокруг диска можно разрешить крошечные кольца. Кольца легко обнаруживаются даже в скромных телескопах. Относительно небольшое увеличение апертуры покажет «щель Кассини» в его кольцах (фильтров не требуется). Система облаков Сатурна имеет гораздо более низкий контраст по сравнению с Юпитером. Для разрешения деталей на диске планеты и в ее кольцах, необходимы фильтры и увеличение диаметра объектива телескопа. Крупнейший спутник Сатурна — Титан, хорошо виден даже при малых увеличениях. С большим телескопом можно разрешить еще несколько спутников.


Уран и Нептун


Они имеют тенденцию оставаться в одном созвездии в течение многих лет. Осень является лучшим временем для наблюдения за ними, уже на протяжении последних нескольких лет. Обе планеты можно увидеть в виде «голубых звезд» в бинокль или в небольшой телескоп. При помощи 8 дюймового и больше инструмента, можно рассмотреть очень маленькие, зеленоватые диски планет, без деталей поверхности. Так же при помощи больших телескопов (от 8 дюймов и выше) можно увидеть Тритон, спутник Нептуна, и, по крайней мере три спутника Урана.


Плутон


Все еще планета в моем восприятии! :) Он находится в Стрельце, последние несколько лет. При очень стабильной атмосфере, его можно увидеть только как очень слабую звезду, используя телескоп диаметром 8 дюймов или больше.


«Парад планет»


Каждые два-три года планеты выстраиваются в линию, и видны все сразу, за одну ночь. Я наблюдал данное явление в прошлом — очень впечатляет! :) В следующий раз я сообщу об этом явлении заранее.


К сожалению я не смог описать все нюансы наблюдения Луны и планет в рамках одной, короткой статьи. Надеюсь, я предоставил достаточно информации, чтобы заинтересовать вас планетными наблюдениями. Надеюсь данная статья окажется для кого-то полезной. источник

Всем чистого неба и захватывающих наблюдений!

Показать полностью 8
69

Почти 11 миллионов имен отправятся на Марс вместе с ровером Perseverance

На борт ровера NASA Perseverance установлен алюминиевый блок с тремя кремниевыми чипами, на которых содержатся 10 932 295 имен людей, записавших свои имена в рамках акции «Отправь свое имя на Марс». Также на чипах содержатся 155 эссе, которые были написаны учащимися из США, вышедшими в финал конкурса названий для марсохода.


Ровер Perseverance должен стартовать на Марс ближайшим летом и сядет в кратере Jezero 18 февраля 2021 года. На алюминиевой пластине выгравировано Солнце, а также Земля и Марс, к которым направлены лучи от звезды, что олицетворяет связь между планетами, которую несет миссия Perseverance.


Команда миссии начала приводить конфигурацию 1043-килограммового ровера в режим интеграции с ракетой-носителем Atlas V. nasa

Почти 11 миллионов имен отправятся на Марс вместе с ровером Perseverance NASA, Rover, Марс, Марсоход, Космос
Почти 11 миллионов имен отправятся на Марс вместе с ровером Perseverance NASA, Rover, Марс, Марсоход, Космос
488

Будет и на Марсе картошка цвести!

Многие, наверное, помнят о решающей роли картофеля, клубни которого совершенно случайно оказались на брошенной марсианской базе, в спасении неунывающего шутника Марка Уотни из книги и фильма «Марсианин».

Многие знающие специалисты критиковали тогда и книгу и фильм за неправдоподобность, мол марсианская почва насыщена перхлоратами и на ней невозможно выращивать земные растения.


Так ли это на самом деле?


Перуанские ученые из Международного центра картофеля International Potato Center (CIP) совместно с представителями NASA с 2016 года исследуют вопрос – сможет ли картофель расти в условиях, максимально приближенных к марсианским. Напомню, что Уотни использовал марсианский грунт при вполне земных атмосферных условиях. Для проведения опытов использовались сорта картофеля привычные к каменистой, засушливой и засоленной почве, а также суровым климатическим условиям, характеризующимся резкой сменой температур. Часть сортов была отобрана из числа произрастающих в суровых условиях Анд, другая часть была выведена специально с учетом определенных требований, включая стойкость к вирусным заболеваниям.

Эксперимент проводился в кубсате в одной из лабораторий Перуанского инженерно-технологического университета в Лиме (University of Engineering and Technology — UTEC). В нем была создана своеобразная теплица внутрь которой поместили почву из наиболее засушливого района Земли – пустыни Пампа де ла Хойя. Кроме того грунт обогатили характерными для поверхности Марса минералами.

Будет и на Марсе картошка цвести! Картофель, Исследования, Марс, Марсианин, Эксперимент, NASA, Космонавтика, Видео, Длиннопост

Установка по выращиванию картофеля в условиях, приближенных к марсианским


Давление атмосферы и влажность также были созданы максимально приближенными к условиям Красной планеты (высокое содержание СО2, низкое давление – как на высоте 6000 метров, марсианское освещение, температурные перепады).


Что получилось – смотрите в видео:

На первом этапе из 65 сортов картофеля — 4 взошли. На втором этапе ученые посадили одну из самых крепких разновидностей в еще более экстремальные условия, при этом почва была заменена щебнем и питательным раствором. Картофель тоже вырос.


Понятно, что под открытым марсианским небом никакие земные растения не выживут. Но в теплицах это возможно. Что касается повышенного содержания в марсианском грунте тяжелых металлов – эксперименты, проведенные в Вагенингенском университете (Wageningen University in the Netherlands) не подтвердили опасения, что растения впитают в себя тяжелые металлы. Уровень их содержания был безопасным.


Исследования продолжаются


Репортаж CBS:

Репортаж CGTN:

ссылка

Показать полностью 1 3
33

NASA разрабатывает новую концепцию ровера

Кувырки, прыжки и мгновенные повороты не являются стандартными манёврами которые под силу выполнить обычному космическому аппарату, исследующему далёкие миры. Традиционные марсоходы, например, передвигаются при помощи колёс, и они не смогут продолжить свою миссию если перевернутся. Однако, на небольших телах, таких как астероид или комета, учитывая их низкую гравитацию и очень неровные поверхности традиционные методы передвижения (на колёсах) довольно опасны для исследовательских аппаратов.


Новый проект представляющий из себя робота, специально предназначенного для преодоления проблем передвижения на малых телах разрабатывается совместно учёными из Лаборатории реактивного движения NASA, Стэнфордского университета и Массачусетского технологического института.

NASA разрабатывает новую концепцию ровера NASA, Rover, Космос, Длиннопост

Робот ёж: кубический ровер, который может однажды исследовать некоторые из самых экстремальных мест в нашей Солнечной системе.

“Ёжик является новым типом робота, который будет перемещаться по поверхности благодаря прыжкам. Его форма – это куб и он может работать независимо от того, на какую из сторон приземлился”, – сказал Исса Неснас (Issa Nesnas), руководитель команды JPL.

Основная концепция представляет собой куб, который передвигается при помощи прыжков, осуществляемых шипами и тормозит благодаря наличию внутренних маховиков. Шипы также защищают корпус робота от шершавой местности и выступают в качестве своеобразной ноги.


“Ко всему прочему в шипах мы можем разместить ряд инструментов, таких как, например, тепловой зонд благодаря которому можно будет измерять температуру поверхности”, добавил Неснас.

Два рабочих прототипа “ежей” продемонстрировали сои возможности на борту самолетов NASA способных создать условия микрогравитации благодаря параболическому типу движения в июне 2015 года. В ходе 180 парабол (четыре рейса), эти роботы выполнили несколько типов маневров, которые необходимы для движения на малых телах с низкой гравитацией. Исследователи протестировали эти манёвры на различных материалах, которые имитируют широкий спектр поверхностей: песчаные, твёрдые, скалистые, скользкие и обледенелые, мягкие и рыхлые.


“Мы доказали, что наш “ёжик” может выполнять контролируемые прыжки в условиях низкой гравитации”, – сказал Роберт Рид (Robert Reid), ведущий инженер проекта в JPL.

В результате одного из экспериментов во время параболического полёта, исследователи смогли добиться от “ежа” выполнения манёвра “торнадо”, который заключается в интенсивном вращении. Этот манёвр может быть использован для того, чтобы выбраться из песчаной воронки или других мест, в которых обычный колёсный робот просто бы застрял.

NASA разрабатывает новую концепцию ровера NASA, Rover, Космос, Длиннопост

Астероид Итокава занимает центральное место на этой фотографии, полученной космическим аппаратом “Хаябуса” в октябре 2005 года


Прототип “ежа” JPL имеет три маховика и восемь шипов. Он весит чуть более пяти килограмм, однако с полезной нагрузкой его масса возрастёт до 9 килограмм с инструментами, такими как спектрометры и камеры. Стэнфордский прототип компактнее своего брата из JPL.


“Геометрия корпуса имеет большое влияние на траекторию при скачкообразном движении. Мы экспериментировали с несколькими формами и обнаружили, что форма куба обеспечивает лучшую производительность при прыжках. К тому же куб проще в изготовлении и транспортировке в космическом корабле”, – сказал Бенджамин Хокман (Benjamin Hockman), ведущий инженер из Стэнфорда.

В настоящее время исследователи работают над автономностью нового робота. В идеале такие аппараты должны работать самостоятельно, подобно современным марсоходам. Которые общаются с Землёй благодаря спутникам, вращающимися вокруг Марса. Стоимость строительства подобного робота относительно низкая, к тому же на одном корабле может находиться несколько роботов, которые будут начинать свою работу поэтапно, что в свою очередь позволит им исследовать большую территорию. ссылка

Показать полностью 1
58

Компания Bigelow Aerospace уволила сотрудников и приостановила свою деятельность

Как сообщает SpaceNews, 68 сотрудников Bigelow Aerospace были проинформированы о том, что их увольняют: решение вступает в силу немедленно. Еще 20 сотрудников уволили на прошлой неделе. Таким образом, компания, базирующаяся в Северном Лас-Вегасе, штат Невада, прекращает свою деятельность.


Один из знакомых с ситуацией источников назвал это «идеальным штормом проблем». Сюда относится и пандемия коронавируса. Напомним, 20 марта губернатор Невады Стив Сайсолак подписал директиву, приказывающую закрыть все «малозначимые» предприятия. Если бы Bigelow Aerospace отказалась ее выполнять, то могла бы столкнуться со штрафами и даже аннулированием бизнес-лицензии.

Компания Bigelow Aerospace уволила сотрудников и приостановила свою деятельность NASA, МКС, Космос, Bigelow, Космическая станция, Космонавтика

По словам представителя Bigelow Aerospace, компания хочет снова нанять персонал после отмены чрезвычайных мер, однако другие источники говорят, что это не соответствует действительности и решение об увольнении носит бессрочный характер.


Отметим, аэрокосмические компании в других штатах работают, несмотря на аналогичные ограничения. Так, в Калифорнии предприятия космической индустрии продолжают свою деятельность даже после введения директивы «не выходить из дома», поскольку федеральное правительство считает аэрокосмическую отрасль важной.


Bigelow Aerospace была основана в 1999 году Робертом Бигелоу, который планировал использовать свои накопления от гостиничного бизнеса для развития космического туризма c применением концепции надувных модулей. Ранее Bigelow Aerospace запустила экспериментальные космические модули Genesis I, Genesis II и Bigelow Expandable Activity Module. Компания также разрабатывала «полноценные» модули, которые можно было бы использовать в качестве орбитальных гостиниц.

Компания Bigelow Aerospace уволила сотрудников и приостановила свою деятельность NASA, МКС, Космос, Bigelow, Космическая станция, Космонавтика

Опыт Bigelow Aerospace может помочь другим компаниям в отработке новых технологий. Напомним, в прошлом году Sierra Nevada Corporation представила прототип крупного надувного модуля, предназначенного для длительных пилотируемых миссий, в том числе к Марсу.


В будущем такие модули могут пригодиться для новой орбитальной станции Lunar Gateway. Недавно NASA выбрало для нее первые научные инструменты. Саму станцию могут ввести в эксплуатацию примерно в середине 2020-х. ссылка

Показать полностью 1
82

Космическая энергетика

Советский ученый Николай Кардашев полвека назад сформировал шкалу, в которой уровень развития цивилизации определялся количеством используемой энергии. Подход очень логичный — когда человечество осваивало энергию лошади, угля, нефти и атомного распада — каждый раз оно поднималось на новый уровень могущества. Освоение космоса зависит не только от возможностей вывести спутник на орбиту, но и от технологий, позволяющих ему функционировать. И обеспечение энергией космических аппаратов является одной из важнейших граней космонавтики. Какие способы успели придумать люди?

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Постановка задачи


В задаче энергоснабжения космического аппарата можно выделить два критерия, позволяющие наглядно распределить различные подходы. Это мощность и длительность. Действительно, логично, что одни технические решения используются для задачи “много, но недолго” и другие — для “десятилетиями, пусть и немного”. Если взять эти критерии как оси графика, то получится следующая картина:

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Spacecraft Power Systems, David W. Miller, John Keesee

Первый спутник отправился в полет с заряженными серебряно-цинковыми аккумуляторами, которые обеспечивали “бип-бип” передатчика 21 день. Решение было логичным — экспериментальные солнечные панели ждали своей очереди на объекте “Д”, который стал “Спутником-3” (запущен 15 мая 1958). Серебряно-цинковые батареи, благодаря высокой плотности энергии и большим токам разряда, нашли широкое применение в космонавтике, а их недостаток — небольшое количество циклов перезарядки неважен в случае, когда батарея используется один раз. Любопытная метаморфоза произошла с кораблем “Союз” — первые корабли летали с солнечными панелями, на модификации 7К-Т (“Союз-10” — “Союз-40”, кроме -13, -16, -19, -22) их убрали, оставив только аккумуляторы с запасом электроэнергии на двое суток, а со следующей модификации “-ТМ” солнечные панели снова вернули и уже насовсем. До сих пор аккумуляторы остаются рациональным решением для аппаратов, которые будут работать не дольше нескольких суток и не требуют больших объемов электричества. Иногда на аппараты ставят даже неперезаряжаемые элементы, например, прыгающий зонд MASCOT, сброшенный с межпланетной станции Hayabusa-2 на астероид Рюгу, использовал литий-тионилхлоридные элементы, которых хватило на 16 часов. Но перезаряжаемые элементы встречаются чаще, с ними удобнее работать, потому что, при необходимости, их можно подзарядить перед запуском без разборки аппарата. Литий-ионные элементы, благодаря своим высоким характеристикам, сейчас получают очень широкое распространение не только в бытовых приборах, но и на космических аппаратах.

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Зонд MASCOT станции Hayabusa-2


Если энергии требуется очень много, но на короткое время, имеет смысл применять химические источники. Например, на спейс шаттлах были так называемые APU. Несмотря на полностью совпадающее название с вспомогательной силовой установкой на самолетах, это были специфические устройства. В камере сгорания сжигалось химическое топливо (несимметричный диметилгидразин и азотный тетраоксид), горячий газ подавался на турбину, а ее вращение создавало давление в гидросистеме шаттла без промежуточного превращения энергии в электричество. Гидравлика поворачивала управляющие поверхности орбитера на этапах выведения на орбиту и посадки. Любопытно, что сейчас плотность энергии литий-ионных батарей достигла таких значений, что появилась ракета-носитель Electron, в которой выполняющий похожую функцию турбонасосный агрегат (устройство для подачи топлива в двигатель) заменили на электрический насос с блоком аккумуляторов. Потери на большей массе батарей компенсировались простотой разработки.


Топливные элементы

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Топливный элемент спейс шаттла


Если длительность космического полета не превышает две-три недели, то, в особенности для пилотируемых кораблей, очень привлекательными становятся так называемые топливные элементы. Как известно, водород горит в кислороде с выделением огромного количества тепла, и ракетные двигатели, использующие это, являются одними из наиболее эффективных. А возможность напрямую получать электричество из соединения водорода с кислородом породила источники электроэнергии, применяющиеся, кстати, не только в космонавтике.


Топливный элемент работает следующим образом: водород попадает на анод, становится положительно заряженным ионом и отдает электрон. На катоде ионы водорода получают электроны, соединяются с молекулами кислорода и образуют воду.


Соединив несколько ячеек и подавая больше компонентов, можно легко получить топливный элемент большой мощности. А выделяющуюся в результате работы воду можно использовать для нужд экипажа. Сочетание свойств обусловило выбор топливных элементов для кораблей “Аполлон” (и, кстати, для лунных версий “Союзов“ первоначально выбрали тоже их), шаттлов и “Бурана”.


Стоит отметить, что топливные элементы теоретически могут быть обратимыми, диссоциируя воду на водород и кислород, запасая электроэнергию и работая, фактически, как аккумулятор, но на практике такие решения в космонавтике пока не востребованы.


По имени Солнце


Жизнь на Земле невозможна без солнечной энергии — на свету растут растения, и энергия уходит дальше по пищевой цепочке. И для космонавтики Солнце сразу же стало рассматриваться как доступный и бесплатный источник. Первые спутники с солнечными панелями, Vanguard-1 (США) и “Спутник-3” (СССР), отправились в полет уже в 1958 году.

Прелесть солнечных панелей заключается в непосредственном превращении света в электричество — фотоны, падая на полупроводники, напрямую вызывают движение электронов. Соединяя ячейки последовательно и параллельно, можно получить требуемые значения напряжения и тока.


В космических условиях очень важным является компактность солнечных панелей, например, огромные “крылья” МКС сделаны из очень тонких панелей, которые в транспортировочном положении были сложены гармошкой.

Видео раскрытия панелей МКС


До сих пор солнечные панели остаются наилучшим вариантом, если необходимо снабжать космический аппарат энергией годами. Но, конечно, они, как и любое другое решение, имеют и свои недостатки.


Прежде всего, на низкой околоземной орбите спутник постоянно будет уходить в тень Земли, и необходимо дополнить панели аккумуляторами, чтобы электропитание было непрерывным. Аккумуляторы и дополнительная площадь солнечных панелей для их зарядки на солнечной стороне орбиты заметно увеличивают массу электросистемы спутника.


Далее, мощность солнечного излучения подчиняется закону обратных квадратов: Юпитер в 5 раз дальше Земли, но на его орбите космический аппарат с такими же солнечными панелями будет получать в 25 раз меньше электроэнергии.


Солнечные панели постепенно деградируют в условиях космического излучения, так что на длительные миссии их площадь необходимо рассчитывать с запасом.

Линейное увеличение массы солнечных панелей с ростом требуемой мощности в какой-то момент делает их слишком тяжелыми по сравнению с другими системами.


Альтернатива аккумуляторам


Если вы читали замечательную книгу Нурбея Гулиа “В поисках энергетической капсулы”, то можете помнить, что после долгих поисков идеального аккумулятора он остановился на модифицированных для безопасного разрушения маховиках. Сейчас с успехами литий-ионных батарей эта тема менее интересна, но эксперименты по хранению энергии в раскрученном маховике проводились и в космонавтике. В начале 21 века компания Honeywell проводила эксперименты с маховиками-аккумуляторами. Теоретически это направление может быть интересно еще и тем, что маховики используются в системе ориентации спутника, и можно совместить режимы поддержания требуемого положения в пространстве и хранения энергии.


Сконцентрируй это


Еще на стадии проработки концепта было очевидно, что станция Freedom (после многочисленных изменений реализованная как МКС) будет нуждаться в большом количестве электроэнергии. И расчеты 1989 года показали, что солнечный коллектор сможет сэкономить от 3 до 4 миллиардов долларов (6-8 миллиардов в сегодняшних ценах) по сравнению с электропитанием только от солнечных панелей. Что это за конструкции?

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Один из ранних проектов Freedom


Конструкции из шестиугольников по краям — солнечные концентраторы. Зеркала образуют параболоид, собирающий солнечный свет на приемник, расположенный в фокусе. В нем теплоноситель закипает, газ крутит турбину, которая вырабатывает электричество. Панель рядом — радиатор тепла, в котором теплоноситель конденсируется обратно в жидкость.


К сожалению, конструкция, как и многие идеи для станции Freedom, пала жертвой урезания бюджета, и МКС использует только солнечные панели, так что мы не можем на практике узнать, оправдались бы ожидания экономии средств. Стоит отметить, что солнечные коллекторы используются и на Земле, но распространены они в наиболее простой форме без концентрирующих зеркал — их приводы сильно повышают стоимость.


Тепло и электричество


Когда над головой ярко светит Солнце, в космический холод не верится. Действительно, на освещенной стороне Луны температура поднимается выше 100°C. Но вот лунной ночью поверхность охлаждается ниже -100°C. На Марсе средняя температура в районе -60°C. А на орбите Юпитера, как мы уже говорили, Солнце дает только 1/25 того, что достается Земле. И, к счастью для планетоходов и межпланетных станций, есть вариант, при котором удобно обеспечиваются и подогрев и энергообеспечение космического аппарата.


Как известно, у одного и того же вещества может быть много изотопов — атомов, отличающихся только количеством нейтронов в ядре. И есть как стабильные, так и распадающиеся с разной скоростью изотопы. Подобрав элемент с удобным периодом полураспада можно использовать его в качестве источника энергии.


Одним из наиболее популярных изотопов является 238Pu (плутоний-238). Один грамм чистого плутония-238 генерирует примерно 0,5 Ватта тепла, а период полураспада в 87,7 лет означает, что энергии хватит надолго.


То, что ядерный распад выделяет тепло, означает, что его надо каким-то образом превратить в электричество. Для этого чаще всего используют термопару — сплавленные вместе два различных металла генерируют электричество при неравномерном нагреве. Сочетание источника энергии в виде распадающихся радиоактивных изотопов и термоэлектрических преобразователей дало название “радиоизотопный термоэлектрический генератор” или РИТЭГ.

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Схема РИТЭГа


РИТЭГи достаточно широко используются в космонавтике: они вырабатывали электричество для модулей научного оборудования, оставленных на Луне астронавтами “Аполлонов”, распадом изотопов обогревались советские “Луноходы”, на электричестве от РИТЭГа работали марсианские станции “Викинг” и ездит по Марсу “Кьюриосити”. РИТЭГи являются штатным источником электричества для аппаратов, отправляющихся во внешнюю солнечную систему — “Пионеров”, “Вояджеров”, “Новых горизонтов” и других.


РИТЭГи очень удобны тем, что не требуют никакого управления, не имеют движущихся частей и способны работать десятилетиями — “Вояджеры” остаются работоспособными уже более сорока лет, несмотря на необходимость отключения части оборудования из-за снижения выработки электричества. К сожалению, у них есть и недостаток — низкая плотность энергии (мощный РИТЭГ будет слишком много весить) и высокая цена топлива. Остановка производства плутония-238 в США и рост цен повлияли на то, что межпланетная станция “Юнона” отправилась к Юпитеру с огромными солнечными панелями.


Ядерные технологии обязательно поднимают вопросы безопасности, и у РИТЭГов уже давно есть сформировавшиеся технологии ее обеспечения. После 1964 года, когда авария американской ракеты-носителя со спутником, питавшимся от РИТЭГа, привела к заметному повышению радиационного фона по всей планете, РИТЭГи стали упаковывать в капсулы, выдерживающие падение в атмосфере, и последующие аварии заметных следов не оставили.


Сложности превращений


Термоэлектрический генератор является не единственным вариантом преобразования тепла в электричество. В термоэмиссионных преобразователях нагревается катод вакуумной лампы. Электроны “допрыгивают” до анода, создавая электрический ток. Термофотоэлектрические преобразователи превращают тепло в свет инфракрасного диапазона, который затем преобразуется в электричество аналогично солнечной панели. Термоэлектрический конвертер на щелочных металлах использует электролит из солей натрия и серы. Двигатель Стирлинга преобразует разницу температур в движение, которое уже затем превращается в электричество генератором.


Реакторы над головой


Из всех известных человечеству управляемых источников энергии, ядерное топливо обладает наибольшей плотностью — один грамм урана способен дать столько же энергии, что 2 тонны нефти или три тонны угля. Поэтому нет ничего удивительного в том, что атомные реакторы выступают многообещающим вариантом, когда необходимо длительно снабжать космический аппарат большим количеством энергии.

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Слева американский SNAP, справа советский «Бук»


Работы над космическими реакторами начали еще в 1960-х. Первым отправился в космос американский SNAP-10A, проработал на орбите 43 дня и был отключен из-за аварии не относящейся к реактору системы. После этого эстафету принял СССР. Созданные для отслеживания перемещения американских авианосных ударных группировок спутники УС-А системы целеуказания “Легенда” несли на борту ядерный реактор “Бук” для обеспечения энергией активной радиолокационной системы, и их было запущено больше трех десятков. В конце 80-х два раза слетал в космос реактор “Топаз”, использующий меньшее количество ядерного топлива и имеющий большую эффективность — 150 КВт тепловой мощности “Топаза” производили 6 КВт электрической против 100 и 3 у “Бука”. Достигалось это в том числе и использованием другого преобразователя энергии — термоэмиссионного вместо термоэлектрического. Но после 1988 года спутники с атомными реакторами на борту больше не летали.


Возрождение интереса к ядерным реакторам произошло в 21 веке. На Западе это вызвано уменьшением запасов и ростом цены плутония-238 для РИТЭГов. В США разрабатывается реактор Kilopower, задачей которого будет стать аналогом РИТЭГа. Интересной особенностью является то, что реактор спроектирован самоуправляемым и после активации, как и РИТЭГ, не требует присмотра. В России разрабатывается проект ядерной установки мегаваттного класса. В сочетании с электрореактивными двигателями должна получиться конструкция с принципиально новыми возможностями, очень эффективный орбитальный буксир.


Безопасность реакторов построена на других принципах, нежели у РИТЭГов. До запуска реактор чист (уран ядовит, но его можно безопасно брать руками в перчатках), поэтому на случай аварии, наоборот, ставят газогенераторы, надежно разрушающие его в плотных слоях атмосферы. А вот после включения в реакторе начинают накапливаться опасные изотопы, и советские спутники УС-А в случае аварии уводили реактор на высокую орбиту захоронения. Заглушенные реакторы до сих пор летают над нашими головами, но, учитывая срок существования орбит, скорее до них доберутся космические мусорщики будущего и разберут на полезные ресурсы, нежели они сгорят в атмосфере.


Генератор из троса


Как известно, у Земли есть магнитное поле. Оно уже сейчас используется в системах ориентации космических аппаратов, но есть и другой вариант. Если размотать длинный трос, то можно либо получать электричество за счет торможения аппарата, либо разгоняться, пропуская ток через трос.

Космическая энергетика Космос, Энергосбережение, Энергия, Космонавтика, Видео, Длиннопост

Силы, действующие на спутник, выпустивший проводящий трос

Пока что наибольшее развитие получила идея торможения аппаратов тросами для уменьшения количества космического мусора, но технически можно и обеспечить таким образом электропитание спутника, пусть и не очень длительное время.


Заключение


Сейчас отрасль систем электропитания космических аппаратов активно развивается. Солнечные панели и аккумуляторы становятся все более эффективными, а возобновление работ над космическими ядерными реакторами дает надежду на появление новых мощных источников электричества. ссылка

Показать полностью 7 1
37

NASA приостановило подготовку полета человека к Луне из-за ситуации с коронавирусом

NASA вынуждено реагировать на угрозу со стороны распространения по миру коронавируса. Как стало известно, в космическом ведомстве решили не «испытывать судьбу» и ввести расширенные меры безопасности.


«Руководство NASA нацелено на то, чтобы сделать здоровье и безопасность своих работников главным приоритетом в условиях ситуации с коронавирусом. Для этого с пятницы, 20 марта, мы вводим в сборочном центре «Мишуд» и Космическом центре им. Джона Стенниса четвертый уровень мер безопасности», — заявил руководитель NASA Джеймс Брайденстайн.

NASA приостановило подготовку полета человека к Луне из-за ситуации с коронавирусом NASA, Sls, Орион, Луна, Космос, Artemis, Длиннопост

В заявлении говорится, что ранее у одного из сотрудников Космического центра Стенниса выявили положительный результат на Covid-19. Кроме того, в ведомстве указывают на рост числа заразившихся среди людей, проживающих в округе.


Ограничения затрагивают постройку и испытания оборудования сверхтяжелой ракеты Space Launch System (SLS), а также космического корабля Orion — двух ключевых компонентов новой программы NASA «Артемида».


Она ставит своей задачей возвращение человека на Луну и (в долгосрочной перспективе) создание там постоянно действующей исследовательской базы. Реализацию этих задач иногда рассматривают как подготовку к следующему шагу — полету человека на Марс: впрочем, насчет последнего пункта NASA пока не имеет конкретных планов.

NASA приостановило подготовку полета человека к Луне из-за ситуации с коронавирусом NASA, Sls, Орион, Луна, Космос, Artemis, Длиннопост

Напомним, недавно представитель Национального управления по аэронавтике и исследованию космического пространства Стив Джурчик заявил, что первый полет в рамках программы «Артемида» может состояться примерно во второй половине 2021 года. В рамках миссии Artemis-1 корабль Orion выполнит беспилотный полет к естественному спутнику Земли.

Первый пуск корабля с экипажем запланировали на 2022-2023 годы, а в 2024-м должна состояться высадка на Луну двух астронавтов — мужчины и женщины.


Неизвестно, насколько сильно скажутся на этих планах новые меры, однако стоит сказать, что испытания Space Launch System и Orion переносили много раз. Ранее первый полет корабля с экипажем хотели выполнить еще в 2014 году, а начать полеты к Луне планировали в 2019-2020 годах. При этом до сих пор за спиной Orion лишь один беспилотный космический запуск — его выполнили в 2014-м.


Неопределенной остается и судьба перспективной орбитальной станции Gateway, которая, как недавно стало известно, может оказаться ненужной для высадки человека на Луну. ссылка

Показать полностью 1
31

Дублёры

Армстронг… Советская и американская космическая эпоха подарила нам множество имён, которые ассоциируются теперь с гордым словом «Первые». Пилигримы, шагнувшие за пределы нашей материнской планеты, взглянувшие в бездну космоса, вернувшиеся обратно, чтобы рассказать нам об этом, чтобы стать символом достижений человечества на тернистом пути исторического процесса.

Тем не менее, космонавтика имеет в своей основе куда более прозаические, практические вещи, и рядом с теми «Первыми», кто сейчас навечно вписан в историю, тот же ухабистый пусть к вершине прошагали такие профессионалы, готовые к выполнению поставленной задачи, но не ставшие «Первыми». Среди них были и те, кто получил особенную роль – быть дублёрами. Герман Титов готовился бок о бок с Юрием Гагариным к первому полёту, Евгений Хрунов, как и Алексей Леонов, надевал скафандр «Беркут» и отрабатывал выход из шлюзовой камеры «Волга» в самолёте-лаборатории, а Ирина Соловьёва, вместе с Валентиной Терешковой доказывала, что женщина тоже способна стать космическим первопроходцем.

Но так уж сложилось, что на слуху остаются «Первые». Дублёры же вполне могут продолжить свой профессиональный путь, и поставить множество других значимых исторических вех, но помнить о них будут люди, интересующиеся историей развития космонавтики или профессионалы, связанные с этой отраслью.

Дублёры Космос, Космонавтика, Космонавты, Длиннопост

Например, Герман Степанович Титов, генерал-полковник авиации, Герой Советского Союза, доцент, доктор военных наук. Герман Титов вполне мог стать первым космонавтом, достигшим открытого космоса. И, хотя Титов всё же полетел после Гагарина, он совершил первый длительный (более суток) космический полёт, в ходе которого испытал «космический туалет» в условиях штатной эксплуатации, доказал возможность сна в космосе и провёл другие важные эксперименты. Всё это было направлено на получение одного единственного ответа: сможет ли человек длительное время пребывать в космосе и вести эффективную трудовую деятельность.

Оказалось, что космос – среда враждебная человеку. Несмотря на тренированность, после нескольких витков, Титов ощутил головокружение и тошноту. Эти симптомы говорили о нарушении вестибулярного аппарата, попавшего в чуждые ему условия. Данные, полученные после второго полёта человека, и рекомендации, которые Герман Степанович выработал для борьбы с вестибулярными расстройствами, вызванными невесомостью, вошли важным дополнением в такое научное направление, как космическая медицина.

Дублёры Космос, Космонавтика, Космонавты, Длиннопост

История космической отрасли не была бы полной без трагических страниц. Бондаренко, Волков, Добровольский, Пацаев, экипажи «Шаттлов» «Колумбия» и «Челленджер» – горькие уроки, вынесенные из этих событий, каждый по-своему повлиял на дальнейший путь становления космонавтики. После гибели Валентина Бондаренко в сурдокамере, тренировки по сенсорной депривации перестали проводить в кислородной атмосфере, а для космонавтов оставили возможность для досрочного покидания сурдокамеры в случае нештатной ситуации. Гибель Владислава Волкова, Георгия Добровольского и Виктора Пацаева указала на необходимость создания аварийно-спасательных скафандров, а аварии «Шаттлов» «Колумбия» и «Челленджер», вполне возможно, указали руководству NASA на необходимость изменения подходов к космической программе.

Дублёры Космос, Космонавтика, Космонавты, Длиннопост

Гибель Владимира Комарова, единственного в первом отряде космонавта с инженерным образованием, стоит немного особняком в этом списке, так как с ней связан профессиональный путь другого дублёра «Первого» – полковника ВВС, Героя Советского Союза, Евгения Васильевича Хрунова. До этого его назначали дублёром Алексея Архиповича Леонова в экспедиции «Восход-2» – миссии по первому выходу в открытый космос.

Гонка к поверхности Луны торопила руководства как СССР, так и США, и полёт кораблей «Союз-1» и «Союз-2» должен был стать важным этапом в этой гонке. Стыковка двух кораблей и переход космонавтов из одного аппарата в другой через открытый космос требовались для подтверждения технической возможности выполнения советской лунной программы. Но изделия оказались слишком «сырыми», требовалась длительная доработка изделий, чтобы довести их до требуемого уровня надёжности.

Нераскрытие солнечной панели и другие отказы, возникшие в процессе полёта корабля «Союз-1» заставили руководство отменить старт корабля «Союз-2» с космонавтами Валерием Быковским, Алексеем Елисеевым и Евгением Хруновым. Несмотря на отчаянные попытки Комарова посадить корабль, они не увенчались успехом, но гибель Комарова спасла жизнь космонавтам не в исторической перспективе, а в конкретный момент времени и конкретному экипажу.

Дублёры Космос, Космонавтика, Космонавты, Длиннопост

Впоследствии Хрунов выполнил программу, которую возлагали на экспедицию «Союз-2» В составе экипажа экспедиции «Союз-5» он выполнил стыковку и переход из корабля в корабль, и до сих пор этот переход между кораблями является первым и единственным в истории мировой космонавтики, а два состыкованных корабля – первой многомодульной орбитальной станцией.

Не у всех дублёров судьба сложилась подобным образом. Вышеупомянутые дублёры, впоследствии всё же совершили космический полёт, доказали свой профессиональный уровень и остались в памяти как состоявшиеся космонавты. Но в космической отрасли есть и те, кого зачислили в отряд и назначили дублёром, но по тем или иным причинам их полёт так и не состоялся. При этом они продолжают работать, оставаясь востребованными специалистами, принося неоценимую пользу отечественной космической отрасли.

Дублёры Космос, Космонавтика, Космонавты, Длиннопост

Например, полковник ВВС, кандидат психологических наук, мастер спорта по парашютному спорту, старший научный сотрудник Центра подготовки космонавтов, Ирина Баяновна Соловьёва. На момент зачисления в отряд космонавтов Ирина Баяновна успела пройти путь до инженера проектно-конструкторского отдела в «Уралэнергомонтаж» и совершить 700 прыжков с парашютом. В составе группы, куда также входили Валентина Терешкова, Жанна Йоркина и Валентина Пономарёва, она проходила подготовку по программе первого полёта женщины в космос. Её назначили дублером Терешковой, а затем готовили по программе «Восход-4» с первым полностью женским экипажем и первым выходом женщины в космос, но полёт отменили из-за закрытия программы «Восход».

Впоследствии женский отряд расформировали, и Ирина Соловьёва продолжила работу в Центре подготовки космонавтов, в качестве младшего научного сотрудника, где и работает до сих пор, уже в должности старшего научного сотрудника. Впоследствии она защитила диссертацию на соискание научной степени кандидата психологических наук, а сферой её исследований является психология труда в экстремальных условиях. И сейчас Ирина Баяновна продолжает исследовать деятельность человека в открытом космосе и искать способы совершенствования подготовки космонавтов, выступает на научных чтениях с докладами и пишет статьи. Вот, для примера, одна из её работ: http://www.hpvestnik.ru/index.php?razdel=state_5.

От первых смелых и порой даже наивных размышлений футурологов конца XIX – начала XX века, до теоретических расчётов Циолковского и Оберта, от первых скромных попыток энтузиастов из ГИРД до Международной космической станции – становление космической отрасли прочно связано с фамилиями отдельных личностей. Но весь этот путь они проделывали не в одиночестве. Рядом с ними добросовестно трудилось множество других людей, будь то дублёр, который готовился в любой момент занять место своего товарища и выполнить поставленную задачу, конструктор, чертивший первый спутник, рабочий, варивший бак для ракеты-носителя «Восток», инструктор готовивший космонавтов к первому в истории шагу в космическую бездну или корреспондент, печатавший в «Московском комсомольце» статью о первом выходе человека в открытый космос. Все они вносили свой посильный вклад, кирпич за кирпичом выстраивая здание отечественной космонавтики. Потому что космонавтика – это общее дело.

Дублёры Космос, Космонавтика, Космонавты, Длиннопост
Показать полностью 6
66

Учёные из NASA заявили, что GPS можно пользоваться для полётов к Луне

GPS, спутниковая навигационная система, которая сегодня помогает примерно 4 млрд людей на Земле ориентироваться на местности, может использоваться на лунной орбите в ходе миссии Artemis. Для этого команда NASA разрабатывает приёмник, который сможет принимать сигналы от нескольких десятков спутников GPS.


GPS работает на высоте около 20,1 тыс. км над поверхностью Земли и открыта для любых GPS-приёмников. Её сигналы используются в навигационных системах транспортных средств, интерактивных картах и устройствах слежения всех типов, а также во многих других приложениях.


Если астронавты достигнут Луны, как запланировано в рамках миссии NASA Artemis, у них будет много работы, для которой потребуется ориентирование на местности. Основная цель будет заключаться в разработке месторождений льда в кратерах вблизи южного лунного полюса. Астронавты должны будут точно ориентироваться в тех местах, где роверы ранее нашли лёд. Им также нужно будет найти оборудование, которое отправилось на Луну раньше них, включая буровое оборудование и средства снабжения.

Учёные из NASA заявили, что GPS можно пользоваться для полётов к Луне NASA, Artemis, GPS, Луна, Космос, Спутник, Артемида, Длиннопост

Ка-Мин Чунг и Чарльз Ли из Лаборатории реактивного движения NASA (JPL) пришли к выводу, что сигналы от навигационных спутников вблизи Земли могут использоваться для ориентирования астронавтов на лунной орбите. Исследователи представили результаты своих расчётов на конференции IEEE Aerospace Conference в Монтане.

Чунг и Ли рассчитали орбиты навигационных спутников GPS, европейской системы Galileo и российской системы ГЛОНАСС — всего 81 спутника. Антенны большинства из них передают сигналы к поверхности Земли, но также излучают их в космос. По словам исследователей, эти сигналы достаточно сильны, чтобы их мог принять космический корабль вблизи Луны. Чунг, Ли и их команда рассчитали, что космический корабль на лунной орбите сможет «видеть» сигналы от 5 до 13 спутников.


Помочь астронавтам ориентироваться после приземления на поверхность Луны будет сложнее, главным образом потому, что в полярных регионах Земля находится низко над горизонтом. Сигналы спутников могут заблокировать лунные холмы или края кратера. Но команда JPL и их коллеги из Центра космических полетов Годдарда в Мэриленде подготовились к этому. Чтобы помочь астронавтам, команда предложила использовать два спутника на лунной орбите — один новый спутник, оснащённый GPS, который будет действовать в качестве маяка-локатора, и спутник NASA Lunar Reconnaissance Orbiter, который уже работает с 2009 года.


«Лунный GPS-приёмник» будет основан на навигаторе GPS, который инженеры Центра космических полетов Годдарда начали разрабатывать в начале 2000-х специально для NASA Magnitospheric Multiscale Mission, или MMS, — миссии NASA по исследованию магнитосферы Земли, первой в истории миссии по изучению того, как магнитные поля Солнца и Земли соединяются и разъединяются. Цель заключалась в создании приёмника, который будет работать в космосе и будет быстро получать и отслеживать радиоволны GPS даже в областях со слабым сигналом. В новом приёмнике соединятся технологии навигатора GPS с MMS-миссии и SpaceCube, реконфигурируемой, очень быстрой бортовой компьютерной платформы. Новая технология получила название NavCube.

Учёные из NASA заявили, что GPS можно пользоваться для полётов к Луне NASA, Artemis, GPS, Луна, Космос, Спутник, Артемида, Длиннопост

Мощность обработки сигнала GPS, которую предлагает NavCube, должна обеспечивать возможность использования GPS на Луне. Ранее в этом году команда NASA уже смоделировала характеристики лунного GPS-приемника. Завершить создание прототипа и изучить варианты демонстрации полета команда планирует к концу этого года.


«NASA годами продвигает технологию высотных GPS, — заявил Люк Винтерниц, архитектор системы приемников MMS-навигатора. — GPS вокруг Луны — следующая цель».


Как отмечают в NASA, расширение возможностей использования GPS на Луне потребует некоторых улучшений по сравнению с бортовой системой GPS MMS. Однако эта сеть не должна быть дорогой по стандартам космических программ. Спутник-ретранслятор может быть очень маленьким, брать сигналы от существующих спутников и летать на ракете, запускающей другие полезные грузы на Луну.


Как пишет IEEE Spectrum, планы относительно миссии Artemis замедлились из-за дебатов по финансированию и архитектуре миссии. Руководство NASA рассчитывало построить базовую станцию на орбите Луны, известную как Gateway (Ворота), однако Белый Дом приказал отправить астронавтов на Луну к 2024 году. Если агентству придётся выполнять этот приказ, проекту Gateway, возможно, придется подождать до конца десятилетия. Тем не менее, ученые считают, что создание устойчивой системы лунной навигации будет полезно независимо от того, как будет проходить миссия. ссылка | источник

Показать полностью 1
162

Как не допустить заражения МКС (а также тех планет, которые мы собираемся посетить)

Астронавты и космонавты приносят с собой на борт Международной космической станции массу микробов с Земли, на орбите бактерии размножаются и мутируют. Как удается справляться с этим и не допускать ситуации, когда они выйдут из-под контроля?

Как не допустить заражения МКС (а также тех планет, которые мы собираемся посетить) МКС, Космос, Бактерии, Микробиом, Космическая станция, NASA, Космонавты, Астронавт, Длиннопост

К 1998 году российская орбитальная станция "Мир" находилась на орбите уже 12 лет. Возраст давал о себе знать: случались перебои в электропитании, компьютеры выходили из строя, система климат-контроля стала подтекать.


Но когда члены экипажа станции приступили к исследованию различных типов микробов, с которыми делили жизненное пространство, они были поражены тем, что увидели.


Открыв одну из съемных панелей, космонавты обнаружили под ней несколько шаров (невесомость!) с мутной водой - каждый размером с футбольный мяч. Оказалось, что вода кишит бактериями, грибками и микроскопическими клещами.


Однако еще более тревожным было то, что колонии микроорганизмов атаковали прорезиненные уплотнители иллюминаторов, а бактерии, выделяющие кислоту, лакомились электрическими кабелями.


Любой модуль станции "Мир" был образцовой чистоты, когда его запускали с Земли. Сборка велась в стерильных помещениях, инженеры носили маски и защитную одежду.


Вся нежелательная жизнь, обитавшая в орбитальной лаборатории, была принесена на нее членами многонациональных экипажей, прилетающими на станцию.

В своей жизни мы соседствуем с микробами, мы делим с ними и наше тело. Бактерии населяют наш кишечник, микроскопические клещи грызут нашу отмирающую кожу. По оценкам ученых, более половины клеток нашего организма не принадлежит человеку.


Большинство микробов не просто безвредны, они важны для нас - и для переваривания пищи, и для защиты от болезней. Куда бы мы не пошли, мы несем с собой свой микробиом, и он, так же как и люди, приспосабливается к жизни в космосе, попадая на орбиту.


"Жизнь в космосе полна стресса не только для людей, - говорит Кристин Мойссл-Айхингер, которая недавно руководила исследованием Европейского космического агентства (ЕSА), в ходе которого изучались образцы микробиома МКС, собранные астронавтами и космонавтами, побывавшими там.


"Полет в космос полон стрессовых ситуаций для членов экипажа, и мы решили выяснить, подвергаются ли тому же самому и микробы, и как они на это реагируют - возможно, в этом есть что-то опасное?"


Это исследование было весьма своевременным. В ноябре 2020 года исполнится 20 лет с тех пор, как на МКС начали работать люди.


Учитывая опыт "Мира", биологи беспокоились, что еще они найдут на борту станции. Не окажется ли, что микроорганизмы мутировали так, что представляют угрозу как для МКС, так и для астронавтов?

Как не допустить заражения МКС (а также тех планет, которые мы собираемся посетить) МКС, Космос, Бактерии, Микробиом, Космическая станция, NASA, Космонавты, Астронавт, Длиннопост

Ученые обнаружили, что на МКС сложилась устойчивая популяция из примерно 55 различных типов микроорганизмов. Несмотря на отсутствие гравитации, эти бактерии, грибки, плесень, простейшие и вирусы прекрасно приспособились к новому окружению.


"У них не развилась повышенная устойчивость к антибиотикам или какие-то иные свойства, опасные для человека, - рассказывает Мойссл-Айхингер. - Но оказалось, что они приспособились к жизни на металлических поверхностях".

Эти жующие металл микробы, как и в случае с "Миром", могут представлять в долгосрочной перспективе опасность для систем орбитальной станции.


Контроль за сообществом микроорганизмов МКС входит в обязанности экипажа. Каждую неделю астронавты протирают поверхности противомикробными салфетками и пользуются пылесосом. И это в добавок к ежедневной уборке на кухне и в зоне тренажеров (на которых из-за пота от упражнений может образоваться плесень).


"В поддержании порядка мы частично полагаемся на космонавтов, - говорит Кристоф Лассер, возглавляющий в ЕSА исследования в области систем жизнеобеспечения. - Но и на технологии, благодаря которым фильтры очищают воздух и на станции всегда есть чистая вода".


Уроки "Мира" были учтены при конструировании МКС. Воздух на станции суше (ведь жизнь любит воду), движение воздуха более заметно - постоянный ветерок гонит любую пыль в фильтры очистительной системы.


"Основная разница [в этом смысле] между вашим домом и МКС в том, что на станции пыль не оседает, а собирается в вентиляции, - говорит Лассер. - И вообще любой предмет - карандаш или очки - поток воздуха будет гнать в направлении фильтров".


В общем, всё, что не закреплено, будет летать по станции.

Как не допустить заражения МКС (а также тех планет, которые мы собираемся посетить) МКС, Космос, Бактерии, Микробиом, Космическая станция, NASA, Космонавты, Астронавт, Длиннопост

Опыт эксплуатации МКС показывает, что в космосе люди могут сосуществовать со своим микробиомом без каких-либо серьезных негативных последствий.


Однако ученых беспокоит то, что может случиться, когда мы покинем относительно безопасную низкую околоземную орбиту и отправимся к Луне или Марсу.


"Сегодня орбитальная станция вращается ниже радиационного пояса Земли (пояса Ван Аллена), так что воздействие радиации невелико, - говорит Лассер. - Но когда мы выйдем за пределы этого пояса, радиация возрастет и, возможно, эволюция микроорганизмов, их генетическая мутация пойдет быстрее".


Сейчас в NASA разрабатывают новую космическую станцию, которая будет вращаться вокруг Луны (ее название - "Гейтуэй", "Портал", "Ворота"). Астронавты на ней будут жить несколько недель, а затем, видимо, покидать ее на месяцы, оставляя пустой.

"Нам надо быть уверенными, что на пустующей станции не будет условий для бесконтрольного роста микроорганизмов, - подчеркивает Лассер. - Потому что это может стать опасным".


Ученые думают и о том, что случится, когда мы принесем свой микробиом на Марс.

На Красной планете пока не было людей, и то, что человечество туда отправляло, было безукоризненно чистым.


Например, сборка последнего марсохода ЕSА велась в Великобритании в стерильных помещениях, инженеры были одеты в специальные костюмы, специальное нижнее белье, маски и перчатки. (Совместная российско-европейская миссия ExoMars по исследованию признаков жизни на Марсе перенесена на 2022 год. - прим. Би-би-си) Это крайне важно - не занести на другую планету формы земной жизни.


Понятно, однако, что люди, когда доберутся до Марса, не будут идеально чистыми, и избавиться от всех земных микробов невозможно, а уж от собственного микробиома - просто опасно для жизни.


Так как же нам избежать загрязнения Марса земными бактериями, чтобы потом не принять их за марсианские?


"Да, на теле у нас очень много микробов, но мы не собираемся гулять по Марсу обнаженными, - рассуждает сотрудник ЕSА Герхард Кминек. - Астронавты будут одеты в скафандры - чтобы остаться в живых и чтобы удерживать любое загрязнение внутри".

Как не допустить заражения МКС (а также тех планет, которые мы собираемся посетить) МКС, Космос, Бактерии, Микробиом, Космическая станция, NASA, Космонавты, Астронавт, Длиннопост

Главное здесь - как избежать попадания человеческих микробов на марсианскую почву с внешней поверхности скафандров. Над решением этой задачи сейчас трудится рабочая группа, созданная главными мировыми космическими агентствами. Свои рекомендации она намерена опубликовать уже в этом году.


Однако еще более чувствительный вопрос - о возможном попадании на земную почву марсианских микробов.

Миссия по доставке образцов марсианского грунта пока в стадии разработки. Есть шанс, что в этих образцах может оказаться инопланетная жизнь.


Научная фантастика уже давно нас предупреждает: с такими вещами надо быть крайне осторожными, если мы не хотим заразить Землю чем-нибудь ужасным - достаточно вспомнить "Штамм "Андромеда" или "Нечто".


И хотя последнее исследование показало, что на борту МКС не выросло ничего опасного, понимание того, как развивается микробиом станции, поможет обеспечить безопасность первых людей, слетавших на Марс.


"Когда астронавты вернутся с Марса и мы увидим в их микробиоме нечто, нам надо будет разобраться - то ли это вызвано биологией Марса, то ли мы это уже видели у тех, кто раньше летал в космос", - говорит Кминек, и его слова звучат угрожающе.


Между тем у микробиологов есть еще один потенциально интереснейший объект для изучения - 96 мешков с отходами человеческой жизнедеятельности, оставленных на Луне 50 лет назад астронавтами "Аполлона".


Когда в течение следующего десятилетия люди вернутся на Луну, NASA надеется, что они найдут там хотя бы несколько из этих мешков и выяснят, живы ли в бактерии в них. Если живы, то это станет еще одним маленьким шагом к пониманию микробиома человека. ссылка

Показать полностью 3
217

Рассекречены документы о первом выходе человека в открытый космос

Госкорпорация «Роскосмос» рассекретила документы о реализации программы первого в мире выхода человека в открытый космос.

«18 марта 1965 года свершилось событие, имеющее важное общецивилизационное значение: впервые в мире человек покинул пределы кабины космического аппарата и вышел в открытое космическое пространство», — сказано на сайте «Роскосмоса».


В документах содержатся подписи и пометки, которые своими руками делали главный конструктор ОКБ-1 (сейчас Ракетно-космическая корпорация «Энергия») Сергей Королев, председатель Государственной комиссии Георгий Тюлин, а также представители руководства страны и другие деятели советской науки и промышленности.


Также в числе рассекреченных документов есть стенограмма послеполетных докладов командира корабля «Восход-2» Павла Беляева и летчика-космонавта Алексея Леонова, бортовой журнал корабля и многие другие материалы.


Информации очень много, читайте на сайте Роскосмоса

Рассекречены документы о первом выходе человека в открытый космос Роскосмос, Космос, Алексей Леонов, Космонавты, Космонавтика, Длиннопост
Рассекречены документы о первом выходе человека в открытый космос Роскосмос, Космос, Алексей Леонов, Космонавты, Космонавтика, Длиннопост
Рассекречены документы о первом выходе человека в открытый космос Роскосмос, Космос, Алексей Леонов, Космонавты, Космонавтика, Длиннопост
Рассекречены документы о первом выходе человека в открытый космос Роскосмос, Космос, Алексей Леонов, Космонавты, Космонавтика, Длиннопост
Рассекречены документы о первом выходе человека в открытый космос Роскосмос, Космос, Алексей Леонов, Космонавты, Космонавтика, Длиннопост
Показать полностью 3
1322

Утопить, продать, превратить в отель: что делать с МКС после 2024 года

У самого дорогого и амбициозного проекта человечества скоро истечет срок эксплуатации. 157 миллиардов долларов, вложенные в солнечные панели и электронику, более 20 лет успешной работы, десятки тысяч часов, потраченные на научную деятельность, — все это касается Международной космической станции. Проект согласован странами-участницами до 2024 года. Что с ним будет потом, сейчас не знает никто. Но США уже заявили, что полностью откажутся от финансирования МКС к 2025 году. Какая судьба ждет станцию и в чем ее ценность сегодня?

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

Каждые 90 минут МКС делает виток вокруг Земли, представляя собой такой образец дружбы народов во имя науки. Однако время станции подходит к концу. Запаса ее прочности хватит на долгие годы, но проверку временем не прошли ни технологии, ни дружба между участниками проекта.


Нет нужды вдаваться в подробности: отношения России и США, сделавших наибольший вклад в создание МКС, переживают не лучшие времена. А космическая гонка стоит на пороге новой эпохи — эпохи частных кампаний.

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

Станционные смотрители


Станция была запущена на 400-километровую орбиту в 1998 году, а разговоры о ее разработке начались в 1993 году. Идея напрашивалась сама собой. Это был отличный шанс показать интеллектуальную мощь новой России. Все технологии уже были готовы, требовались только финансовые вливания со стороны NASA, чтобы проект ожил.


За 5 лет разработок к проекту подключились ученые из Канады, Японии и ЕС. Основной план станции — 2 сегмента, российский и американский, со стыковочным грузовым блоком "Заря" (о нем ниже отдельно). После запуска стыковочного блока в ноябре 1998 года к нему присоединился американский блок "Юнити", а чуть позже и жилой модуль "Звезда".


Первая длительная экспедиция попала на корабль в ноябре 2000 года. С тех пор на МКС побывало 239 человек из 19 стран, включая 7 непрофессиональных космонавтов-туристов. Больше всего на МКС было американцев — 157 человек. Россиян было всего 47 человек, но зато наши соотечественники многократно били рекорды по времени пребывания на станции. Такой перекос связан с тем, что до 2011 года Америка использовала "Спейс Шаттлы", которые могли перевозить гораздо больше людей, чем "Союзы". Но после 11-го года программу закрыли.

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

Собственно, примерно тогда коллеги россиян впервые заговорили о бесполезности МКС для своих космических программ. Своих астронавтов им теперь приходилось отправлять через российские космодромы, при этом основное бюджетное бремя все еще лежало на них. В 2012 году Европейское космическое агентство рассматривало вопрос финансирования до 2020-го, и не все в ЕSА были настроены положительно.


Ежегодно на станцию тратится 4-8 млрд долларов, из-за изношенности сумма постоянно увеличивается, и примерно 70% этих расходов несет NASA. На втором месте по расходам Россия с 12%. Остальные 18% распределены между Канадой, странами ЕС и Японией.


Масштаб исследований на МКС


И зачем все это? Самые известные ролики сотрудников станции обычно состоят из рассказов о том, как именно они спят, поддерживают себя в форме и ходят в туалет. Но даже такой занимательный контент не может стоить так дорого.


За 21 год эксплуатации на станции было проведено под тысячу больших и маленьких исследований в области физики, химии, медицины, биологии, а также технологические эксперименты и различного рода тесты на людях, животных, насекомых и растениях.


Один из самых продолжительных экспериментов — жидкостный. Из-за низкой гравитации кровеносная система космонавтов изнашивается, а давление на черепную коробку вызывает головные боли. Исследования в этой области позволили создать различного рода космические костюмы, техники сна, оказания помощи при нарушениях зрения, которые тоже вызваны повышенным давлением в голове.

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

[Космонавт пользуется системой "УДОД" для выравнивания внутричерепного давления]


Космонавты регулярно сдают различные анализы, чтобы оценить, как невесомость, изоляция и радиация влияют на психическое и физическое состояние. За 20 лет работы у них накопились внушительные базы данных.


Фонд Майкла Фокса, известного по роли Марти Макфлая в трилогии "Назад в будущее", спонсировал ученых на МКС с целью выяснить, может ли космическая среда помочь людям с болезнью Паркинсона, которой актер страдает. На МКС производят замеры кристаллической структуры белка-источника болезни, в невесомости кристаллы растут лучше.


В рамках другого эксперимента космонавтам вживляли специальные чипы, которые отслеживали атрофию мышц в течение четырех лет, а компания-производитель пива Anheuser-Busch даже передавала зерна ячменя для выращивания на МКС. Кстати, виды растений, находящихся на МКС прямо сейчас, исчисляются десятками. В научном модуле установлена система Veggie: она имитирует солнечный свет и автоматически подпитывает растения, в результате чего они растут в разы быстрее, чем на Земле. Это позволяет ставить на них с десяток разных экспериментов за год.

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

[На МКС не бывает дня, чтобы не был проведен какой нибудь эксперимент]

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост
Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

Буквально в 2018 году на МКС появился первый 3D-принтер под названием Refabricator — он позволил астронавтам при необходимости самим печатать инструменты и заплатки. В полевых условиях его еще не использовали, а все материалы отправлялись обратно на Землю для тестов.


Медицины и биологии на станции очень много. Там постоянно тестируется то рост органов, то стволовые клетки для лечения рака. Зачастую такие опыты финансируются частными клиниками и фондами. Но в общей массе расходов такой заработок — песчинка на пляже.


Современные проблемы


В целом качество и масштаб экспериментов на МКС в последнее время не растут. Да и что можно сделать серьезного без постоянного притока инструментов и ресурсов на пространстве в 80 кубических метров?


Более того, у МКС сейчас всего один научный модуль — и тот американский. Россия с начала 2000-х пыталась запустить свой модуль "Наука", который бы пристыковался и расширил метраж российской части МКС, но в 2013 году, после 8 лет разработки, было обнаружено загрязнение в трубках топливной системы. Чистка маленьких трубочек затянулась на три года, пока не стало понятно, что проект не спасти. Его все еще хотят запустить, последние сроки сдвигались как раз на 2021 год.

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

[Модуль "Наука" в начале 2000-х]


Для популяризации своей деятельности ученые и космонавты участвуют в различных мероприятиях с сомнительной научной ценностью: запускают на орбиту мячики для гольфа в рамках рекламных кампаний чемпионата мира по гольфу, записывают видеопоздравления, участвуют в эстафетах олимпийского огня и т.д.


Это все повышает интерес к теме, но в глазах конгрессменов снижает научный капитал предприятия. На станцию периодически возят груз вроде бесполезных роботов: такой есть у NASA и General Motors (опять же скрытая реклама концерна). Робонавт полетел на орбиту еще в 2011 году. Что он смог сделать за все это время, общественности так и не открыли, тем более что у экземпляра на МКС даже ног нет.

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

[Малополезные роботы на МКС]

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

Примерно такую же "цель" — проверку системы в условиях невесомости — ставил перед собой и наш робот Федор. В его задачи входило имитировать починку обшивки станции (соединял и разъединял провода), держать различные предметы и общаться с космонавтами. Свою задачу в сентябре 2019 года он "перевыполнил".


В итоге в активе МКС сейчас есть множество узконаправленных фундаментальных исследований и вот такие перфомансы. Как в случае с Россией, так и с США все это делается за деньги налогоплательщиков. А стабильно зарабатывать на МКС так, чтобы отбить бюджеты, нельзя. Но есть несколько путей решения проблемы.


Спустить нельзя пилотировать


С 2019 года в США активно говорят о том, что с американским модулем необходимо что-то делать. Он уже не отвечает требованиям ни космической программы (в приоритете снова полеты на Луну и в перспективе на Марс), ни требованиям современной науки — оборудование несколько устарело, а пользоваться мелочевкой, привозимой грузовыми кораблями, неэффективно.

Вопрос действительно очень непростой, но его необходимо решать, — отметил в интервью RT член-корреспондент Российской академии космонавтики Андрей Ионин. — Человечеству нужно двигаться вперед, а любое движение — к Луне, Марсу, астероидам — означает огромные государственные затраты. Сейчас порядка 30-40% космических бюджетов стран приходится на финансирование МКС. По сути, МКС сейчас висит финансовой гирей на ногах США и России.

Есть как минимум 4 сценария того, что можно сделать с МКС, когда американцы все же откажутся от финансирования проекта:


1. Продать частным инвесторам.


Зарились на космическую станцию неоднократно и шумно. МКС хотел купить как Илон Макс, известный ракетостроитель, так и глава Amazon Джефф Безос, самый богатый человек на Земле. У них у всех разные идеи насчет того, что делать с МКС, но сходство в одном: станция останется на орбите, а правительство США немного отобьет затраты на объект.

Мы находимся в положении, при котором коммерческое управление Международной космической станцией могли бы взять на себя лица извне, — заявил Джим Брайденстайн, директор NASA. — Я провел переговоры со многими крупными корпорациями, которых интересует участие на основе, если угодно, консорциума.

Проблема состоит в том, что рассматривается покупка только американских модулей, а российские покупать никто не будет. И все бы ничего, но стыковочный отсек "Заря", который упоминался в самом начале, хоть и сделан был в России, по факту принадлежит NASA. России придется делать новый стыковочный отсек, чтобы получить доступ к своим же модулям. А без стыковочного отсека МКС частникам не нужна.


В 2019 году Белый дом запросил у конгресса 150 млн долларов на проработку возможностей для приватизации МКС, но документ встретил жесткую критику и канул в Лету.


2. Станция-хаб


Еще один вариант использования МКС — переоборудовать ее в перевалочный пункт для доставки грузов на Луну. США и Россия рассматривают разные варианты постройки орбитальной лунной станции, и МКС может помочь отправлять грузы и модули немного дешевле, чем если бы ракеты летели до Луны напрямую.


Здесь игроков, желающих включиться в эксплуатацию МКС под таким вариантом, гораздо больше, особенно если оператором станции так и останутся правительства стран. Это и Илон Маск с его SpaceX, и концерн Boeing, который, кстати, принимал непосредственное участие в создании нескольких американских модулей, — свыше 100 элементов произвели именно они. Там же аэрогигант S7 с его программой морского космического плацдарма "Морской старт", который находится посреди Тихого океана (однако проект испытывает финансовые трудности).


3. Космический отель


Этот вариант пока рассматривает только на бумаге в виде макетов, потенциальных инвесторов у него нет. Однако о таком исходе для МКС заставляет думать другой нереализованный проект Bigelow Commercial Space Station — частный комплекс энтузиаста Роберта Бигелоу. Это план станции-отеля в космосе. Бигелоу уже запускал какие-то части модулей в 2006 году, но привлечь клиентов, которые бы помогли ему с запуском всей станции, ему не удалось. Может быть, кому-то удастся поставить отель на базе уже существующей МКС? Но насколько это прибыльно?

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

[Макет космического отеля Бигелоу]


4. Утиль


На сегодняшний день самый реалистичный вариант — затопить станцию в море. Ни одна из сторон не заинтересована в самостоятельном управлении прежде всего по экономическим причинам. Администрация Дональда Трампа в 2018 году назвала программу МКС не нужной для космонавтики. А в перспективе с Россией вообще будут свернуты все масштабные совместные работы: с 2023 года государственные и частные российские компании не смогут попасть на американский космический рынок — в 2019 году Трамп подписал соответствующее постановление.


Поэтому станция может быть затоплена в один из моментов активной солнечной фазы, чтобы у нее имелось достаточное количество энергии для последнего маневра. Две следующие фазы — в 2024 и 2028 годах.

Утопить, продать, превратить в отель: что делать с МКС после 2024 года Космос, МКС, NASA, Илон Маск, Космонавтика, Длиннопост

[Точка Немо]


МКС будет затоплена в так называемой "точке Немо" в Тихом океане — там, где оказываются все сломавшиеся или списанные искусственные спутники Земли. Это удаленная от любой суши на 2668 км точка. Выбрана она специально, чтобы сотня-другая тонн железа и труб не свалилась на голову незадачливым землянам. Названа она, конечно, по имени персонажа книги Жюля Верна. ссылка

Показать полностью 11
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: