Как работает зеркало?

Мало кто задумывался о том, как работает обычное зеркало. Ну да, в нём можно увидеть своё отражение, а ещё пускать солнечные зайчики, благодаря своей способности отражать свет. Мало кто из людей задумывается о механизмах, благодаря которым «работает» зеркало, и ещё меньше догадываются о том, насколько удивительным может оказаться столь обыденный предмет, если разобраться. Лично для меня эта «кроличья нора» оказалась неожиданно глубокой.


Что такое отражение?


Свет вообще-то отражают почти все материальные объекты в нашем мире (кроме, разве что, чёрных дыр). Мы говорим «я вижу предмет», что означает «на сетчатку моего глаза попал отражённый этим предметом свет». В то же время, не все предметы обладают свойством зеркала. Мы так и разделяем два типа отражений — зеркальное и диффузное (рассеивающее). В чём разница? Это мы проходим ещё в школе, где нам показывают примерно такую картинку:

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

С объяснением вроде того, что угол падения равен углу отражения, с неровных поверхностей свет отражается под разными углами и рассеивается, зато вот с гладких поверхностей все лучи света отражаются под одним и тем же углом. Это правило вытекает из принципа, который сформулировал ещё Христиан Гюйгенс в конце 17 века, и дополнил Огюстен Френель в начале 19. Каждая точка фронта (поверхности, достигнутой волной) является вторичным (то есть новым) источником сферических волн (принцип Гюйгенса-Френеля).

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

То же в анимации:

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

Но почему вот, например, относительно гладкий лист бумаги нам видится белым, а весьма шершавый кусок железосодержащей породы обладает, как мы говорим «характерным металлическим блеском». И почему существуют прозрачные материалы, которые пропускают свет сквозь себя практически без изменений?

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

Металлический блеск


Опустимся ещё глубже. Предметы состоят из атомов, так, наверное, это «одни атомы отражают, а другие пропускают сквозь себя лучи света»? (Физики, не спешите кидать в меня камни, я исправлюсь, обещаю!). При этом, какие-то лучи будут отражаться от внешних атомов, а какие-то будут проникать между ними и попадать в атомы, лежащие в более глубоких слоях:

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

При этом, может сложиться так, что лучи света будут отражаться даже внутрь материала. И да, я ещё пока не упоминал волновую природу света. Абсолютно любой материал, без исключения, будь то зеркало, камень или стекло разделит падающий луч света на 2 неравные части — одна часть будет отражена, а вторая будет направлена внутрь материала. При этом, вторая часть может быть как поглощена данным материалом, так и пройти сквозь него практически без изменений.

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

Для стекла, лишь малая толика света будет отражена, большая же часть пройдёт сквозь него. Для зеркала всё с точностью «до наоборот». То, насколько глубоко в материал проникнет свет, зависит, в основном, от 4 вещей: магнитной проницаемости материала, его диэлектрической проницаемости, частоты падающего излучения и, наиболее важного фактора — удельного электрического сопротивления материала. Так, например, в стекле (электрический изолятор) интенсивность светового пучка упадёт ниже 1% от первоначального примерно через 750 метров. Для серебряной амальгамы (отлично проводящей электрический ток) эта глубина составит всего около 7 нанометров (несколько десятков атомов). Комбинируя данные параметры можно создать и более экзотические материалы (о метаматериалах я писал в этом посте).


Интересующимся — формула:

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

Но тогда почему не все изоляторы прозрачны? Есть ещё один фактор, но для этого, надо нырнуть ещё глубже. Вспоминаем, что фотон — это волна, а не мячик, который может отскочить от поверхности. Фотон движется прямолинейно и не может изменить своей траектории относительно геодезических линий пространства(времени). Фотон никуда не отражается. Любой материальный объект (включая зеркало) может лишь поглотить падающий фотон, либо пропустить его сквозь себя.


Так что же происходит на самом деле? Давайте вспомним, как происходит взаимодействие атомов с квантами электромагнитного излучения (подробно разжёвано здесь). Каждый электрон в атоме находится в состоянии, которое можно описать 4 квантовыми числами, а если проще — имеет определённую энергию. Чем больше энергия, тем дальше от ядра она позволяет ему находиться, но есть одно условие — электрон не может находиться на произвольном расстоянии от ядра, как в здании с лифтом — нельзя находиться на этаже 3 ½, можно либо на 3, либо на 4, но не между ними. «Этажи» называются орбиталями и переход с одной на другую осуществляется мгновенно, без каких-либо промежуточных стадий. Если фотон с совершенно определённой энергией встретится с электроном, он будет поглощён, а его энергия позволит электрону подпрыгнуть на этаж выше. Про такой электрон говорят, что он возбуждён. Рано или поздно, возбуждённый атом «успокоится» и вернётся в исходное состояние, а, поскольку для этого необходимо будет отдать энергию, он отдаст её в виде нового фотона, у которого будет точно такая же энергия (частота) как и у поглощённого фотона. Но если энергии фотона будет недостаточно для того, чтобы электрон перескочил на следующую орбиту, то он просто пролетит мимо, а электрон останется на свой орбите. Также электрон останется на орбите и в случае, если фотон имеет слишком большую энергию. Для перехода электрона на другой уровень фотон должен обладать совершенно определенном количеством энергии.

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

Поглощение и эмиссия фотонов


Определённые материалы прозрачны для определённой частоты излучения (как, например, стекло) из-за того, что энергии фотонов видимого диапазона недостаточно, чтобы возбудить электроны в атомах стекла, поэтому фотоны спокойно проходят сквозь них. При этом, один и тот же материал может быть прозрачным в одном диапазоне и непрозрачным в другом — так, например, стекло очень хорошо поглощает ультрафиолет.


Но данный механизм отвечает лишь за нагрев материала, на который попадает свет, так как перевыпущенный фотон будет, скорее всего, поглощён соседним атомом, через какое-то время, снова перевыпущен, и так дальше. Так светится нагретый металл, например. Исключением из этого правила может быть лишь такие явления как флуоресценция или фосфоресценция, когда интенсивность свечения материала значительно превышает интенсивность теплового излучения.

Как работает зеркало? Физика, Оптика, Зеркало, Отражение, Длиннопост, Гифка

Флуоресценция уранового стекла в ультрафиолете


Для объяснения физики отражения нам, оказывается, вовсе не нужна квантовая механика, всё объясняется вполне классическим эффектом. Свет является электромагнитной волной, а сам атом имеет два электрических заряда — положительный в ядре и отрицательный в электронах. Что мы знаем о зарядах в магнитном поле? Они движутся под действием силы Лоренца. Атом начинает вибрировать с той же частотой, что и попадающий в него свет. А поскольку вибрация — это движение с ускорением, вспомним, что делает электрический заряд, движущийся с ускорением? Он начинает испускать фотоны. Именно эти фотоны и формируют отражённую электромагнитную волну.


При этом, разумеется, каждому отдельному атому и фотонам, которые ими испускаются, глубоко наплевать на правило «угол падения равен углу отражения». Излучение испускается во всех направлениях сразу. Только согласно принципу Гюйгенса-Френеля мы получаем в зеркале отражённое изображение.


На формирование отражения влияет множество факторов — расстояние между атомами, интервалы времени между поглощением и перевыпуском фотонов, резонансные частоты и многое другое. Чтобы не заморачиваться со всеми этими параметрами, люди объединили их влияние в один параметр — индекс рефракции. Его посчитали для всех известных материалов и занесли в таблицы и теперь при расчётах, связанных с оптическими системами, мы можем просто забыть об атомах и молекулах, достаточно знать лишь тип материала. Разумеется, каждый материал имеет индивидуальные характеристики поглощения и отражения для света разных частот, именно эта особенность материалов отвечает за наше восприятие цвета.


Подводя итог — свет на самом деле не отражается от зеркала. Зеркало поглощает падающий на него свет и испускает новый, точно такой же.