595

Полупроводники - фундамент цивилизации. Часть 2 - Транзисторы

Как я уже упомянул в предыдущем посте, именно благодаря полупроводникам, человеческая цивилизация совершила грандиозный рывок вперёд на пути прогресса. Без них немыслим быт современного человека и практически любое устройство, подключаемое к розетке электропитания, содержит электронные компоненты на основе полупроводников.



Мы живём в эпоху информации, почти половина населения нашей планеты подключена к глобальной сети, мы ежедневно обмениваемся друг с другом мегабайтами информации, и всё это было бы не возможно, если бы не было транзисторов – относительно простых устройств, без которых была бы немыслима работа ни одного микропроцессора.

Наверное, перед началом повествования стоит ещё назвать причины, по которым люди вообще задумались над изобретением транзистора. А основная причина была в том, что при использовании как телеграфа, так и радиосвязи приходящий сигнал был весьма слабым, что зачастую не позволяло нормально его принимать. Вот если бы было устройство, которое бы смогло регулировать уровень напряжения в цепи пропорционально приходящему сигналу, т. е. по факту – усиливать сигнал!



Очень часто, когда дают материал по электротехнике ученикам приводят аналоги из гидравлики, так как представить поток жидкости внутри трубы людям бывает проще, чем поток электрических зарядов по проводнику. Надеюсь, эта аналогия меня не подведёт, потому что сейчас мы для абсолютно гипотетического примера изобретём гидравлический транзистор:

Представим, что у нас есть слабый волновой сигнал (не важно, кто и откуда нам его посылает), и этот сигнал приходит к нам в виде изменений давления в ёмкости, которая обозначена на схеме Gate (затвор). Очевидно, что чем больше там давление, тем шире откроется заслонка, и тем большее количество жидкости сможет протекать от истока (Source) к стоку (Drain). Что характерно – интенсивность тока жидкости на сливе будет в точности повторять приходящий сигнал, однако он будет гораздо более сильным.



В электрических цепях до изобретения транзистора использовались лампы под названием триоды:

Устроен триод почти так же, как и ламповый диод (см. предыдущий пост), с тем лишь исключением, что между катодом и анодом натянута сетка, которая называется «управляющей» к которой подведён дополнительный контакт. Продолжая аналогию с предыдущей гифкой, можно увидеть, что сетка играет роль затвора. Поле, создаваемое управляющей сеткой, оказывает влияние на анодный ток. Под управлением находятся электроны, эмитированные катодом в виде пространственного заряда. Степень воздействия зависит от расстояния того или иного электрода до катода.



Поскольку расположение управляющей сетки получается ближе к катоду по сравнению с анодом, соответственно, и влияние её электрического поля на заряд катода будет выше, чем у анода. Во время прохождения электрического тока по триоду движение электронов осуществляется в направлении от катода к аноду. При этом, они проходят сквозь отверстия управляющей сетки. Если на неё подать в небольшом количестве отрицательный потенциал через ножку в основании лампы, то у нас появится возможность изменять число электронов, движущихся от одного электрода к другому. Действие отрицательного потенциала, подведённого к сетке, вызывает отталкивание некоторой части электронов. Другие электроны, попавшие в триод, все равно преодолевают открытое пространство между электродами и движутся в направлении анода. Так можно управлять течением тока через лампу и внешнюю цепь.



Лампы были, с одной стороны, весьма прогрессивным изобретением, однако, в то же время, они были очень хрупкими и очень громоздкими и требовали много энергии (помните, катод надо нагревать). Вот, к примеру, один из первых радиоприёмников образца 1914 года:

Мы можем использовать эту управляющую сетку не только для регулировки, но и в качестве выключателя. Если мы подадим на управляющий электрод отрицательный заряд, он начнёт отталкивать вылетающие электроны из катода и цепь будет разомкнута. В этом была заложена основа двоичного кодирования – ноль и единица. Лампы открыли нам путь для создания компьютеров. Для постройки одного из первых в мире компьютеров общего назначения ENIAC в 1945 году было использовано около 18 тысяч ламп! Компьютер весил 30 тонн и занимал целый зал, не говоря уже о той прорве электричества, которую он пожирал. Лампы регулярно перегорали и требовали замены. Тем не менее, эта машина за 30 минут справлялась с таким же объёмом расчётов траекторий артиллерийской стрельбы, на проведение которых человеку требовались сутки. Теперь же, похожая задачка решается в тех же Angry Birds, и справиться с ней может чип величиной с песчинку, и всё благодаря транзистору. В современных микропроцессорах находятся миллиарды транзисторов, каждый из которых выполняет точно такую же функцию, как и лампа.



Давайте же разберёмся, как он работает.



Прежде всего, если вы не читали предыдущий пост, настоятельно советую для начала ознакомиться с ним, потому что дальнейшее изложение я буду строить исходя из предположения, что читатель знаком с понятиями P-N перехода. Вкратце – в полупроводники с правильной кристаллической решёткой вносятся добавки (процесс называется «легирование»), обеспечивающие либо дополнительные электроны в зоне проводимости (полупроводник N-типа), либо наоборот – создающие их дефицит (дырки) – полупроводник P-типа.
Для того, чтобы создать диод, нам понадобилось 2 типа полупроводников, соединённых друг с другом. Но что будет, если мы на этом не остановимся и добавим ещё один полупроводник? Ура! Мы соорудили транзистор, а точнее – биполярный транзистор (но о том, какие они вообще бывают, поговорим позднее):

Обратите внимание, что, в зависимости от порядка чередования слоёв полупроводников, мы можем соорудить 2 типа транзисторов – PNP и NPN. Принцип работы у того и другого типа примерно одинаковый, разные только носители заряда и способ управления, поэтому пока просто запомните эту информацию, а к разнице между ними я вернусь чуть позже.



Рассмотрим транзистор первого типа NPN. Носителем заряда в нём являются электроны, поэтому на рисунке ниже, дырки не показаны (но помните, что они там есть!). Принципиально, он напоминает «бутерброд», сооружённый из двух диодов, и обладает, соответственно, двумя переходами NP и PN, поэтому, в каком бы направлении мы не пропускали ток, один из двух переходов всегда будет де-факто диодом с обратным подключением, и ток через цепь такое устройство не пропустит.



Однако, если подвести к внутреннему слою дополнительный положительный заряд, например, подключив дополнительный источник питания, как на рисунке с напряжением, достаточным для преодоления инверсного слоя, мы получим такую картину:

Что здесь происходит? Посмотрите на область, обведённую красным пунктиром. По сути, мы видим иллюстрацию из предыдущей части – диод с прямым подключением. Отрицательно заряженный терминал (слева) выпустит большое количество электронов, которые будут толкать другие электроны дальше. Перескакивая от дырки к дырке, часть электронов устремится к месту подключения положительного полюса батареи (кстати, этот вывод транзистора называется База), и дальше. Этот путь показан тонкой пунктирной стрелкой синего цвета.



Отрицательно-заряженный терминал вводит в N-область всё больше и больше электронов (тот терминал, из которого производится выпуск носителей заряда (в нашем случае – электронов) называется Эмиттер, от англ. to emit – выпускать, испускать), и большая их часть продолжает свой путь дальше. Они притягиваются положительным зарядом нижней батареи – к положительно-заряженному терминалу, который в нашем случае называется Коллектор (от англ. to collect – собирать). Их путь показан жирной пунктирной стрелкой синего цвета.


Во избежание путаницы здесь и далее напомню, что под током мы подразумеваем не движение по цепи отрицательных электронов, а движение положительных зарядов. Почему?


Спасибо за это надо сказать Бенджамину Франклину (да, да, тому самому). Именно он ввёл общепринятое теперь обозначение электрически заряженных состояний «+» и «−». Про электрон тогда не знали, фактически, было абсолютно всё равно, какой именно тип зарядов называть положительным, а какой – отрицательным. Но с него повелось, что ток в цепи течёт от положительного полюса источника питания к отрицательному, хотя электроны движутся в противоположном направлении. Поэтому, хотя носителем заряда в NPN транзисторе являются электроны, считается, что электрический ток идёт в противоположном направлении.
Поскольку количество носителей заряда (электронов), проходящих от эмиттера к коллектору намного больше, чем на пути от эмиттера к базе, мы, имея слабый ток на базе, получили его усиление на коллекторе.



Разумеется, если мы будем динамически менять напряжение на базе, ток на коллекторе будет изменяться синхронно, на чём и основан базовый принцип усиления сигнала. Как видите, аналогия с шлюзом, малое изменения давления в котором позволяло регулировать давление основного потока в большем диапазоне, очень удачна. Если сравнивать с триодной лампой, то легко увидеть аналогию – здесь эмиттер выполняет роль катода, коллектор – анода, а база играет роль управляющей решётки.



Самое время понять, в чём разница между транзисторами PNP и NPN типа.



В транзисторе NPN положительное напряжение подаётся на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подаётся на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течёт от коллектора (К) к эмиттеру (Э):

А в PNP ток протекает от эмиттера к коллектору:

Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.



Ниже три простых правила, которые нужно запомнить про разные типы биполярных транзисторов:



1) PNP транзисторы открываются напряжением отрицательной полярности, NPN – положительной.
2) PNP пропускают ток от эмиттера к коллектору, NPN – наоборот.
3) В NPN транзисторах основные носители заряда – электроны, а в PNP – дырки, которые менее мобильны (мобильность - скорость переноса мощности), соответственно NPN транзисторы быстрее переключаются в общем случае.

Полевые (FET) транзисторы
Другим типом транзисторов, являются полевые транзисторы (FET – Field Effect Transistors). По сути своей, они выполняют ту же функцию, что и биполярные, однако их принцип действия несколько иной. Есть множество разновидностей современных полевых транзисторов, и на то, чтобы описывать их все не хватит ни времени, ни места в посте, поэтому я остановлюсь на том типе, который используются в современных микропроцессорах. По-русски они называются полевые МОП-транзисторы (Металл-Оксид-Полупроводник), но более часто встречается английская аббревиатура MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).Как следует из названия, управление током в полевом транзисторе происходит не при помощи регулирующего напряжения, а при помощи электрического поля.И так, возьмём подложку из слабо-легированного полупроводника P-типа и внедрим на неё две полоски высоколегированного полупроводника N-типа (напомню – в полупроводника N-типа примеси создают избыток свободных электронов, а в P-типе – их дефицит):

Тут стоит сказать, что даже в P-области, где преобладают дырки, нет-нет, да и встречаются свободные электроны, способные проводить ток, которые мы будем называть неосновными носителями заряда (англ. minority carriers). Чуть позже я объясню, почему это важно.
Как мы уже знаем, на границе P-N переходов свободные электроны из N-областей рекомбинируют с дырками в P области и формируют своебразный барьер, где нет ни дырок, ни свободных электронов, так называемый инверсный слой (англ. depletion region).

Если сейчас подать на наш недотранзистор напряжение, то электроны из N областей станут дрейфовать в сторону положительно-заряженного терминала, а дырки – наоборот, сдвинутся подальше от него, инверсный слой ещё больше увеличится, и это означает, что ток через такое устройство проходить не будет.

Так как же нам заставить ток проходить через наше устройство? Для начала, давайте разберёмся (или вспомним), как работает конденсатор. В простейшем виде, конденсатор – это две проводящие пластины, с проложенным между ними диэлектриком (изолятором).

Если подключить его к источнику постоянного тока, то положительный полюс батареи начнёт притягивать свободные электроны, находящиеся в подсоединённом электроде, и эти электроны в конечном счёте начнут скапливаться на электроде по ту сторону изолятора. Накопленные таким образом заряды создадут между электродами электрическое поле.



Давайте теперь возьмём одну пластину этого конденсатора а, вместо второй воспользуемся подложкой нашего недотранзистора. Электроны с металлической платы начнут мигрировать в сторону полупроводниковой подложки, а сама пластина начнёт приобретать положительный заряд, вследствие чего между верхним и нижним контактом сформируется электрическое поле (так же, как это происходит в конденсаторе). Помните, я просил запомнить, что даже в P-области присутствуют свободные электроны (неосновные носители заряда) – так вот, здесь они нам и пригодились. Эти электроны будут притягиваться к верхнему положительно заряженному электроду. Область непосредственно под положительно-заряженном электродом будет, как следствие переполнена электронами:

Непосредственно под областью насыщения электронами сформируется новый инверсный слой, состоящий из рекомбинированных электронов и дырок. Эта конфигурация «ломает» инверсный слой между P-областями и позволяет, наконец, току проходить через эту область.

Ура! Мы собрали свой MOSFET транзистор. Левый электрод на рисунке называется исток (англ. source), электрод конденсатора в центре – затвор (англ. gate), а правый, соответственно, сток (англ. drain). Названия отражают роль данных контактов в движении электронов через транзистор. Располагая уже имеющимися в нашем распоряжении знаниями, легко понять, что, регулируя ток на цепи от затвора к базе, мы так же будем регулировать прохождение электронов от истока к стоку.



Казалось бы, зачем нам нужны такие сложности, если у нас уже были биполярные транзисторы?
Наверное, самым важным преимуществом полевых транзисторов является то, что они требуют гораздо меньшей энергии для поддержания режима проводимости, и, соответственно, меньше греются. А когда у вас на интегральной схеме расположено компактно несколько миллиардов таких штук, проблемы отвода тепла и снижения энергопотребления становятся весьма важны.

Из этого факта следует ещё одно дополнительное преимущество – полевые транзисторы гораздо больше помехоустойчивы, поскольку ток через затвор транзистора практически не проходит, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.

Ещё полевые транзисторы способны обеспечивать гораздо большее усиление по току и способны переключаться между состояниями проводимости и непроводимости гораздо быстрее, соответственно, они могут работать на более высоких частотах, чем биполярные.
Но, помимо преимуществ, есть у полевых транзисторов и недостатки. В частности, структура полевого транзистора начнёт разрушаться уже при 150°C, в то время как биполярные выдерживают до 200°C. Кроме того, низкое энергопотребление полевых транзисторов на высоких частотах (примерно начиная с 1,5 ГГц) потребление энергии у них начинает возрастать по экспоненте. Это, кстати, является одной из основных причин замедления роста скорости микропроцессоров, а производители перешли к стратегии многоядерных процессоров.
***

Самым сложным при подготовке этого поста было решить, что важно, о чём стоит написать, а что можно пропустить. Тема настолько обширна, что заранее прошу меня простить за то, что кое-что я либо осознанно, либо случайно оставил за скобками.
Зато теперь я понимаю, что не закончил, и придётся «пилить» продолжение. Как минимум, хочется рассказать о современных технологиях изготовления микропроцессоров и о том, как законы квантовой механики становятся на пути производителей, а так же о том, как же, всё-таки, люди научили компьютеры считать при помощи транзисторов.
Но на сегодня, спасибо за внимание, у меня пока всё.

0
Автор поста оценил этот комментарий

А где про IGBT?

Почему не сказал про второе главное отличие мосфетов от биполярников- гораздо бОльшие токи и меньшее сопротивление открытого ключа?

По критической температуре тоже всё не однозначно, есть же и на карбиде кремния ключи, там ситуация с нагревом сильно другая. По потреблению на высоких частотах- есть GaN ключи, которые работают на куда более высоких частотах чем простые мосфеты.

До кучи уж стоило упомянуть, что основное применение мосфетов именно силовые ключи на десятки и сотни ампер при относительно низком напряжении (при высоком уже начинают рулить IGBT), а ВЧ схемы в основном так и пашут на классических биполярниках ибо тяжёлые затворы MOSFET тягать задолбаешься, да и энергии туда вливать надо много, а потом её оттуда ещё и как-то отводить чтобы закрывались быстрее, а это городить либо драйвер полумостовой либо снабберы вешать и выделять лишнее тепло. Короче много интересного пропустил)

раскрыть ветку (1)
8
Автор поста оценил этот комментарий
Я в заключении об этом написал, что что-то по-любому в пост не войдёт.
И я, кстати, не думаю, что обо всём этом нужно было писать. Это специфика. Специалисты и так это всё знают, им не нужно, а людям, которые до этого вообще не знали ничего, этого тоже не нужно - и так информации много свалилось.
Дополнительная информация к тому же - в свободном доступе.
И потом, это ведь не учебник, а познавательный пост.
показать ответы
Автор поста оценил этот комментарий

Что ты несёшь таки? Смысл ясен, но рядом с гидравлическим не написать про полевые и феты говорит однозначно о бездумном копировании.

раскрыть ветку (1)
3
Автор поста оценил этот комментарий

не написать про полевые и феты

Кхм, полевые и феты - одно и то же. Только FET - по-английски.

показать ответы
3
Автор поста оценил этот комментарий

Здравствуйте.

Готово.

раскрыть ветку (1)
2
Автор поста оценил этот комментарий

Спасибо

показать ответы
5
Автор поста оценил этот комментарий
Тут стоит сказать, что даже в N-области, где преобладают дырки, нет-нет, да и встречаются свободные электроны
раскрыть ветку (1)
2
Автор поста оценил этот комментарий

P-области. Опечатка. :)

Автор поста оценил этот комментарий

Бред - привести гидро выше и сразу не перейти к полевикам. А объяснение классических биполярных как обычно кривое, но я его прямого в общем-то ни разу и не видел с другой стороны.

раскрыть ветку (1)
3
Автор поста оценил этот комментарий
Бред - привести гидро выше и сразу не перейти к полевикам.

А с чего, собственно? Устройство биполярного транзистора проще, чем полевого. Материал обычно излагается от простого к сложному. А что до гифки - да она, в определённой степени, прекрасно иллюстрирует работу любого типа транзисторов (наверное, смутили подписи source/gate/drain, но это не принципиально).

показать ответы
0
Автор поста оценил этот комментарий

Но ты старался, спасибо!) Собери все ляпы в один каммент и попроси модератора исправить. Очень полезная статейка так-то.

раскрыть ветку (1)
1
Автор поста оценил этот комментарий

@moderator, можно ли внести правки?


1.

И так, возьмём подложку из слабо-легированного полупроводника N-типа и внедрим на неё две полоски высоколегированного полупроводника P-типа


наИ так, возьмём подложку из слабо-легированного полупроводника P-типа и внедрим на неё две полоски высоколегированного полупроводника N-типа
2.

Тут стоит сказать, что даже в N-области, где преобладают дырки, нет-нет, да и встречаются свободные электроны
наТут стоит сказать, что даже в P-области, где преобладают дырки, нет-нет, да и встречаются свободные электроны


3.

Разумеется, если мы будем динамически менять напряжение на базе, напряжение на коллекторе будет изменяться синхронно, на чём и основан базовый принцип усиления сигнала
наРазумеется, если мы будем динамически менять напряжение на базе, ток на коллекторе будет изменяться синхронно, на чём и основан базовый принцип усиления сигнала

показать ответы
Автор поста оценил этот комментарий

Подразумевались мосфеты, но это один хрен феты. Начинать с затворных и триодов, потом нести бред про PNP/NPN, а потом ещё возвращаться к полевым затворным - это бред и показывает незнание. Ну или за организацию материала незачёт.

раскрыть ветку (1)
1
Автор поста оценил этот комментарий

А где именно "бред"? Что-то не так написано?

показать ответы
2
Автор поста оценил этот комментарий

"сначала идёт n-p переход, он создаёт барьер, останавливающий переход электронов из N-области в P-область"


Но ведь в первой статье говорится, что "Если же мы ... подключим положительный полюс к P-области, а отрицательный – к N области, то ... по цепи пойдёт электрический ток". То есть, первый переход и так с прямым смещением, через него ток и без всяких ухищрений идёт. А вот второй переход (о котором и спрашивал @vncvvn) подключен с запорным смещением, и через него ток идти не должен. В статье про этот момент просто говорится "большая их [электронов] часть продолжает свой путь дальше", никак не объясняя, почему вдруг n-p переход не блокирует ток, как должен.

раскрыть ветку (1)
0
Автор поста оценил этот комментарий

К этому моменту в P области скопится гораздо больше электронов, чем в нормальном диоде (да и вообще, в нормальной P - положительной среде), при этом сзади напирают ещё. Плюс, эти электроны притягиваются к положительному терминалу справа.


Ещё следует учитывать, что схема приведена не в масштабе. Р-регион в NPN транзисторе или N регион в PNP транзисторе очень узкие.

0
Автор поста оценил этот комментарий

Очепятка? Или картинка не та?

И так, возьмём подложку из слабо-легированного полупроводника N-типа и внедрим на неё две полоски высоколегированного полупроводника P-типа
Иллюстрация к комментарию
раскрыть ветку (1)
0
Автор поста оценил этот комментарий

Картинка правильная, текст неправильный. Блин, я её 3 раза перерисовывал.

показать ответы