Сообщество - Автоматизация
Добавить пост

Автоматизация

31 пост 432 подписчика

Популярные теги в сообществе:

Терминология автоматизации: PLC, PAC, RTU, DCS и SCADA

Терминология автоматизации: PLC, PAC, RTU, DCS и SCADA ПЛК, Программирование ПЛК, Асу, АСУ ТП, Автоматизация, Scada, Термины, Промышленная автоматика, Длиннопост

Разберем термины PLC (ПЛК), PAC (ПАК), RTU, DCS (РСУ) и SCADA, объяснения которых приводятся в материале специализированного портала Control Automation, объединяющего опыт инженеров в области АСУТП.


ПЛК / PLC

ПЛК – аббревиатура программируемого логического контроллера (Programmable Logic Controller – PLC). Это «мозги» множества различных промышленных процессов и, по сути, компьютеры промышленного назначения, используемые для управления на уровне оборудования.

Первоначально ПЛК был изобретен для замены блоков релейной автоматики в качестве систем управления промышленной автоматизацией, что позволило снизить затраты на управление этими реле за счет уменьшения количества оборудования и устранения потребности в физической перекоммутации реле всякий раз, когда требовалось внести изменения в систему управления. Это стало возможным, поскольку ПЛК можно просто перепрограммировать, как и любой современный компьютер.

Терминология автоматизации: PLC, PAC, RTU, DCS и SCADA ПЛК, Программирование ПЛК, Асу, АСУ ТП, Автоматизация, Scada, Термины, Промышленная автоматика, Длиннопост

Лестничная логика похожа на устаревший чертеж управления реле

Большинство ПЛК используют для программирования некоторую форму релейной логики, которая имитирует логику физической релейной системы управления. Программа на языке лестничной логикой выглядит как лестница из реле и других электрических компонентов со «ступенями», расположенными между источниками питания, изображенными по бокам. Все это можно отобразить в цифровом виде и перепрограммировать на компьютере или иногда (особенно в старых системах) через специальный интерфейс.

ПЛК находят применение во многих различных процессах автоматизации, управляя от систем освещения до различных видов приводов. Но ПЛК, согласно формальному определению, выполняет только логические манипуляции с битами, он изначально не обеспечивал расширенную связь и обмен данными с сетями более высокого и низкого уровня. Когда эти функции начали появляться, стало формироваться новое название для этих устройств.

ПАК / PAC

ПАК означает программируемый контроллер автоматизации (Programmable Automation Controller – PAC) и его можно рассматривать как «продвинутый» ПЛК с большей функциональностью и более высоким уровнем вычислительной мощности. ПЛК довольно просты по своим возможностям, в то время как PAC обычно имеют доступ к гораздо большему объему памяти и значительно более высокой вычислительной мощности, чем стандартный простой ПЛК.

Они часто используются для выполнения задач, связанных с ПИД-регулированием (пропорционально-интегрально-дифференцирующий регулятор – Proportional-Integral-Derivative - PID), а также, со связью, SCADA, регистрацией данных и другими задачами, которые традиционно выходили за рамки базовых ПЛК.

Терминология автоматизации: PLC, PAC, RTU, DCS и SCADA ПЛК, Программирование ПЛК, Асу, АСУ ТП, Автоматизация, Scada, Термины, Промышленная автоматика, Длиннопост

Пример PAC

ПЛК обычно недостаточно мощны для использования в приложениях управления движением, поэтому ПАК становится идеальным устройством управления для этого типа автоматизации. У ПАК есть преимущество, поскольку они построены на базе более чем одного процессорного чипа и могут выполнять более одной операции одновременно. Кроме того, они как правило содержат объединительную плату с высокой пропускной способностью, обеспечивающую быстрый сбор данных для скоростного управления и их эффективной обработки.

Хотя в наши дни большинство компаний фактически производят ПАК, мы почти всегда по-прежнему называем их ПЛК, поскольку они выполняют задачи логического управления.

Кроме того, концепция IPC (промышленного ПК – Industrial PC) достаточно успешна и потенциально может стать следующим этапом процессора управления.

Удаленный терминальный блок / RTU

Удаленный терминальный блок (Remote Terminal Unit – RTU) представляет собой устройство управления, расположенное отдельно от более крупного блока, обычно как часть гораздо более крупной системы. Во многих случаях они являются частью системы DCS или SCADA и включают в себя отдельные компоненты, для мониторинга которых применяется SCADA. RTU часто используются для контроля отдельных групп оборудования, таких как датчики, клапаны, вентиляторы и приводы.

Удаленные терминальные блоки со временем совершенствовались и стали способны выполнять программируемую логику, аналогичную логике современного ПЛК. Существуют разные методы передачи информации в основную систему управления, но большинство современных RTU используют Ethernet или подобную форму связи. Фактически, один из самых популярных сетевых протоколов всех времен, Modbus RTU, был разработан просто для взаимодействия с этими устройствами.

Терминология автоматизации: PLC, PAC, RTU, DCS и SCADA ПЛК, Программирование ПЛК, Асу, АСУ ТП, Автоматизация, Scada, Термины, Промышленная автоматика, Длиннопост

RTU часто являются частью SCADA-системы и могут использоваться для управления отдельными компонентами, такими как клапаны

Данные устройства обычно состоят из нескольких общих компонентов, которые вместе образуют независимый блок управления. Обычно они содержат своего рода базовый процессор для анализа входных данных и последующего принятия решений для системы или передачи информации в качестве выходных данных. Они также содержат некоторую форму локального или удаленного интерфейса ввода-вывода для получения информации об их работе и лучшего понимания состояния устройства, которое они контролируют.

Подводя итог, RTU подобен очень простому ПЛК, используемому для управления некоторым внешним изолированным устройством ввода-вывода или сетью, являющийся частью системы управления более высокого уровня.

РСУ / DCS

Распределенная система управления (Distributed Control System – DCS) – это ступень к системе более высокого уровня, используемая для управления и мониторинга нескольких системам одновременно. Они во многих случаях имеют встроенный уровень резервирования, помогающий снизить риск простоя в случае сбоя РСУ. Распределенные системы управления используются для мониторинга ряда систем в масштабах предприятия и управления выходными данными.

РСУ – это не отдельный блок, который вы можете приобрести, как ПЛК или удаленный терминал, а скорее целый набор продуктов уровня предприятия, от локальных устройств ввода-вывода до контроллеров и программного обеспечения мониторинга и планирования производства.

Терминология автоматизации: PLC, PAC, RTU, DCS и SCADA ПЛК, Программирование ПЛК, Асу, АСУ ТП, Автоматизация, Scada, Термины, Промышленная автоматика, Длиннопост

Как правило, большинство РСУ состоят из компонентов управления одного производителя, поэтому все компоненты могут легко взаимодействовать друг с другом. Например, в новой системе имеет смысл использовать ПЛК, устройства ввода-вывода и программное обеспечение одного производителя, чтобы гарантировать совместимость всего оборудования и иметь возможность взаимодействия как РСУ. Устаревшее оборудование можно адаптировать для работы в РСУ, но обычно это более сложная и дорогостоящая задача, чем проектирование с нуля.

SCADA

Диспетчерский контроль и сбор данных – SCADA (Supervisory Control And Data Acquisition) – это термин, используемый для описания типа системы мониторинга и управления оборудованием, применяемой в различных производственных процессах. Эти системы используются для управления аппаратным и программным обеспечением многих систем, позволяя повысить эффективность производственных процессов всего предприятия.

Системы SCADA содержат HMI (Human Machine Interface – человеко-машинный интерфейс) как часть своей инфраструктуры, которая помогает оператору в диспетчерской принимать решения о состоянии системы и при необходимости вносить изменения по мере обновления информации о состоянии оборудования.

Терминология автоматизации: PLC, PAC, RTU, DCS и SCADA ПЛК, Программирование ПЛК, Асу, АСУ ТП, Автоматизация, Scada, Термины, Промышленная автоматика, Длиннопост

SCADA система обычно является центром диспетчерской предприятия

SCADA позволяет контролировать множество различных систем на предприятии, передавая данные на центральный пункт управления. Эти данные либо автоматически отслеживаются и обрабатываются заложенным алгоритмом автоматизации, либо отображаются на мониторе, где оператор может самостоятельно принимать решения и вносить изменения через HMI. Этот тип системы управления полезен в тех случаях, когда требуется обеспечить согласованную работа многих различных процессов.

Хорошим примером использования SCADA может послужить крупный технологический завод, где продукт перемещается с места на место с обработкой по пути. Например, на заводе по производству цемента оператор должен контролировать температуру и химический состав продукта по мере его перемещения по производственной линии. Если в какой-то момент продукт не соответствует техническим характеристикам, оператор может внести изменения с техпроцесс, чтобы привести его в соответствие со спецификациями.

Профессиональный сленг

По мере развития технологий границы между различными компонентами стираются. Некоторые устройства устаревают, в то время как другие развиваются и объединяются со смежными устройствами для создания единого, более эффективного решения. Поэтому не столь важно тратить время на запоминание формальных определений, так как они обязательно изменятся, сколько стоит разбираться в оборудовании и ПО, на котором работает предприятие.


Материал подготовлен Московским заводом тепловой автоматики (МЗТА)

Показать полностью 5

Автоматизация инженерных систем с использованием ПЛК и ПО SCADA

Автоматизация инженерных систем с использованием ПЛК и ПО SCADA Scada, ПЛК, Автоматизация, Промышленная автоматика, Асу, АСУ ТП, Технологии, Видео, YouTube, Длиннопост

Предлагаем два видео с описанием применения программируемых логических контроллеров (ПЛК) и программного обеспечения SCADA в проектах автоматизации инженерных систем и производственных процессов.

Автоматизация инженерных систем

Первое видео посвящено цифровому решению «Автоматизация инженерных систем зданий с использованием свободно программируемых контроллеров (ПЛК) и программного обеспечения SCADA».

В ролике рассматриваются варианты построения АСУ ТП на примере автоматизации вентиляционной установки, системы отопления и технологической линии пищевого производства с применением ПЛК, модулей расширения, панели HMI (человеко-машинного интерфейса) и ПО автоматизации и диспетчеризации.

На демонстрационном стенде показывается топология сетей, используемое оборудование, разбираются режимы работы систем, имитируются возможные отказы и реагирование на них со стороны диспетчера автоматизированной системы управления.

В качестве продуктов автоматизации выбрано оборудование и программное обеспечение разработанное Московского завода тепловой автоматики (МЗТА), в честности ПЛК серии КОМЕГА Basic и КОНТАР, а также ПО диспетчеризации SuperSCADA


Реализация проектов АСУ ТП

Второй ролик касается методики реализации проектов автоматизации инженерных систем с использованием программируемых логических контроллеров (ПЛК) и ПО SCADA.

В видео рассматриваются подходы, применяемые разработчиками проектов автоматизации инженерных систем и техпроцессов:

  • Сферы применения автоматизированных систем: тепло- и водоснабжение, вентиляция, кондиционирование, электроснабжение, производственные техпроцессы и иные сферы АСУ ТП.

  • Экономическая эффективность отечественных систем автоматизации на базе программируемых логических контроллеров (ПЛК) и ПО SCADA.

  • Стоимость решения и время окупаемости проектов на базе российских разработок, в частности Московского завода тепловой автоматики (МЗТА).

  • Этапы реализации проекта: выявление потребности заказчика, пред-проектное обследование, согласование и разработка технического задания, предоставление ТЭО и коммерческого предложения.

  • Примеры реализации проектов в рамках импортозамещения.

Показать полностью 2

Мировой рынок SCADA

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

Приводим данные четырех аналитических агентств о глобальном рынке SCADA. В предлагаемом обзоре даются сведения об объеме рынка, темпах роста и прогнозе развития до 2030 года, а также об отраслевом и географическом распространении, ключевых игроках, факторах роста, угрозах и тенденциях рынка SCADA.

Данные аналитического агентства Facts&Factors

Объем мирового рынка SCADA оценивается в $9,9 млрд в 2022 году и, как ожидается, достигнет 16,3 млрд к 2030 году, имея среднегодовой темп роста в 7,9%.

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

Основные тенденции

Ожидается, что мировой рынок SCADA в течение прогнозируемого периода продемонстрирует значительный рост из-за растущего спроса на нефть и газ, который перерастает в спрос на продукты SCADA и ПО автоматизации в целом.

Прогнозируется, что сегмент удаленных терминалов будет вносить основной вклад в развитие мирового рынка. Что касается предложения, то в сегменте услуг будет зафиксирован самый высокий среднегодовой темп роста в 2023–2030 годах. По оценкам конечных пользователей, сегмент перерабатывающей промышленности будет составлять основную долю мирового рынка. По прогнозам, на европейском рынке SCADA будет зарегистрирован самый высокий среднегодовой темп роста.

Факторы роста

Растущий спрос на нефть и газ привел к увеличению спроса на SCADA для автоматизации и контроля производственных процессов, тем самым стимулируя расширение рынка SCADA по всему миру. Огромные потребности в энергии привели к растущему проникновению ПО автоматизации в нефтегазовые компании, что в свою очередь, открыло путь к росту бизнеса SCADA.

Кроме того, SCADA находит множество применений в сфере водоснабжения и очистки сточных вод, энергетике, автомобилестроении, фармацевтике, нефтехимии, электротехнике, химической, электронной и энергетической промышленности. В дополнение к этому, революция Индустрии 4.0 вызвала огромный спрос на инструменты SCADA. Масштабное проникновение Интернета вещей и искусственного интеллекта в различные секторы экономики еще больше увеличило спрос на мировом рынке SCADA.

Ограничения

Растущие затраты, связанные с развертыванием и обслуживанием инструментов SCADA, могут тормозить расширение данной индустрии. Например, из-за дороговизны таких компонентов, как централизованные компьютерные устройства и программное обеспечение.

Возможности

Достижения в области беспроводных сенсорных сетей, а также их растущее распространение в перерабатывающих отраслях промышленности, включая фармацевтику, водоочистку и очистку сточных вод, а также нефтегазовый сектор, откроют по всему миру новые возможности роста рынка SCADA.

Проблемы

Автоматизированные комплексы подвержены кибератакам, что создает огромную проблему для расширения индустрии SCADA. Например, системы SCADA включают сеть мэйнфреймов, хранилища данных, датчики и системы связи, которые являются наиболее уязвимым звеном систем автоматизации.

Анализ сегментов рынка

Сегмент удаленных терминалов, на который в 2022 году приходилось наибольшая доля мирового рынка, сохранит свое отраслевое доминирование. Удаленные терминальные устройства используются для сбора данных, их кодирования и передачи в центральную систему. Рост этого сегмента в последующие 8 лет может быть результатом того, что удаленные терминалы станут ключевыми компонентами SCADA. Кроме того, глубоководная разведка и добыча, включая разведку сланцевого газа, разрабатываемого в настоящее время из-за огромного спроса на нефть и газ со стороны развивающихся стран, проложат путь к огромному спросу на удаленные терминалы.

Индустрия SCADA по всему миру делится на сегменты коммунальных предприятий, перерабатывающих отраслей и дискретного производства. Сегмент перерабатывающей промышленности, на долю которого в 2022 году приходилось почти 50% мировой промышленности, по прогнозам, продолжит свое доминирование наравне с глобальным расширением промышленных предприятий. Рост этого сегмента в последующие годы может быть обусловлен растущей конкуренцией между производственными предприятиями, ориентированными на снижение затрат и оптимизации процессов. Более того, огромный спрос на SCADA в перерабатывающих отраслях можно объяснить ростом потребности в управлении и визуализации процессов в реальном режиме времени в нефтегазовой, металлургической, горнодобывающей и пищевой промышленности.

Рынок SCADA также разделен на сегменты услуг, оборудования, программного обеспечения и решений для промышленности. Более того, в сегменте услуг, на долю которого в 2022 году приходилось почти 60% мирового рынка, прогнозируется самый высокий среднегодовой темп роста. Расширение сегментов в прогнозируемые сроки может быть обусловлено огромным спросом на такие услуги, как обеспечение кибербезопасности и настройка SCADA систем.

Региональное развитие

Ожидается, что Азиатско-Тихоокеанский регион, который успешно приносил прибыль на мировом рынке SCADA в 2022 году, продолжит свое доминирование. Расширение этого рынка в 2023-2030 годах может быть связано с ростом числа производственных предприятий в таких отраслях, как энергетика, связь, автомобилестроение, фармацевтика, текстильная промышленность и др.

Кроме того, европейская индустрия SCADA, на которую в 2022 году приходилось почти 50% мировой отрасли, в течение прогнозируемого периода должна зарегистрировать самый высокий среднегодовой темп роста. Факторы, которые, по прогнозам, будут определять расширение этого рынка, включают увеличение объема инвестиций в проекты интеллектуальных сетей и процветающий производственный сектор континента.

Ключевые игроки

  • ABB Ltd.

  • Enbase LLC Ing.

  • Azbil Corporation

  • Schneider Electric SE

  • General Electric Company

  • Schweitzer Engineering Laboratories Inc.

  • Capula Ltd.

  • Rockwell Automation Inc.

  • ELYNX TECHNOLOGIES LLC

  • Yokogawa Electric Corporation

  • TOSHIBA CORPORATION

  • Mitsubishi Electric Corporation Emerson Electric Co.

  • Siemens AG

  • Progea srl

  • Willowglen Systems

  • Fuji Electric Co. Ltd.

  • Valmet Oyj

  • Inductive Automation LLC

  • Punzenberger COPA-DATA GmbH.

Главные события 2022 года:

Schneider Electric SE, французская компания, специализирующаяся на цифровой автоматизации и управлении энергопотреблением, приобрела компанию AVEVA – мирового лидера в секторе промышленного программного обеспечения. Этот шаг поможет последней усилить свою стратегию развития программного обеспечения и бизнес-модель в области гибридных облачных решений.

Немецкий производитель Siemens приобрел компанию Senseye GmbH, что поможет ему расширить портфель услуг по прогнозному обслуживанию и анализу активов.

Американский разработчик Rockwell Automation, Inc., предоставляющий технологии промышленной автоматизации выпустил программное обеспечение с функциями, обеспечивающими углубленное взаимодействие с контроллером Logix и возможностью управления HMI анимацией для автоматической диагностики посредством веб-клиентов Factory Talk ViewPoint.


Данные аналитического агентства Maximize Market Research

Рынок SCADA в 2022 году оценивался в $13,50 млрд. Ожидается, что с 2023 года он будет расти со среднегодовым темпом в 6,4% и к 2029 году достигнет в $20,85 млрд.

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

Факторы, влияющие на рынок SCADA

Индустрия 4.0. Растущая потребность в получении данных в реальном времени в промышленных средах, необходимая для анализа процессов и профилактического обслуживания, способствует внедрению Индустрии 4.0, частью которой являются Интернет вещей и облачные технологии. SCADA системы помогают создавать отчеты в режиме реального времени, а также прогнозировать будущие события. В результате на «умных» заводах использование SCADA систем позволяет операторам планировать потребность в обслуживании оборудования, избегать возникновение аварийных ситуаций и отказов в техпроцессах.

Мировые цены на нефть и газ падают с 2011 года. В результате падают доходы и операционная рентабельность нефтегазовых компаний, а также сокращаются капитальные затраты на инфраструктурные проекты. Автоматизация процессов используется при строительстве новых трубопроводов, разведке углеводородов и развитии нефтеперерабатывающих заводов. Таким образом падение капитальных вложений отражается на экосистеме автоматизации процессов и приборостроении в целом. Ожидается, что волатильность цен на нефть окажет влияние на инвестиции и рынок SCADA.

Беспроводные сенсорные сети (wireless sensor network – WSN) можно найти в различных отраслях промышленности, включая нефтегазовый сектор, медицину, очистку воды и сточных вод и других. Например, большинство добывающих углеводородное топливо предприятий расположены в отдаленных местах с суровыми природными условиями, но стоимость построения системы связи снижается при использовании WSN, которые измеряют такие характеристики, как давление, температуру, расход и уровень жидкостей и газов в резервуарах, а также иные показатели компрессоров, генераторов и сепараторов. Использование WSN в SCADA системах позволяет осуществлять мониторинг данных и управление процессами в режиме реального времени. В итоге растущие исследования и разработки в области WSN расширят область применения SCADA.

Кибератаки являются одной из наиболее насущных проблем технологических сетей. Системы SCADA уязвимы для кибератак, поскольку они состоят из сети датчиков, мейнфреймов, систем связи и хранения. В SCADA системы управляют операционными элементами критической инфраструктуры. Неисправность этих систем может привести к утечкам и разливам нефти или канализационных трубопроводов, отключению электроэнергии и прочим техногенным катастрофам, что может оказать долгосрочное негативное воздействие на работу объекта, предприятия и экономику региона в целом.

Анализ сегмента рынка SCADA

Рынок SCADA подразделяется на оборудование, программное обеспечение и услуги. Ожидается, что сегмент услуг будет занимать основную долю на мировом рынке SCADA. Этот рост объясняется растущим спросом на услуги, которые позволяют конечному пользователю осуществлять автоматизацию с лучшей эффективностью, надежностью и визуализацией. Кроме того, прогнозируется, что растущий спрос на сбор данных в реальном времени будет способствовать росту рынка SCADA.

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

В зависимости от компонентов рынок подразделяется на программируемые логические контроллеры (ПЛК), удаленные терминалы (RTU), человеко-машинный интерфейс (HMI) и устройства связи. На сегмент RTU будет приходиться наибольшая доля рынка SCADA. RTU – это устройство, которое собирает данные, преобразует их в передаваемый формат и отправляет в основную систему. Нефть и газ, включая сланцевый газ, и как следствие глубоководная разведка и добыча способствуют растущей потребности в RTU.

Среди отраслевых рынков следует выделить: электроэнергетику, нефть и газ, водоотдачу, водоотведение и очистку, производство, транспорт, телекоммуникации, химическую продукцию, продукты питания и напитки, фармацевтику и автомобилестроение. Причем в автомобильном сегменте будет наблюдаться наибольшее число внедрений систем промышленной автоматизации.

Региональный обзор рынка SCADA

По прогнозам, Азиатско-Тихоокеанский регион будет лидировать на мировом рынке SCADA, что можно объяснить растущим внедрением автоматизации и Интернета вещей (IoT) для доступа к данным из удаленных мест посредством мобильных устройств. Ожидается, что правительственные инвестиции по внедрению SCADA для энергетики, водоснабжения и водоотведения также будут способствовать развитию рынка SCADA в этом регионе.

Благодаря улучшенному управлению электропитанием, а также огромным инвестициям в технологии, Северная Америка сохранит доминирование и будет иметь наибольшую долю доходов.

Ожидается, что из-за растущего спроса на методы автоматизации в нефтегазовом секторе Европа будет вторым по величине генератором доходов.

Ключевые игроки на рынке SCADA

1. IBM Corporation

2. Siemens AG

3. General Electric

4. Cisco Systems, Inc.

5. Alstom

6. ABB Ltd.

7. Emerson Electric Co.

8. Rockwell Automation, Inc.

9. Schneider Electric SE

10.Alstom

11.Honeywell International, Inc.

12.Omron Corporation

13.Yokogawa Electric Corporation

14.Iconics Inc.

15.Elynx Technologies, LLC

16.Enbase LLC

17.Globalogix

18.Inductive Automation

19.Deagital SAS

20.Mitsubishi Electric

21.Hitachi Ltd.

22.JFE Engineering Corporation

23.Partita IVA

24.Toshiba Infrastructure Systems & Solutions Corporation


Примечание. Разница в оценке объемов рынка SCADA двумя агентствами вероятно кроется в методологии исследования. Во-первых, агентство Facts&Factors при анализе SCADA рынка оборудования изучает три основных компонента: удаленные терминалы, ПЛК и HMI. В то время как Maximize Market Research добавляет к этим категориям устройства связи и иные продукты.

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

Во-вторых, Maximize Market Research, включает больше разработчиков, в частности такие именитые компании, как Cisco, Emerson, Honeywell, Hitachi, IBM и Omron, которых не указывает агентство Facts&Factors. Последнее вероятно сконцентрировалось в большей степени на специализированных разработчиках SCADA и меньше учитывает комплексные решения автоматизации, создаваемые многопрофильными компаниями. В таблице ниже собраны «непересекающиеся» вендоры, т.е. за вычетом компаний, отмеченных обоими агентствами.

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

Для справки:

Еще одну оценку объема рынка дает агентство «Research and Markets». Согласно его исследованию, объем мирового рынка SCADA вырастет с $9,8 млрд в 2022 году до $14,2 млрд к 2027 году, при среднегодовом темпе роста 7,8%.

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

С учетом данных трех аналитических агентств несложно подчитать, что в среднесрочном периоде, а именно в течение ближайших 5-8 лет мировой рынок SCADA будет прибавлять порядка 900 млн долларов в год.

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

Электроэнергетический рынок SCADA (Power SCADA)

По данным агентства Coherent Market Insights рынок Power SCADA оценивается в $2,71 млрд в 2024 году и, как ожидается, достигнет $4,41 млрд к 2031 году, демонстрируя совокупный годовой темп роста (CAGR) в 7,2%.

Тенденции рынка Power SCADA

Прогнозируется, что благодаря интеграции возобновляемых источников энергии в существующие электросети, внедрению современной инфраструктуры измерения и появлению микросетей в течение ближайших 7 лет на рынке произойдет значительный рост. Тенденция энергетического рынка SCADA демонстрирует растущий спрос на облачные системы и аналитические решения. Рост интеллектуальных сетей также предоставляет разработчикам SCADA возможности для создания продуктов оптимизированного управления. Однако рост рынка может быть затруднен из-за угроз кибербезопасности критической инфраструктуры и нехватки квалифицированной рабочей силы, с которой сталкиваются коммунальные предприятия во всем мире.

Спрос на электроэнергию растет во всем мире

Поскольку население мира и уровень жизни продолжают расти, растет и спрос на существующую инфраструктуру производства и распределения электроэнергии. Коммунальные предприятия как в развитых, так и в развивающихся регионах вкладывают значительные средства в расширение и модернизацию производства и передачи электроэнергии. Согласно прогнозам, мировой спрос на энергию вырастет на 30% в течение следующих двух десятилетий. Для удовлетворения этого спроса потребуется массовое строительство новых электростанций, а также модернизация сетей доставки электроэнергии в города и сельскую местность.

С помощью SCADA операторы сетей получают возможность просмотра в режиме реального времени всех систем генерации, передачи и распределения электроэнергии с тем, чтобы выявить места неэффективного ее использования или ограничений. Когда происходят резкие скачки спроса, например, во время аномальной жары или в периоды пикового промышленного производства, SCADA позволяет автоматически и удаленно корректировать маршрутизацию потоков. Это также облегчает интеграцию с традиционными генерирующими ресурсами возобновляемых источников энергии, таких как солнечные и ветряные электростанции, имеющих переменную мощность, которую необходимо тщательно балансировать.

Растущая зависимость от возобновляемых источников энергии

Растущая обеспокоенность по поводу изменения климата в сочетании с достижениями в области технологий возобновляемой энергетики побудили многие страны существенно увеличить количество энергии, получаемой без вредных выбросов от альтернативных источников, таких как солнечные, ветровые и гидроэлектростанции. По данным Международного энергетического агентства, если текущие политические обязательства будут выполнены, то доля возобновляемых источников энергии в общем объеме производства электроэнергии в мире может вырасти до более чем на 30% к 2040 году. Но несмотря на положительную тенденцию с экологической точки зрения, интеграция большого количества переменных, имеющихся у возобновляемых источников, таких как ветер и солнечная энергия, в существующие энергосети представляет собой технические проблемы, которые операторы сетей решают посредством интеллектуального мониторинга и контроля. Системы SCADA дают возможность операторам сетей поддерживать стабильные поставки электроэнергии, даже несмотря на то, что доля прерывистой генерации из возобновляемых источников в их системах значительно возрастает. Например, SCADA позволяет коммунальным предприятиям определять периоды высокой мощности ветра и солнечной энергии, что позволяет эффективно распределять или хранить избыточную электроэнергию.

Проблемы рынка

Рынок энергетического SCADA сталкивается с рядом трудностей. Устаревшая инфраструктура и необходимость ее модернизации представляют собой серьезную проблему, поскольку коммунальные предприятия ограничены в бюджете. Кроме того, растущая сложность сетевых операций из-за увеличения доли возобновляемых источников энергии затрудняет мониторинг сети. Недостаток квалифицированной рабочей силы также может препятствовать эффективному управлению энергосистемой. Коммунальным предприятиям сложно внедрять новые технологии из-за опасений, связанных с целостностью системы и проблемами безопасности со стороны киберугроз. Высокие первоначальные затраты на установку передовых систем SCADA также служат барьером, особенно для коммунальных предприятий в развивающихся регионах.

Возможности рынка

Модернизация сетей дает импульс для модернизации SCADA. Внедрение технологий интеллектуальных сетей повышает экономическое обоснование решений автоматизации. Коммунальные предприятия инвестируют в цифровизацию с тем, чтобы повысить эффективность, оптимизировать операции и интегрировать больше возобновляемых источников энергии. Растущий спрос на микросети и децентрализованное производство электроэнергии расширяет возможности для локализованного развертывания SCADA.

Архитектура SCADA

С точки зрения архитектуры, аппаратное обеспечение занимает 50% рынка Power SCADA, поскольку оно играет принципиально важную роль в работе системы. Аппаратное обеспечение, такое как удаленные терминалы, программируемые логические контроллеры, коммуникационная инфраструктура и человеко-машинные интерфейсы, которые собирают полевые данные, выполняют команды управления и отображают информацию о процессе операторам. Надежная и стабильная работа этих устройств имеет первостепенное значение для поддержания контроля над сетями производства, передачи и распределения электроэнергии. Любые неисправности или перебои, вызванные проблемами с оборудованием, могут серьезно повлиять на стабильность и безопасность электроснабжения. Внеплановые отключения сокращают мощность и увеличивают затраты, а технические неисправности могут поставить под угрозу безопасность работников или вызвать отключения электроэнергии. Таким образом, производители оборудования уделяют пристальное внимание разработке продуктов, обладающих лучшими в отрасли надежностью, долговечностью, защитой от киберугроз и отказоустойчивым резервированием. Они также предоставляют обширное послепродажное обслуживание и техническую поддержку с тем, чтобы свести к минимуму время простоя из-за незапланированного технического обслуживания. В целом упор на надежность приводит к тому, что оборудование имеет самые длинные жизненные циклы и самую низкую совокупную стоимость владения по сравнению с другими архитектурными сегментами.

Удаленный доступ способствует доминированию сегмента RTU

Что касается компонентов, удаленные терминальные блоки (RTU) занимают 41% доли рынка Power SCADA благодаря их роли в обеспечении широкомасштабного дистанционного управления и мониторинга. RTU служат основными устройствами, установленными на необслуживаемых полевых объектах в обширной инфраструктуре производства электроэнергии для осуществления связи, агрегирования и передачи данных. Они контролируют датчики, управляют автоматическими выключателями, а также консолидируют оперативные данные из многочисленных удаленных мест для передачи в центры управления. Учитывая масштаб и географическое распространение энергетической инфраструктуры, наличие возможностей удаленного доступа имеет важное значение для эффективного контроля со стороны операторов. RTU позволяют производить распределенное управление активами без необходимости постоянного физического присутствия на каждом объекте.

Региональное развитие

Северная Америка в настоящее время является крупнейшим и наиболее доминирующим регионом на мировом рынке SCADA в сфере энергетики. На долю региона приходится около 41% общей доли рынка благодаря присутствию в регионе таких крупных игроков рынка, как ABB, Schneider Electric и General Electric. Эти компании вкладывают значительные средства в разработку новых и инновационных решений SCADA, отвечающих растущей индустриализации и развитию инфраструктуры в странах США и Канады. Более того, региональные правительства постоянно работают над модернизацией стареющей энергетической инфраструктуры, что в дальнейшем помогает создать выгодные условия для развертывания передовых систем SCADA.

Азиатско-Тихоокеанский регион может стать самым быстрорастущим рынком решений Power SCADA в мире. Проекты быстрой индустриализации и урбанизации в развивающихся экономиках Китая, Индии и стран Юго-Восточной Азии увеличили спрос на системы, которые могут обеспечить эффективный мониторинг и управление сложными энергосетями. Многие региональные электроэнергетические компании, а также независимые производители электроэнергии внедряют современные системы SCADA, чтобы улучшить прозрачность и контроль над своими территориально распространенными энергетическими активами. Кроме того, ожидается, что присутствие глобальных поставщиков SCADA совместно с местными системными интеграторами, ускорит рост регионального рынка в течение следующего десятилетия. Такие страны, как Китай, также реализовали инициативы, поддерживающие внутреннее производство компонентов SCADA, что привело к увеличению регионального импорта и экспорта.

Конкуренция на электроэнергетическом рынке SCADA и ПО автоматизации

Мировой рынок SCADA Scada, Автоматизация, Автоматика, Промышленная автоматика, Длиннопост

Ключевые игроки на рынке Power SCADA

  • ABB

  • Emerson

  • Siemens

  • Schneider Electric

  • Eaton Corporation

  • Rockwell Automation

  • Hitachi

  • Honeywell

  • Indra Sistemas

  • PSI AG

  • Toshiba Corporation

  • Emerson Electric Co. Establishment

  • Alstom

  • General Electric Co.

  • Honeywell International Inc.

  • Omron Corporation

  • Yokogawa Electric Corporation

  • Iconics Inc.

  • Enbase LLC

  • Globalogix



Материал
подготовлен Московским заводом тепловой автоматики

Показать полностью 8

В Питере шаверма и мосты, в Казани эчпочмаки и казан. А что в других городах?

Мы постарались сделать каждый город, с которого начинается еженедельный заед в нашей новой игре, по-настоящему уникальным. Оценить можно на странице совместной игры Torero и Пикабу.

Реклама АО «Кордиант», ИНН 7601001509

Глобальный рынок ПЛК – объем, тенденции и прогноз на 2024-2029 годы

Глобальный рынок ПЛК – объем, тенденции и прогноз на 2024-2029 годы ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Промышленная автоматика, Роботизация, Arduino, Контроллер, Длиннопост

Рынок аппаратных средств автоматизации постоянно растет и в этой связи представляют интерес данные по объему и тенденциям рынка программируемых логических контроллеров (ПЛК), опубликованных в отчете аналитического агентства Mordor Intelligence.

Объем рынка ПЛК

Объем рынка ПЛК оценивается в $12,83 млрд в 2024 году и, как ожидается, достигнет $15,07 млрд к 2029 году при среднегодовом темпе роста в 4,23%.

Факторы, влияющие на рост рынка ПЛК

  • Простои оборудования существенно снижают эффективность производства – на их долю приходится от 5 до 20% всех потерь. Применение ПЛК позволяет выявлять и исправлять ошибки техпроцессов и обеспечить быструю реакцию по устранению простоев даже без вмешательства человека, что в итоге гарантирует устойчивое развитие рынка ПЛК.

  • Предприятия давно осознали надежность процессов с использованием контроллеров и долгосрочную прибыль, которые можно извлечь, используя АСУТП. Контроллеры помогают управлять роботизированными устройствами на сборочных линиях, в упаковке и любых других операциях, требующих надежного соблюдения алгоритмов, простого программирования и диагностики ошибок. Масштабируемость, больший объем памяти, малые размеры, скоростной (гигабитный) Ethernet и беспроводная связь входят в число возможностей ПЛК, которая позволяет им оставаться лучшим выбором для приложений промышленной автоматизации. Таким образом растущее проникновение автоматизации в промышленном секторе будет и дальше способствовать росту рынка ПЛК.

  • Из-за запроса потребителей в персонализированных продуктах, отрасли переходят от модели массового производства к индивидуальному. ПЛК традиционно широко используются в процессах, которые редко меняются. Однако растущая потребность предприятий в подстройке своих продуктов к запросам конечных потребителей сделала производственные процессы более сложными и приводит к частой перенастройке оборудования. Всё это побуждает производителей инвестировать и внедрять более гибкие системы, такие как контроллеры на базе ПК и облачных технологий, а не применение традиционных ПЛК, что затрудняет рост данного рынка.

  • Макроэкономические и политические факторы, региональные войны и конфликты играют решающую роль в изменениях темпа роста промышленности, поскольку они влияют на объем инвестиций и возможности по расширению промышленного сектора. В этой связи рынок ПЛК существенно зависит от геополитического состояния того или иного региона.

Тенденции рынка ПЛК

Ожидается, что автомобильная промышленность станет самой быстрорастущей отраслью для пользователей ПЛК.

  • Исторически ПЛК использовались в качестве замены реле в автомобилестроении и позволили заводам работать быстрее и надежнее. Автоматизированные процессы уменьшили возникновение узких мест, что снизило эксплуатационные расходы и продолжительность производственных процессов.

  • В мире растет спрос на автомобили – по данным Scotiabank, мировые продажи автомобилей вышли на отметку 69,9 миллионов в 2023 году и, как ожидается, в ближайшие годы будут еще больше.

  • Автомобильные компании интегрируют всё более новые технологии для повышения производительности. Например, компания ATS Applied Tech Systems Ltd разработала систему отслеживания качества подушек безопасности с использованием ПЛК InTrack, InTouch и GE-Fanuc с тем, чтобы гарантировать полную защиту от ошибок. Используя настройки системы при обнаружении неисправности можно отследить, как происхождение подушки безопасности, так и состояние оборудования на момент производства, причем с использованием архивов с глубиной просмотра данных за 10-летний период.

  • Автоматизация значительно повысила эффективность сборки. Наблюдается увеличение производства автомобилей во всем мире при одновременном сокращении затрат, что открывает в этом секторе путь к росту умных заводов. Роботы более гибкие, эффективные, точные и надежные в применении именно к этой отрасли. В результате автомобильная промышленность остается одним из наиболее значительных потребителей ПЛК.

  • Ожидается, что развитие парка автономных автомобилей и постоянно растущая доля электрификации всех транспортных средств окажут существенное влияние на рост рынка автоматики, поскольку на электротранспорте обычно используется большое количество электронных блоков и блоков управления, в которых ПЛК играют решающую роль.

Глобальный рынок ПЛК – объем, тенденции и прогноз на 2024-2029 годы ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Промышленная автоматика, Роботизация, Arduino, Контроллер, Длиннопост

Мировые продажи автомобилей в 2019-2023 годах, в $ млрд

Ожидается, что в Азиатско-Тихоокеанском регионе будет наблюдаться ускоренный рост рынка ПЛК.

  • За последние несколько десятилетий в Азиатско-Тихоокеанском регионе виден значительный рост в различных секторах экономики, включая автомобильную отрасль, обрабатывающую промышленность и другие производства. Ожидается, что в течение прогнозируемого периода рост рынка ПЛК продолжится. Например, производственный сектор составляет значительную часть экономики Китая, которая переживает быструю трансформацию в связи с ростом в мире Интернета вещей и расширением Индустрии 4.0 в целом. Эта масштабная конверсия вывела страну на одну из лидирующих позиций на рынке ПЛК.

  • Индию стимулирует рост технологий роботизированной автоматизации (RPA – Robotic Process Aautomation) и искусственного интеллекта. По данным RPA Automation Anywhere, в настоящее время Индия в этом секторе является вторым по величине источником формирования доходов после США. Глобальные центры энергетических компаний, поставщики услуг и промышленные предприятия являются наиболее значимыми заказчиками индийского рынка. Сектор промышленной автоматизации Индии был преобразован за счет интеграции цифровых и физических производственных компонентов. Акцент на безотходном производстве и росте стартапов также способствовал росту рынка ПЛК.

  • Япония занимает наибольшую долю рынка в индустрии производства роботов. Согласно отчету международной федерации робототехники (IFR) за март 2022 года, Япония является крупнейшим в мире производителем промышленных роботов, осуществляя 45% поставок во всем мире. Ожидается, что это повысит спрос на автоматизацию и повлечет развитие ПЛК в этом регионе.

  • Другие страны Азиатско-Тихоокеанского региона, включая Южную Корею, Сингапур, Индонезию, Австралию, Таиланд и Малайзию, благодаря доступности сырья и более низким ценам на землю постепенно превращаются в крупные промышленные центры, создавая альтернативу Китаю. Ожидается, что эта тенденция также будет способствовать росту рынка ПЛК в данном регионе.

Глобальный рынок ПЛК – объем, тенденции и прогноз на 2024-2029 годы ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Промышленная автоматика, Роботизация, Arduino, Контроллер, Длиннопост

Совокупный среднегодовой темп роста рынка ПЛК по регионам (Market CAGR)

Производители ПЛК

Рынок программируемых логических контроллеров относительно умеренно фрагментирован, на нем присутствуют такие крупные игроки, как ABB Ltd, Mitsubishi Electric Corporation, Schneider Electric SE, Rockwell Automation Inc и Siemens AG. Данные компании используют такие стратегии, как партнерство, слияния и поглощения с тем, чтобы улучшить предложение своих продуктов и получить конкурентное преимущество.

Лидеры рынка ПЛК и концентрация производства

  1. ABB Ltd.

  2. Mitsubishi Electric Corporation

  3. Schneider Electric SE

  4. Rockwell Automation, Inc.

  5. Siemens AG

Глобальный рынок ПЛК – объем, тенденции и прогноз на 2024-2029 годы ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Промышленная автоматика, Роботизация, Arduino, Контроллер, Длиннопост

Некоторые события, произошедшие за последние два года на рынке ПЛК

  • Siemens выпустила полноценный виртуальный программируемый логический контроллер – Simatic S7-1500V, который расширяет существующее портфолио Simatic в соответствии с особыми требованиями рынка, включая виртуальный хостинг вычислений ПЛК. По данным компании, Simatic S7-1500V является частью Industrial Operations X, в рамках которой производитель уделяет особое внимание интеграции в среду автоматизации ИТ возможностей и программного обеспечения.

  • Arduino анонсировала свой первый микро-ПЛК Opta – устройство, разработанное в сотрудничестве с Finder с учетом промышленного Интернета вещей (IIoT). Оно использует двухъядерный микроконтроллер STMicro STM32H747XI, который содержит ядро Arm Cortex-M7 и ядро Cortex-M4 с меньшим энергопотреблением, а также блок распределенных вычислений с плавающей запятой, ускоритель Chrom-ART, аппаратный ускоритель JPEG, флэш-память 2 МБ.

  • Omron создала ПЛК CP2E Micro для компактного оборудования с поддержкой межмашинной связи. CP2E – одно из решений для серийного производства, где важны эффективность затрат, гибкая настройка и мониторинг оборудования.

  • В портфолио продуктов Toshiba появились программируемые логические контроллеры, созданные в партнерстве с дистрибьютором электронных компонентов Farnell. Данное сотрудничество позволяет распространить решения Toshiba для автомобилестроения, Интернета вещей (IoT), управления движением, телекоммуникаций, сетевого оборудования, производства потребительских товаров и бытовой техники и многих других отраслей и производств.

  • Emerson Electric Co. объявила о выпуске программируемых контроллеров автоматизации PACSystem RSTi-EP CPE 200. Компактные PAC помогут OEM-производителям удовлетворить потребности клиентов за счет снижения требований к специалистам в области разработки ПО. Контроллеры CPE 200 предлагают все возможности ПЛК, но в небольшом и экономичном форм-факторе, готовом к использованию в сфере IIoT – таким образом производителям оборудования не придется жертвовать производительностью ради цены.

Материал подготовлен Московским заводом тепловой автоматики

Показать полностью 4

Принцип работы ПЛК

Принцип работы ПЛК ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Контроллер, Длиннопост

Приводим материал Стивена Гейтса (Stephen Gates), который на страницах портала Myplctraining доходчиво рассказал о принципах работы программируемых логических контроллеров. Благодарим за популяризацию темы автоматизации в целом и ПЛК, в частности и знакомим вас с переводом статьи.

Введение

Программируемые логические контроллеры (ПЛК) – это небольшие промышленные компьютеры с модульными компонентами, предназначенные для автоматизации процессов управления. ПЛК часто используются на заводах и иных объектах для управления двигателями, насосами, освещением, вентиляторами, автоматическими выключателями и другим оборудованием.

История ПЛК

Промышленная автоматизация началась задолго до появления ПЛК. В первой половине XX века автоматизация обычно осуществлялась с использованием сложных электромеханических релейных схем. Однако количество реле и проводов, и соответственно занимаемого ими места было слишком большим. Например, для автоматизации даже простого производственного процесса могут потребоваться тысячи реле! А если в логической схеме нужно было что-то изменить, то это вызывало серьезные проблемы.

Примечание. На базовом уровне электромеханические реле функционируют путем магнитного размыкания или замыкания электрических контактов при подаче напряжения на катушку реле. Эти устройства не вышли из обихода и до сих пор играют важную роль в промышленной автоматизации.

В 1968 году появился первый программируемый логический контроллер, который на промышленных предприятиях заменил сложные релейные схемы. ПЛК был разработан таким образом, чтобы его могли легко программировать инженеры и технические специалисты, уже знакомые с логикой реле и схемами управления. Поэтому с самого начала ПЛК можно было программировать с использованием релейной логики, которая была разработана для имитации схем цепей управления. Релейная логика или лестничные диаграммы выглядят как схемы управления, в которых поток энергии течет слева направо через закрытые контакты для подачи питания на катушку реле.

Принцип работы ПЛК ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Контроллер, Длиннопост

Пример языка релейной логики – LD (Ladder diagram)

Как видите, релейная логика выглядит как простая схема управления, где источники входного сигнала, такие как переключатели, кнопки, датчики и т. д., показаны слева, а источники вывода – справа. Возможность программирования сложных автоматизированных процессов с помощью интуитивно понятного интерфейса, такого как релейная логика, значительно упростила переход от релейной логики к ПЛК. И хотя первые ПЛК были очень ограничены в возможностях, в объеме памяти и скорости, с годами они значительно улучшили свои характеристики. В результате ПЛК помогли упростить проектирование и внедрение промышленной автоматизации.

Как работают ПЛК?

ПЛК можно охарактеризовать как небольшие промышленные компьютеры с модульными компонентами, предназначенными для автоматизации процессов управления. Контроллеры присутствуют практически во всей современной промышленной автоматизации. ПЛК состоит из множества компонентов, но большинство из них можно отнести к следующим трем укрупненным категориям:

  • Процессор

  • Входы

  • Выходы

Попробуем описать функцию ПЛК простыми словами. ПЛК принимает входные данные, выполняет логические операции на основе входных значений ЦП (центральный процессор), а затем включает или выключает выходы на основе этой логики. Позже мы углубимся в подробности, а сейчас подумайте об этом так:

  1. ЦП контролирует состояние входов (например, включение, выключение датчика приближения, открытия клапана на 40 % и т. д.).

  2. ЦП принимает информацию, которую он получает от входов и выполняет логические операции.

  3. ЦП устанавливает значения выходов (например, выключение двигателя, открытие клапана и т. д.).

Принцип работы ПЛК ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Контроллер, Длиннопост

Блок-схема функций ПЛК

Процессор (ЦП), входы и выходы – эти три компонента работают вместе с тем, чтобы принимать входные данные, выполнять логику на входах, а затем активировать/деактивировать выходы.

Воспользуемся примером с тем, чтобы проиллюстрировать, как работают ПЛК. Рассмотрим работу посудомоечных машин, которые оснащены микропроцессорами, аналогичными ПЛК. У посудомоечной машины есть входы, выходы и, конечно же, процессор. Входами контроллера посудомоечной машины могут быть кнопки на передней панели, датчики воды и выключатель загрузочной дверцы. Выходы посудомоечной машины – это водяные клапаны, нагревательные элементы и насосы. Как посудомоечная машина использует эти компоненты:

  1. Пользователь нажимает кнопку режима цикла (вход обнаружен)

  2. Пользователь нажимает кнопку запуска (обнаружен ввод)

  3. ЦП проверяет, что дверь закрыта (вход обнаружен)

  4. Заливной клапан открывается, и посудомоечная машина начинает наполняться водой (выход активирован).

  5. ЦП ждет, пока не будет достигнут нужный уровень воды (вход обнаружен)

  6. Заполняющий клапан закрывается, и поток воды прекращается (выход активирован/деактивирован)

  7. Нагревательный элемент включен (выход активирован)

  8. ЦП ждет, пока не будет достигнута требуемая температура воды (вход обнаружен)

  9. Дозатор мыла открывается (выход активирован)

  10. Водяной насос включается, чтобы нагнетать воду через форсунки (выход активирован)

  11. ЦП начинает отсчет времени в зависимости от типа цикла (логический таймер активирован)

  12. Водяной насос выключается (выход деактивирован)

  13. Нагревательный элемент выключен (выход деактивирован)

  14. Сливной клапан открывается, посудомоечная машина начинает сливать грязную воду (выход активирован).

  15. ЦП ждет пока не обнаружит, что уровень воды достаточно низкий (вход активирован/деактивирован)

  16. Дренажный клапан закрывается (выход активирован/деактивирован)

  17. Заправочный клапан снова открывается для ополаскивания посуды (выход активирован)

  18. Водяной насос включается, чтобы нагнетать воду через форсунки (выход активирован)

  19. ЦП начинает отсчет времени (логический таймер активирован)

  20. Водяной насос выключается (выход деактивирован)

  21. Сливной клапан открывается, и посудомоечная машина начинает сливать воду для полоскания (выход активирован).

  22. ЦП ждет пока не обнаружит, что уровень воды достаточно низкий (вход активирован/деактивирован)

  23. Дренажный клапан закрывается (выход активирован/деактивирован)

  24. Нагревательный элемент включается для нагрева воздуха внутри посудомоечной машины и сушки посуды (выход активирован)

  25. ЦП ждет пока не будет достигнута необходимая внутренняя температура (вход активирован)

  26. ЦП начинает отсчет времени (логический таймер активирован)

  27. Нагревательный элемент выключен (выход активирован/деактивирован)

Принцип работы ПЛК ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Контроллер, Длиннопост

Схема управления посудомоечной машиной

Дискретный и аналоговый ввод/вывод

Входы и выходы часто обозначаются термином «I/O». В приведенном выше примере с посудомоечной машиной мы рассматривали каждый вход и выход как дискретный или цифровой сигнал.

Дискретные сигналы – это сигналы, которые могут характеризовать только состояние включено или выключено. Это самый простой и распространенный тип ввода-вывода. В нашем примере мы не использовали аналоговый ввод-вывод. Хотя в системе управления посудомоечной машиной может использоваться аналоговый ввод-вывод. Пример: при использовании аналоговых сигналов вместо включения/выключения или открытия/закрытия вы можете оперировать такими данными, как 0 – 100 %, 4 – 20 мА, 0 – 100 градусов Цельсия или что-то еще, что вы измеряете и берете в качестве входного сигнала и управляющего сигнала – в качестве выходного сигнала.

Процессор ПЛК – логика

ЦП является домом для логики ПЛК, памяти и коммуникаций. ЦП – это место, где хранится созданная разработчиком программа автоматизации.

На примере посудомоечной машины мы рассмотрели, как может выглядеть логика программы. Она обнаруживает различные состояния входа и активирует/деактивирует действия выхода. Логику ЦП ПЛК можно также сравнить с мозгом, который принимает входные сигналы (зрение, ощущение, обоняние, вкус, звук) и производит выходные действия (идти, тянуть, брать, говорить и т. д.).

Принцип работы ПЛК ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Контроллер, Длиннопост

Примечание. Традиционно ПЛК программируются исключительно с использованием релейной логики (LD). Большинство новых программируемых контроллеров автоматизации – PAC (описание ПАК дано чуть ниже) также позволяют программировать на других языках, таких как структурированный текст (ST), последовательная функциональная схема (SFC), функциональная блок-схема (FBD) и список инструкций (IL). Международная электротехническая комиссия (IEC) включила эти пять языков программирования в стандарт IEC 61131-3.

Память ПЛК

Память процессора обычно находится в ЦП, и в ней временно или постоянно хранятся данные и программы ПЛК. Это похоже на память компьютера (ОЗУ или ПЗУ).

Коммуникации ПЛК

Связь, осуществляемая центральным процессором, обычно включает в себя одно или несколько действий:

  • Связь через последовательный порт или порт USB модуля ЦП с компьютером программиста;

  • Связь с модулями ввода-вывода (I/O) через объединительную плату шасси;

  • Связь с другими ПЛК и другими устройствами промышленной автоматизации через Ethernet и другие типы сетей.

Продолжая аналогию с человеческим мозгом, связь ПЛК можно сравнить связью мозга с различными частями тела (глазами, носом, руками, ноги и т. д.) и общение с другими людьми. Давайте воспользуемся примером. Логика нашего мозга может выглядеть примерно так:

  1. Мозг получает от глаз информацию о том, что, допустим на полу лежит мешающая проходу коробка.

  2. Мозг принимает логические решения относительно того, почему коробку следует взять в руки и переместить.

  3. Мозг приказывает ногам согнуться, рукам – дотянуться, взять коробку и убрать ее с дороги.

Хотя человеческий мозг намного сложнее, мощнее и гибче, чем ПЛК, тем не менее можно увидеть сходство между ПЛК и системой управления человека. Обратите внимание, как ПЛК можно запрограммировать для работы с механическим оборудованием для выполнения многих задач, которые в противном случае пришлось бы выполнять людям вручную.

Ввод-вывод ПЛК

Ввод-вывод – это часть ПЛК, которая соединяет мозг (ЦП), с внешним миром, механизмами и машинами. В системе ПЛК обычно имеются выделенные модули для входов и модули для выходов. Модуль входа определяет состояние входных сигналов, таких как кнопки, переключатели, датчики температуры и т. д. Модуль вывода управляет такими устройствами, как реле, пускатели двигателей, освещение и т. д.

Дискретный ввод/вывод

Наиболее распространенным типом ввода-вывода ПЛК является дискретный ввод-вывод. Иногда дискретный ввод-вывод называют цифровым вводом-выводом. Концепция проста: дискретный ввод-вывод – это сигналы, которые либо включены, либо выключены. Некоторыми примерами устройств дискретного ввода могут быть такие вещи, как выключатели света, кнопки и бесконтактные переключатели.

Примерами устройств дискретного вывода являются фонари, реле и пускатели двигателей. В нашем примере с посудомоечной машиной некоторые из дискретных входов – это кнопка запуска, выключатель дверцы и переключатель уровня воды. Некоторыми из дискретных выходов могут быть клапан наполнения воды, клапан слива воды и нагревательный элемент.

Примерами дискретных входов для ПЛК могут быть разомкнутые или замкнутые автоматические выключатели, генераторы, датчик положения конвейерной ленты или датчик уровня воды в резервуаре. Дискретные выходы могут отвечать за включение или размыкание автоматических выключателей, запуск или остановку генераторов, открытие или закрытие водяных клапанов или включение и выключение сигнальных ламп.

Дискретный ввод-вывод всегда либо включен, либо выключен. Между ними нет никакого промежутка. Благодаря этому дискретные сигналы легко обрабатывать на компьютере или ПЛК. Другие способы описания дискретного сигнала: он либо истинен, либо ложен, 1 или 0, открыт или закрыт.

Принцип работы ПЛК ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Контроллер, Длиннопост

Аналоговый ввод/вывод

Другой распространенной формой ввода-вывода ПЛК является аналоговый ввод-вывод. Например, аналоговый сигнал может создавать напряжение в диапазоне 0 – 10 В постоянного тока, допустим 2, 3 или 8,25 вольт. В мире ПЛК модули аналогового ввода обычно измеряют аналоговые входы в одном из следующих диапазонов: от -10 до 10 В постоянного тока, 0 – 10 В постоянного тока, от 1 до 5 В постоянного тока, 0 – 1 мА или 4 – 20 мА. По сути, модуль аналогового ввода измеряет либо напряжение, либо ток. Существуют и другие типы аналоговых сигналов, но перечисленные выше, безусловно, наиболее распространены.

Аналоговый сигнал, с которым большинство из нас знакомо – это регулятор освещенности. Когда вы поворачиваете регулятор или ползунок диммера, свет становится либо ярче, либо тусклее. Так же и аналоговый входной сигнал в ПЛК может увеличиваться или уменьшаться с очень небольшими приращениями, и ПЛК схожим образом формирует аналоговый выходной сигнал.

Реальные примеры аналоговых входов в промышленной среде: датчики температуры двигателя (RTD, термопары и т. д.), датчики давления масла, весы. Датчик температуры может, например, работать в диапазоне температур от -50 до 150 градусов Цельсия, что соответствует току 4 – 20 мА. Весы могут работать в диапазоне от 0 до 500 кг, соответствующий напряжению от 0 до 10 В. И так далее. Аналоговые выходы можно использовать для управления выходной мощностью генератора, положением стрелки аналогового измерителя давления и многого другого. Аналоговый выход 0 – 3 В постоянного тока можно использовать для управления генератором мощностью 0 – 2000 кВт, а аналоговый выход 4 – 20 мА – для управления датчиком температуры от -30 до 100 градусов Цельсия.

ПЛК и ПАК

Вероятно, вы слышали о программируемом контроллере автоматизации – ПАК (Programmable Automation Controller – PAC). Этот термин был впервые придуман исследовательской фирмой ARC в 2001 году, чтобы отличить обычные ПЛК (programmable logic controller – PLC) от появившихся на рынке новых, более мощных и гибких контроллеров. Существуют разногласия по поводу различий в определениях между PAC и PLC, и часто эти термины используются в отрасли как синонимы и взаимозаменяемые. PAC вероятно являются лучшим выбором, если только система не очень проста и минимизация стоимости проекта не является жизненно важной. Современный пользовательский интерфейс, дополнительная мощность и память большинства PAC делают их превосходящими большинство ПЛК.

Промышленные коммуникации

Необходимо рассказать также и о данных ввода-вывода, которые можно передавать или получать от других контроллеров и устройств через промышленные протоколы связи. Существует множество протоколов промышленной связи: Modbus, DNP, BACnet, ControlNet, EtherNet/IP и многие другие. Одним из старейших протоколов промышленной связи является Modbus. Modbus до сих пор широко используется во многих устройствах и ПЛК из-за своей простоты и широкого распространения.

Принцип работы ПЛК ПЛК, Программирование ПЛК, Автоматизация, Автоматика, Контроллер, Длиннопост

Modbus – это протокол типа «главный-подчиненный», в котором одно устройство является главным, а все остальные устройства в сети Modbus – подчиненными. Ведущее устройство Modbus может считывать данные с устройства или записывать на него в зависимости от возможностей ведомого устройства.

Как это связано с вводом-выводом ПЛК? Многие устройства, такие как ПЛК, цифровые счетчики, системы SCADA, частотно-регулируемые приводы и контроллеры генераторных установок, были разработаны с внутренней картой данных точек входа и выхода. Разработчик устройства решает, как распределяются данные. Например, данные Modbus поступают в систему ПЛК/ПАК с измерителей мощности с тем, чтобы узнать мощность в киловаттах, напряжение, силу тока и т. д. в цепи или генераторе. В этом случае ПЛК действует как ведущее устройство Modbus, а измеритель мощности – ведомое. Каждый производитель устройства упорядочивает данные в карте Modbus своего устройства по-разному, но протокол связи остается тем же.

Ведущие устройства также могут записывать данные на ведомые устройства. Например, ПЛК можно настроить как ведущее устройство Modbus, которое записывает данные для запуска, остановки или изменения скорости частотно-регулируемого привода (ЧРП).

Таким образом вы можете не только подключать входы и выходы к вашему ПЛК, но также считывать входные данные и записывать выходные данные на устройства через Modbus и другие протоколы промышленной связи. Эта универсальность позволяет большинству ПЛК/ПАК взаимодействовать практически с любым устройством в промышленной среде.

Релейная логика ПЛК

Программирование ПЛК отличается от обычного компьютерного программирования, хотя бы потому, что для автоматизации промышленного оборудования в ПЛК используется язык графического программирования под названием Ladder Logic. Этот же раздел посвящен программированию ПЛК с помощью релейной логики.

Релейная логика была разработана с тем, чтобы сделать интуитивно понятным программирование ПЛК, которые заменили большую часть аппаратной релейной логики, используемой в промышленных средах. Логика управления реле отображалась на рисунках, обычно называемых релейными или «лестничными» диаграммами.

Следует отметить, что, поскольку ПАК (PAC) включает в себя другие языки, такие как ST, FBD, SFC и IL, релейная логика – не единственный язык, который люди используют для ПЛК. Тем не менее, он по-прежнему довольно популярен. Одним из больших преимуществ релейной логики является простота устранения неполадок в логике.

Поскольку язык основан на визуальном представлении, то удается относительно легко определять, где в цепочке/схеме могут быть неточности в логике. Кроме того, благодаря своему сходству со схемами релейного управления, релейная логика дает электрикам, инженерам и техническим специалистам преимущество, заключающееся в возможности легкого перехода между программируемой релейной логикой и проводными цепными схемами.


Краткий материал с описанием "Что такое ПЛК?" опубликован в рубрике "Автоматизация" ранее, с ним вы можете ознакомиться по ссылке.

Показать полностью 6

Милые дамы, поздравляем вас с праздником 8 Марта!

Вы наполняете жизнь теплом, светом и добротой. Именно это является основой всех достижений и залогом успеха. Нет сомнения, что даже такая сугубо техническая область, как автоматика и программное обеспечение не обходится без вашего внимания.
Продолжайте вдохновлять и радовать людей. А лучи весеннего солнца пусть будут проводниками вашей любви.

Искренне ваш МЗТА

Милые дамы, поздравляем вас с праздником 8 Марта! 8 марта - Международный женский день, Поздравление, Картинка с текстом

Протоколы передачи данных приборов учета

Протоколы передачи данных приборов учета Измерительные приборы, Протокол, Технологии, Длиннопост

Усиление государственного регулирования в области энергосбережения (ФЗ 261 и другие нормативные акты) и сложность экономической ситуации в России стимулирует собственников к учету и экономии ресурсов. Соответственно увеличивается охват хозяйственной деятельности различных субъектов экономики приборами учета, и у каждого такого субъекта встает задача выбора наиболее подходящих ему приборов учета. Критерии такого выбора могут быть самые разные. Если у субъекта стоит задача автоматического сбора показаний счетчиков в единый центр учета энергоресурсов, то такие счетчики должны быть оснащены цифровым интерфейсом для передачи данных. В существующих решениях по построению распределенных АСКУЭ основной упор делается на выбор физической среды передачи данных от счетчика на верхний уровень (PLC-технология передачи по силовой линии, радиоканал, проводная связь RS 485, Ethernet и др.). Вместе с тем имеет определенное значение и используемый протокол передачи данных.

Несмотря на это, в настоящее время российские производители приборов учета не придерживаются какой-либо общепризнанной системы в выборе протоколов, вследствие чего наблюдается целый «зоопарк» разнообразных протоколов у производителей приборов учета. Это затрудняет их интеграцию в АСКУЭ. Учет используемых протоколов при осознанном выборе приборов может оказаться полезным для хозяйствующего субъекта. В настоящей статье приводится обзор широко используемых и перспективных протоколов передачи данных приборов учета, используемых в России и Европе. В обзоре рассматриваются протоколы, отвечающие российским/европейским стандартам, и не рассматриваются частные фирменные разработки, из-за их ограниченной сферы применения.

Протоколы передачи данных приборов учета Измерительные приборы, Протокол, Технологии, Длиннопост

Приборы учета энергоресурсов

Протокол Modbus

Начнем с вездесущего протокола Modbus. Он используется в самых разных областях автоматизации, в том числе и в приборах учета электричества, газа, воды и тепла. Широко распространен как за рубежом, так и в России. Этот протокол основан на архитектуре ведущий/ведомый, может использоваться для передачи данных через последовательные интерфейсы RS 485/422/232, а также через сети TCP/IP. Типы данных – однобитовые (Coils) и целочисленные (Registers). К достоинствам данного протокола относится открытость, простота, массовое распространение, дешевизна технологии. Тем не менее, для задач учета этот протокол подходит не в полной мере.

Недостатки:

  1. Определяет метод передачи только двух типов данных;

  2. Не регламентирует начальную инициализацию системы. Назначение сетевых адресов и прописывание в системе параметров каждого конкретного устройства выполняются вручную на этапе адаптации и программирования системы;

  3. Не предусмотрена передача сообщений по инициативе подчиненного устройства (прерываний);

  4. Длина запроса ограничена, а данные могут быть запрошены только из последовательно расположенных регистров;

  5. Не предусмотрен способ, с помощью которого подчиненное устройство могло бы обнаружить потерю связи с ведущим;

  6. Соответствие регистров типам измерений и измерительным каналам не регламентировано.

На практике это может приводить к несовместимости протоколов счетчиков разных типов даже одного производителя и к необходимости поддержки большого числа протоколов и их модификаций встроенным ПО устройств сбора и передачи данных (УСПД) (при двухуровневой модели опроса – ПО сервера сбора) с ограниченной возможностью повторного использования программного кода.

С учетом избирательного следования протоколу производителями (использование нерегламентированных алгоритмов подсчета контрольной суммы, изменение порядка следования байтов и т. п.) ситуация усугубляется еще больше.

Протокол DLMS/COSEM

Гораздо более сложным, чем протокол Modbus, является протокол DLMS/COSEM (IEC 62056), применяемый для учета электричества, газа, воды, тепла. Он распространен преимущественно за рубежом. Это стек ориентированный протокол, базирующийся на концепциях модели OSI, регламентирующий обмен данными между приборами учета и системами сбора данных, в основе которого лежит клиент-серверная архитектура.

DLMS – спецификация прикладного уровня, разработанная для стандартизации сообщений, передаваемых по распределительным линиям. Ею регламентируются: дистанционное считывание показаний с приборов учета, дистанционное управление, а также дополнительные сервисы для измерения любого вида энергоресурса.

COSEM – спецификация, в которой отражена интерфейсная модель приборов учета, обеспечивающая представление их функциональных возможностей. Интерфейсная модель использует объектно-ориентированный подход.

Достоинства протокола:

  1. Возможность широкого выбора интерфейсов для передачи данных: RS 232/485, PSTN, GSM, GPRS, IPv4, PPP и PLC;

  2. Определяет интерфейсную модель, действительную для любого типа энергоресурса. Система, построенная на базе протокола DLMS/COSEM, открыта для расширения путем добавления новых возможностей без изменения имеющихся сервисов;

  3. Стандартизует функционал прибора учета: регистрация потребления, тарифное планирование, измерение качества электроэнергии и др.;

  4. Обеспечивает контролируемый и безопасный доступ к информации внутри прибора учета (открытый доступ, доступ по паролю и с аутентификацией). Информация, передаваемая по коммуникационным линиям, может быть дополнительно зашифрована;

  5. Позволяет создавать унифицированные драйверы, посредством которых становится возможным связываться с приборами учета разных типов от различных производителей;

  6. Широко распространен среди зарубежных приборов учета.

Однако у DLMS/COSEM есть и весомые недостатки:

  1. Проблема полноты и “чистоты” реализации стандарта. На практике опрос счетчика с заявленной поддержкой DLMS одного производителя программой опроса другого производителя либо ограничен основными параметрами, либо попросту невозможен;

  2. Большая сложность протокола;

  3. Крайняя непопулярность среди отечественных производителей приборов учета.

Протокол M BUS

Далее рассмотрим протокол M BUS (ГОСТ Р ЕН +7(1434-3-2011, EN1434-3, EN13757). Сферой его применения являются преимущественно учет тепла и воды, также возможен учет электричества и газа. Он широко распространен в Европе, в России он тоже набирает популярность. Архитектура шины ведущий/ведомый. Используется стандартный телефонный кабель, шина полудуплексная, допустимые скорости передачи данных 300…9600 бит/с. Число устройств в сети – до 250 ед. Дальность работы в стандартной конфигурации до 1000 м. Логическая единица передается уровнем 36 В, с возможностью потребления от линии тока до 1,5 мА, логический ноль передается напряжением 24 В на master устройстве. Мастер передает данные меняя напряжение на линии: логической «1» соответствует 36 В, логической «0» 12…24 В. Ведомое устройство передает данные нагружением линии: в пассивном состоянии (логическая «1») ток нагрузки на линию связи должен быть ≤ 1,5 мА и не меняться в отсутствие передачи. Для передачи логического «0» ведомое устройство увеличивает ток потребления до 11…20 мА. Соответственно мастер отслеживает изменение тока нагрузки, определяя логическую «1» как неизменный ток, а увеличение тока потребления – как логический «0».

Стандарт тщательно оптимизирован для пониженного потребления и позволяет обходиться без отдельного внешнего источника питания конечного устройства, используя внутреннюю батарею и питание от самой линии, также отсутствует необходимость соблюдения полярности. Специфицирован также вариант M Bus для беспроводных сетей – Wireless M Bus (частота устройств 868,95 МГц).

Протокол хорошо проработан, его несомненными достоинствами являются:

  1. Архитектура сети (витая пара) может быть практически любой топологии (кроме закольцованных);

  2. Гарантированная передача данных относительно небольшого объема от большого числа приборов учета на расстояние до нескольких километров в условиях высокого уровня помех;

  3. Умеренная стоимость оборудования и затраты на установку и эксплуатацию;

  4. Простота расширения системы в течение эксплуатации;

  5. Пассивное электропитание интерфейса Slave- устройств;

  6. В развитии стандарта предлагается криптографическая защита данных с помощью симметричного шифра AES.

Недостатки протокола:

  1. Применяется только в тех задачах, где не критична низкая скорость передаваемых данных;

  2. Соответствие передаваемых данных типам измерений и измерительным каналам не регламентировано;

  3. Ограниченный выбор оборудования на российском рынке для построения сетей M Bus. Недостаток справочной и технической документации.

ГОСТ Р МЭК 60870-5

Хорошо разработанным является набор протоколов по ГОСТ Р МЭК 60870-5 «Устройства и системы телемеханики. Часть 5. Протоколы передачи» (IEC 60870-5). Он используется, как правило, при интеграции систем телемеханики и учета электроэнергии. Например, при мониторинге состояния сетей 0,4/10 кВ. Он распространен за рубежом и несколько ограниченно в России. Это хорошо проработанный ряд стандартов, охватывающий разные уровни сетевого взаимодействия: начиная от физического уровня и кончая прикладным уровнем. На физическом уровне используется асинхронный интерфейс (UART). Диапазон скорости 300…9600 бод. Поддерживается также работа со стандартными сетями TCP/IP (Ethernet и модемное соединение). Возможно шифрование данных. Раздел +7(60870-5-102 является обобщающим стандартом по передаче интегральных параметров в энергосистемах. Стандарт +7(60870-5-104, например, может использоваться при передаче данных по Ethernet, а стандарт +7(60870-5-101 – при передаче данных через GSM/GPRS модем.

В качестве замечаний можно высказать следующее:

  1. Поддержка этих протоколов счетчиками электроэнергии довольно ограничена;

  2. Ограниченная поддержка протоколов системами верхнего уровня.

Стандарт PLC (IEC 61344)

Сферой применения стандарта PLC (IEC 61344) преимущественно является сбор данных с электросчетчиков. Также иногда допускается подключение расходомеров, теплосчетчиков, газовых корректоров. Распространен стандарт, как за рубежом, так и в России. Среда передачи данных — электросети среднего (4…30 кВ) и низкого напряжения (0,2…0,4 кВ). Для передачи данных используются различные виды модуляции электрического сигнала (S FSK, SS-FFH, OFDM, DCSK). Существуют сети PLC-I и PLC-II. Сети PLC-I могут выполнять статистические функции, то есть сбор и обработку информации за определенные временные отрезки, на основании которой производятся анализ и расчеты за потребленные виды энергии. АСКУЭ, построенная на базе оборудования PLC-II, кроме возможности статистического учета, может выполнять оперативно-измерительные функции, то есть в режиме, приближенном к режиму реального времени, отслеживать потребление и качество энергоносителей. Также через PLC-II можно управлять нагрузкой (включать/отключать потребителей). Основное назначение оборудования PLC-I – построение недорогой АСКУЭ бытовых потребителей. При необходимости получения более широкого набора данных необходимо развертывать более дорогие сети PLC-II. На большинстве объектов связь для PLC-I обеспечивается на расстоянии 400…800 м; на новых сетях, выполненных самонесущим проводом, – до 1000 метров. Для увеличения этого расстояния требуются ретрансляторы. Применение ретрансляторов увеличивает расстояние уверенного приема в 1,5…1,8 раза.

К достоинствам этого способа связи относятся:

  1. Удешевление и упрощение монтажа за счет отсутствия необходимости прокладывать дополнительные информационные кабели для сбора данных. Это особенно важно, когда нужно сохранить интерьер помещений (особенно уже отремонтированных), или если сбор данных ведется с территориально разбросанных счетчиков (коттеджные и дачные поселки);

  2. Пусконаладочные работы не требуют какой-то особой квалификации и могут выполняться силами местных специалистов. При грамотном монтаже оборудование PLC связи не нуждается в наладке.

Недостатки:

  1. Максимальная длина линии связи сильно зависит от качества силового кабеля («скрутки», плохие контакты или износ линий) и от наличия помех от подключенного оборудования (мощные моторы, преобразователи частоты, устройства плавного пуска). В случае «плохой» силовой линии иногда бывает невозможно ее использовать для передачи данных;

  2. Ограниченный набор передаваемых данных в наиболее распространенных недорогих сетях PLC-I;

  3. Несмотря на наличие стандарта IEC 61344, каждый производитель использует свои закрытые протоколы обмена данными, а часто и свои способы модуляции сигнала. Поэтому применение различных PLC-устройств в рамках одной сети 0,4 кВ проблематично, а часто и просто невозможно. Соответственно с один раз выбранным поставщиком придется работать долгие годы;

  4. Достаточно сложные технические решения при необходимости установить связь между приборами, находящимися на нескольких понижающих подстанциях, подключенных к одной линии 10 кВ, и базовой станцией, также находящейся на одной из этих подстанций.

Заметим, что стоит отличать собственно стандарт PLC (IEC 61344) и PLC-технологию передачи данных по силовой линии. Указанная PLC–технология используется не только стандартом IEC 61344, но стандартами DLMS\COSEM, KNX, LonWorks и некоторыми другими.

Стандарт Euridis

В заключение в качестве достаточно нового зарубежного протокола рассмотрим Euridis (IEC 62056-31). Сферой его применения является учет электричества. Распространен он довольно ограниченно – преимущественно Франция, Северная Африка. В качестве среды передачи используется витая пара, длина линии – до 500 м, число устройств в сети – до 100 ед., скорость передачи – 1200 бит/с. Для связи используется асинхронная, полудуплексная, двунаправленная передача данных. В качестве положительных сторон данного протокола отметим наличие процедуры аутентификации для защиты данных и невысокую стоимость оборудования.

К недостаткам протокола отнесем:

  1. Ограниченный регион распространения;

  2. Небольшое число устройств с поддержкой данного протокола;

  3. Ограниченную среду передачи – витая пара. Для использования других сред требуются шлюзы;

  4. Применяется только в тех задачах, где не критична низкая скорость передаваемых данных.

Краткая оценка протоколов

Протокол Euridis, распространен только в отдельных регионах. Его применение ограничивается электроэнергетикой.

Протокол Modbus имеет большую популярность, но ему присущ ряд существенных недостатков, ограничивающих его применение в системах учета энергоресурсов. На сегодняшний день ModBus не способен решить проблему протокольной разобщенности измерительного и контрольного оборудования для энергосистем.

ГОСТ Р МЭК 60870-5 предоставляет достаточно гибкий набор протоколов, что кроме преимуществ вносит и дополнительные сложности: разные производители приборов учета/УСПД могут поддерживать разные протоколы, что затрудняет их интеграцию в единую систему. Хотя применение этого стандарта в настоящее время ограниченно преимущественно электроэнергетикой, в этой сфере у него сильные позиции.

Протокол M BUS является весьма перспективным, для него разработаны законченные АСКУЭ, создана Open Metering System – европейская инициатива, преследующая цель унифицировать сбор данных с приборов учета ресурсов на основе шины M BUS. Успехом завершились усилия по интеграции шины KNX и M BUS, что позволяет строить законченные решения по автоматизации зданий. Заметим все же, что в протоколе M BUS соответствие передаваемых данных типам измерений и измерительным каналам не регламентировано, что требует индивидуальной настройки считывающего устройства верхнего уровня (наподобие УСПД) под конкретный прибор учета.

Протокол DLMS/COSEM позволяет теоретически добиться построения систем сбора данных, независимых от конкретного производителя и модификации прибора учета. То есть такие системы являются наиболее гибкими и открытыми. Среди зарубежных производителей он является одним из самых распространенных. Недостатком протокола является его существенная сложность.

Применение стандарта PLC является хорошим и недорогим способом для построения систем учета электроэнергии.

Заключение

Таким образом, ни один из существующих протоколов не является единственным кандидатом на роль универсального протокола для всех приборов учета. Что же делать системному интегратору, собирающемуся строить АСКУЭ с централизованным сбором данных?

При достаточной квалификации инженеров и ограниченных средствах можно посоветовать взять приборы учета с протоколом Modbus – вариант «дешево и сердито». При этом будет гарантировано как наличие достаточной номенклатуры счетчиков, поддерживающих данный протокол, так и умеренную стоимость получаемого решения. Правда, при этом потребуется достаточно трудоемкая задача считывания данных из нужных регистров, если не воспользоваться какой-либо готовой фирменной утилитой от производителя счетчиков.

При внешней привлекательности DLMS/COSEM становиться российским первопроходцем решения на его основе будет весьма накладно. Российских счетчиков с таким протоколом нет, использовать европейские при текущем курсе евро – недешево. Потребуется использовать и западный нерусифицированное программное обеспечение на верхнем уровне, что влечет непростую наладку и последующее дорогостоящее обслуживание.

Использование приборов учета с M BUS полностью оправдано для жилищного строительства премиум-сегмента (офисные «интеллектуальные» здания, дорогостоящие коттеджи). При этом система учета на M BUS может быть гармонично интегрирована в существующую систему автоматизации на основе европейской шины KNX, что обеспечит полную и прозрачную автоматизацию сверху донизу. Можно M BUS использовать и для обычного жилья, но здесь тормозящим фактором выступит не слишком большая распространенность этого протокола, и как следствие, привязка в дальнейшем к раз выбранному вендору.

Если стоит задача мониторинга и учета электроэнергии на оптовом и розничном рынках (например, мониторинг трансформаторных подстанций), то следует обратить особое внимание на решения на основе протоколов ГОСТ Р МЭК 60870-5. Эти протоколы хорошо приспособлены для решения этой задачи. Такой протокол может быть использован при передаче данных от электросчетчиков/УСПД на верхний уровень (SCADA-система, АСКУЭ).

При сборе данных о потребленном электричестве с низового уровня (с электросчетчиков) предпочтителен протокол PLC, когда прокладка кабеля с данными (RS 485, Ethernet) невозможна (порча интерьера помещения) или дорогостояща (большие расстояния).


Материал подготовлен Московским заводом тепловой автоматики (МЗТА)

UPD:

Протокол ГОСТ Р МЭК 60870-5-101/2/4 в тексте следует читать без префикса +7(

Показать полностью 1

Угадайте звездного капитана юмористической команды «Сборная Красноярска» по описанию одного из участников

Ну что, потренировались? А теперь пора браться за дело всерьез.

Показать полностью

Разница между Modbus и Profibus

Разница между Modbus и Profibus Автоматизация, Протокол, Асу, АСУ ТП, Технологии, ПЛК, Программирование ПЛК, Длиннопост

Протоколы связи являются важной частью ПО автоматизации. В настоящее время даже простые датчики имеют встроенные коммуникационные порты для обмена данными, не говоря уже о ПЛК. В этой связи стоит рассмотреть два старейших, но до сих пор широко используемых протокола связи – Modbus и Profibus. Оба звучат одинаково, но имеют свои особенности. В чем между ними разница? Отвечает на этот вопрос статья на портале InstrumentationTools.

Что такое Modbus?

Modbus – это протокол связи, разработанный компанией Schneider Electric, ранее известной как Modicon. Вот почему он называется Modbus. Modbus передает данные по последовательной линии, в которой используются аппаратные интерфейсы, такие как RS-232, Ethernet и RS-485.

Последовательная линия связи означает, что одновременно передается и принимается только один бит. Не допускается одновременная передача нескольких битов. Таким образом, последовательная связь немного медленнее параллельной.

Modbus имеет два формата – RTU и ASCII. RTU используется в двоичном формате, тогда как ASCII использует в текстовый формат ASCII. Modbus – это открытый протокол, то есть любой поставщик может использовать его, встроив в соответствующее программное обеспечение.

Modbus работает в формате ведущий-ведомый. Это означает, что есть одно ведущее устройство, которое запрашивает данные от других ведомых устройств. Подчиненные устройства отвечают и обмениваются данными с ведущим.

В стандартной сети Modbus может быть максимум 247 подчиненных устройств. Бит отправляется и принимается в виде напряжения. Нулевой бит означает +5 В, а единичный бит означает -5 В. Modbus идентифицируется по таким данным, как адреса регистров катушек, код функции, идентификатор устройства и тип чтения/записи.

Кроме того, одной из основных функций, связанных с данными Modbus, является CRC (cyclic redundancy code – циклический избыточный код). Два байта добавляются в конце каждого сообщения Modbus для обнаружения ошибок.

Что такое Profibus?

Profibus означает Process (Pro) Field (Fi) Bus и был разработан Siemens. Profibus можно назвать расширением протокола Modbus, и он более продвинут. Profibus существует в двух модификациях: Profibus DP (Decentralized Peripherals – децентрализованная периферия) для автоматизации машин и Profibus PA (Process Automation – автоматизация процессов) для автоматизации процессов. В них встроены дополнительные функции в соответствии с требованиями приложения. Это позволяет программистам использовать протоколы в соответствии с их задачами. Но, в отличие от Modbus, который работает на трех разных аппаратных уровнях, этот протокол работает только в RS-485.

Единственное, что отличает Profibus – это режим с несколькими мастерами, в то время как Modbus позволяет использовать только одного мастера. Это возможно за счет дополнительного протокола Token Ring в нем. Каждый мастер проходит последовательность запуска при холодном или теплом старте.

Подчиненные устройства ждут, пока мастер запросит данные, и если они не получат ни одного запроса в течение определенного периода времени, он перейдет в спящий режим. В этом случае мастеру необходимо снова пройти этап запуска и инициировать связь. Это означает, что все ведущие и ведомые устройства доступны в сети для корректной связи. Однако режим с несколькими ведущими устройствами доступен только в системе Profibus PA.

Разница между Modbus и Profibus

  1. Modbus – это открытый протокол, тогда как Profibus таковым не является, т.е. никто не может его свободно использовать.

  2. Modbus разработан компанией Schneider Electric, а Profibus – компанией Siemens.

  3. Двумя вариантами Modbus являются Modbus RTU и Modbus ASCII, тогда как двумя вариантами Profibus являются Profibus DP и Profibus PA.

  4. Profibus обеспечивает более скоростную связь, чем Modbus.

  5. Modbus может работать на разных аппаратных уровнях, таких как RS-232, RS-485 и Ethernet, тогда как Profibus может работать только на уровне RS-485.

  6. У Modbus может быть только один Мастер, тогда как у Profibus может быть несколько Мастеров.

  7. С точки зрения программирования Modbus намного проще в использовании, чем Profibus.

  8. Profibus более эффективен и надежен для использования в сложных сетях связи, чем Modbus.

  9. Profibus имеет больше возможностей для диагностики и устранения неисправностей, чем Modbus.

Сравнение Modbus и Profibus

Разница между Modbus и Profibus Автоматизация, Протокол, Асу, АСУ ТП, Технологии, ПЛК, Программирование ПЛК, Длиннопост

Материал подготовлен Московским заводом тепловой автоматики

Показать полностью 1
Отличная работа, все прочитано!