Серия «О закалке стали»

О закалке стали 6

Решил немного отдохнуть от закалки и написать об упомянутой в прошлой статье дульке, но исписав пару станиц, понял, что это надолго…. Да, вот об этой маленькой выемке на клинке как-нибудь придется написать много и с картинками. А чтобы вопросы не возникали дам ей свое определение. А то напишут тут в коммах, что она владельцам ножей для облегчения заточки служит…

Дулька – небольшая выемка на лезвии клинка у рикассо. Абсолютно ненужный пользователю элемент. Рудимент предыдущей технологической эпохи. След старых уходящих в прошлое технологий.

О закалке стали 6 Нож, Меч, Археология, История России, История (наука), Закалка, Металлургия, Железо, Сталь, Сабля, Нержавейка, Кузница, Горн, Температура, Заточка, Тестирование, Карбид, Кухонные ножи, Длиннопост

Поэтому продолжим моделировать фантазийную сталь. (Посмотрите прошлую статью по этой теме).  Начнем сыпать в наше варево с углеродом легирующие добавки – специи и пряности. Каждая добавка придает супу особый вкус – перец, шафран, укроп, гвоздика и т.п. Каждая легирующая добавка тоже влияет на «вкус» стали – ее свойства.  Не будем разбираться подробно, это тема сложная да нам и не нужная – мы говорим о принципах закалки разных марок сталей, а не об их моделировании.

Самая дешевая и самая распространенная добавка в стальной суп – хром.

Хром, помимо изменения некоторых свойств стали, очень склонен к образованию комков в смеси – карбидов в стали. Эти карбиды довольно тугоплавки. При этом они связывают наш углерод, и чтобы его  хватило для образования равномерной смеси (чтобы после закалки получить хорошую твердость) нужно включить бетономешалку-температуру на уже большую мощность, чем в просто углеродистой стали. Поэтому легированные стали будут закаливаться уже от больших температур, лежащих в области линии равной 850 градусов. То есть, добавив в сталь хром (или другой карбидообразующий элемент) нам нужно повысить температуру под закалку, чтобы эти карбиды растворить.

Чем больше хрома – тем больше карбидов – тем больше времени их нужно растворять, но проще, конечно, повысить температуру. С этим все просто и понятно: добавили специи в раствор – получили комки, которые нужно разбить. Так как бетономешалкой у нас работает диффузия, зависящая от температуры, то просто ее немного поднимаем.

Играя с добавками углерода и хрома (и других специй) в разных пропорциях, получим разные марки легированных сталей.

И вот тут возникает логичный вопрос: как определить подручными средствами, какая сталь легированная, а какая нет? Можно по искре, как углеродку, но это уже гораздо сложнее – нужно иметь некоторое количество маркеров и определенный опыт. А можно с помощью магнита. Предвижу возгласы – магнит это несерьезно. Наоборот - очень даже серьезный и научный метод определения остаточного аустенита (горячего раствора в холодном состоянии – вот такой оксюморон) в стали.

Небольшая цитата из учебника. "О степени превращения перлита в аустенит можно судить еще более просто: по изменению магнитных свойств образцов в процессе превращения. Дело в том, что перлит магнитен, а аустенит немагнитен. По мере протекания превращения значения магнитных свойств станут постепенно уменьшаться, пока не достигнут при завершении превращения нулевого значения". Работает это правило и в обратную сторону.

Как вы помните, железо в стали при нагреве выше 768 градусов теряет магнитные свойства. Аустенит тоже немагнитен и по идее после охлаждения нагретой стали до 768 градусов она должна снова магнититься. Так и происходит в углеродистых сталях, однако, с легированными сталями все немного не так.

Если при нагреве при 768 градусах они магнитные свойства потеряют, то при охлаждении на воздухе магнитные свойства восстановятся при гораздо более низкой температуре. По этому признаку мы можем в какой-то мере определить даже степень легированности – чем дольше восстанавливаются магнитные свойства, тем больше в стали легирующих.

На практике это выглядит следующим образом. Нагрели сталь до желтого и после остывания до красного цвета пробуем ее «на магнит». Цвет каления при 768 градусов вы уже помните – цвет спелой вишни – и если сталь уже остыла «до черного», а на магнит не реагирует, значит в ней присутствуют легирующие элементы.

Почему так происходит? Помните наш мультяшный автобус и народ который нужно в него запихнуть? А если транспорт пришел к остановке не пустой, а с пассажирами-легирующими элементами? В этом случае нам и греть нужно дольше чтобы войти и чтобы выйти больше усилий приложить. Помните разговор с «качком» в переполненном вагоне метро?

- Вы на следующей остановке выходите?

- Да.

- А люди перед вами?

- Тоже, только они об этом не знают.

Чтобы углерод выделился из раствора с хромом ему «нужно приложить усилия». Хром мешает диффузии углерода, он ее замедляет в несколько раз. (Вообще-то не все легирующие уменьшают скорость диффузии углерода. Например хром, ванадий, молибден – уменьшают, а никель и кобальт увеличивают).

И вот тут еще одна засада для тех, кто пытается сдержать «перебегание» углерода из слоя в слой в дамаске путем никелевых прокладок. Никель в дамаске чисто декоративный материал, создающий контрастность. Но за все надо платить, и если в ламинате как прокладка он еще работает нормально, то в многослойном материале за счет диффузии создается непрочный никеле-железо-углеродный слой.

Но тему диффузии мы затронули только потому, процесс распада нашего горячего раствора – аустенита – на исходную смесь феррит и перлит (перлит и карбиды) процесс диффузионный. В легированной стали в итоге он затягивается и она  остается немагнитной ниже температуры в 768 градусов.

Если сталь после хорошего нагрева при остывании до темно-красного начинает магнититься, значит это углеродка и закаливаем ее в районе первой линии в 768 градусов. Если не магнитится даже остыв до черного – легированная сталь и закаливаем уже при более высокой температуре в районе второй линии.

О закалке стали 6 Нож, Меч, Археология, История России, История (наука), Закалка, Металлургия, Железо, Сталь, Сабля, Нержавейка, Кузница, Горн, Температура, Заточка, Тестирование, Карбид, Кухонные ножи, Длиннопост

А что будет, если мы продолжим сыпать хром в нашу сталь? Ничего интересного происходить не будет до момента, когда количество хрома в стали превысит 12%. В этот момент произойдет скачкообразное повышение коррозионной стойкости. Стали с содержание хрома меньше 12% подвержены коррозии как и обычное железо, стали с содержанием более 12-14% Cr ведут себя как благородные металлы, так как обладают положительным потенциалом (пассивное состояние).

О закалке стали 6 Нож, Меч, Археология, История России, История (наука), Закалка, Металлургия, Железо, Сталь, Сабля, Нержавейка, Кузница, Горн, Температура, Заточка, Тестирование, Карбид, Кухонные ножи, Длиннопост

Поэтому нержавейку легко определить с помощью гранулы медного купороса - медь не будет осаждаться из раствора медного купороса на поверхность нержавеющей стали.  Положили гранулу купороса на сталь, капнули водой и смотрим – самый простой и надежный способ.

О закалке стали 6 Нож, Меч, Археология, История России, История (наука), Закалка, Металлургия, Железо, Сталь, Сабля, Нержавейка, Кузница, Горн, Температура, Заточка, Тестирование, Карбид, Кухонные ножи, Длиннопост

Жаль только что этот способ определяет все виды нержавеек, а среди них есть и те, которые не закаливаются. Однако тут может помочь магнит: не магнитится – не закаливается. Но есть и такие, которые магнитятся, но не закаливаются – тут только по искре или калить на пробу.

Попробуем рассчитать свою сталь и приблизительную температуру ее закалки. Допустим, нам нужна сталь для рыбацкого ножа, выполняющего заодно и кухонные работы – порезать, почистить, пошинковать.

Нож нам нужен небольшой и неширокий – управляемость лучше; не толстый – тяжелых работ по открыванию люков и рубки деревьев не предусмотрено; коррозионностойкий, нормально держащий заточку, при этом легко правящийся в полевых условиях.

Берем железо и начинаем сыпать в него углерод. При 0,4% сталь уже закаливается, значит, пора сыпать хром - его кладем 13%. То есть, мы создали нержавеющую хорошо закаливающуюся сталь при минимальном количестве взятых углерода и хрома. Это будет самая дешевая нержавейка пригодная для изготовления различного инструмента и ножей в частности. Марка ее 40Х13, а иностранные аналоги китайская 4С13, польская 4Н13, немецкая 1.4031, американская 420.

Это самая удобная в обработке и работе нержавеющая сталь – углерода немного, хрома по минимуму для нержи, а значит карбидов не так и много. Однако минимум углерода, который еще и связан в сложные карбиды, может приводить к некоторым трудностям в закалке, которые для нас уже и не трудности.

Мы знаем, что чтобы растворить и перемешать в растворе углерод для таких доэвтектоидных сталей нужно увеличить скорость диффузии – поднять температуру. По идее нам нужно калить от второй линии в 850 градусов – это вы помните из прошлой статьи мы уже моделировали такую сталь, - однако у нас много хрома который связал углерод и чтобы растворить эти тугоплавкие карбиды нужно еще накинуть температуру - поднимем ее под третью линию. Отсюда закаливаются все нержавеющие стали как доэвтектоидные, так и заэвтектоидные. Выше, как говорил, поднимать можно, но в крайних случаях при специальной двойной закалке, о которой ниже.

Итак, сталь у нас есть, изделие готово, как калить? Специально для этой статьи я изготовил два ножа из 40Х13 и закалил двумя разными способами. В обоих случаях получились неплохие, на мой взгляд, ножи, один из которых тут же конфисковала супруга на кухню.

О закалке стали 6 Нож, Меч, Археология, История России, История (наука), Закалка, Металлургия, Железо, Сталь, Сабля, Нержавейка, Кузница, Горн, Температура, Заточка, Тестирование, Карбид, Кухонные ножи, Длиннопост

Давайте рассуждать. Чтобы растворить карбиды хрома нужна довольно высокая температура – это раз. Два – углерода мало и чтобы получить высокую твердость нужно его хорошенько распределить по объему стали – опять же надо греть. Но в любом случае мы карбиды получим – от этого никуда не деться, поэтому придется недостаток обратить в достоинство – сделаем карбиды как можно мельче - этим мы упрочним сталь (мелкодисперсное упрочнение) и повысим коррозионные свойства за счет большего количества хрома оставшегося в матрице.

Значит, нагреваем сталь до 1100 и закаливаем ее в воде. Твердость в данном случае нам не важна, так как теперь сталь нужно отпустить – нагреть до 500-600 градусов. После этого в стали появится очень много мелких карбидов в перлитной матрице – что нам и нужно. Это наша цементно-песчаная смесь с мелкими камушками. Теперь быстро нагреваем до 900 и закаливаем в масле (можно и в воде для большей твердости). Крупных карбидов у нас нет – растворили с первого нагрева, а остатки мелких упрочняют сталь. После такой закалки 40Х13 царапает стекло но все еще несколько хрупка. Даем ей небольшой отпуск (до слегка золотистого цвета если на горелке) и работаем. Сталь после такой закалки упруга, в меру тверда и обладает высокими коррозионными свойствами.

О закалке стали 6 Нож, Меч, Археология, История России, История (наука), Закалка, Металлургия, Железо, Сталь, Сабля, Нержавейка, Кузница, Горн, Температура, Заточка, Тестирование, Карбид, Кухонные ножи, Длиннопост
О закалке стали 6 Нож, Меч, Археология, История России, История (наука), Закалка, Металлургия, Железо, Сталь, Сабля, Нержавейка, Кузница, Горн, Температура, Заточка, Тестирование, Карбид, Кухонные ножи, Длиннопост

Все эти нагревы легко делать на глаз – если мы кратковременно нагреем и выше(ниже) 1100 – ничего страшного. Если чуть меньше или чуть больше  900 – тоже нормально.

Нагретая до 500-600 градусов сталь не имеет цвета каления – она черная. Температуру можно не парясь определить с помощью пирометра – они доступны и недороги. А можно с помощью подручных средств, например, при температуре в 561 градус начинает плавиться кальциевая селитра (нитрат кальция) – распространенное удобрение.

Второй способ.

Этот способ гораздо проще и лучше подходит для 40Х13 и ей подобных, так как дает большую твердость. Первым способом лучше закаливать заэвтетоидные стали типа 95Х18 и ее аналоги. Однако и тем и другим способом легко закалить любую нержавеющую сталь. Жаль только, что годятся они больше для горнов, так как греть муфели по нескольку раз, да на разную температуру – заломно. С распространением муфельных печей, как ни парадоксально, и возникли некоторые трудности в закалке нержавеющих сталей.

Греем сталь до 1000-1100, чуть выдерживаем чтобы растворить карбиды, даем ей остыть на воздухе до красного или темно-красного и закаливаем в воде. После закалки сталь легко царапает стекло. Отпуск как и в первом способе. Преимущества: довольно широкий закалочный интервал температур, нет коробления, высокая твердость, быстрота выполнения. Ошибиться в данном случае очень сложно. Заметили, что мы нагревали сталь выше, а закаливали от температуры ниже рекомендуемой? Дело в том, что большинство рекомендаций по закалке даны для работы с муфельными печами с регулируемой температурой. Наша очень удобная и надежная «закалка с подостуживанием» непригодна для больших партий и основана на умении термиста на глаз определить температуру для погружения изделия в закалочную среду.

А если за основу взять сталь с большим содержанием углерода? Может в этом случае нам не придется греть сталь до высоких температур под закалку, так как углерода у нас за глаза для того чтобы равномерно распределить его по матрице? Придется.

Углерода много – много поэтому и карбидов хрома. Матрица при 13% углерода будет обеднена хромом и нержавейка у нас получится так себе. Придется к большому углероду добавлять еще и порядком хрома.

В этом случае мы получили сталь как бы лежащую на противоположном конце линейки нержавеющих инструментальных сталей. В ней все по максимуму и хром и углерод, в отличие от нашей первой стали, где все по минимуму. А получили мы теперь нечто 95Х18 и ее зарубежных аналогов: США - 440B, 440C, 440FSe, A756; Германия - 1.4125, X102CrMo17, X105CrMo17; Япония -  SUS440C; Франция - X105CrMo17, Z100CD17;ЕС - X102CrMo17; Польша - H18; Чехия – 17042.

Больше углерода – больше карбидов хрома – меньше хрома в матрице – хуже коррозионные свойства – больше хрома.

Греть до высоких температур придется как и в первом случае, но теперь уже для того, чтобы растворить множество крупных тугоплавких карбидов. Поэтому первый способ закалки довольно не плох, если нужна высокая твердость. При втором способе твердость может быть даже чуть ниже, (особенно если калить в масло) но рез будет агрессивнее за счет остатков крупных карбидов.

«Мыльный рез» у нержавеек возникает только по причине закалки их от высоких температур, а так карбидов в них хватает. Но кто сейчас будет париться с двойной закалкой или закалкой с подостуживанием, если нужно закалить большую партию клинков?

Перечисленные выше марки стали хорошо известны и популярны. Популярны до такой степени, что народ тупо клюет только на их название. На прошлой неделе говорил с одним из производителей ножей из довольно крупной мастерской. Да, он иногда ставит на обкладки (в трехслойке) такие стали. На вопрос зачем, честно ответил: «маркетинг!». Потребительских свойств ножу это не добавляет, но народ берет.

Эти стали уже довольно заморочисты по причине большого количества карбидов в них. Чтобы получить хорошие коррозионные свойства приходится греть под закалку до больших температур, при достаточном количестве углерода. Да и после ковки, а куются они тяжело и режутся хуже, нужен специальный отжиг из-за возможного выделения карбидов по границам зерен стали. Поэтому в них часто вводят дополнительные легирующие добавки помимо хрома.

А теперь представьте как сложна термообработка ножа из 95Х18 и У8 . Если провести отжиг, то можем вырастить зерно в У8, так как температура отжига первой около 900, а второй около 700. И если мы нагреем сталь под закалку чуть выше, допустим до 900, то даже при закалке с 780, мы закалим обе стали. Поэтому греть придется «снизу» поднимая температуру и закалка с подостуживанием уже невозможна.

Поэтому японские производители ножей не парятся и ставят на обкладки стали типа 20Х13. Это что-то типа нашей первой нержавеющей стали только с меньшим количеством углерода – чтобы не закаливалась.  Отличная обрабатываемость, свариваемость, высокая коррозионная стойкость, свободная возможность проводить сложную закалку центрального слоя на очень высокую твердость – что еще нужно? Но кто-то не ищет легких путей…

P.S.

То что сталь 95х18 ледебуритная для нас не имеет никакого значения. И 40х13 и 95х18 после закалки имеют в своей структуре мартенсит, карбиды и остаточный аустенит. Разница будет только в количестве и пропорциях этих составляющих.

Показать полностью 7

О закалке стали 5

Кому-то все эти статьи кажутся бессмысленными, потому что «Алиэкспресс», как взорвавшаяся в старой и пыльной галактике сверхновая, осветил нам путь в будущее. В общем, «на Али» как в Греции, есть всё. Или почти все. Упомянул Грецию и сразу подумал, что цитату из Чехова «В Греции есть всё» не многие помнят. Это к тому, что без лирики эта статья не обойдется.

А если, вдруг, понадобилась пружинка специфической формы и размера? Где взять? Обычно идут в магазин или ищут в Интернете. А если понадобилась срочно? А вот тут нужно иметь хотя бы минимальные знания по термической обработке и закалке-отпуску в частности.

Есть много специалистов, которые в домашних условиях наловчились перевивать магазинные и вить нужные по размеру (и жесткости) пружины. Действительно, сколько раз я расковыривал какой-нибудь шампунь с дозатором, чтобы вытащить оттуда пружину и перевив, тут же закалить ее на газовой конфорке. Да, временная, конечно, замена, но отыскав нужную проволоку, потом можно сделать что-то и понадежнее.

Приходилось мне перекаливать и подсевшие заводские ружейные пружины, да мало ли когда пригодятся знания по термической обработке… Сделать и закалить шило, резец, рыболовные крючки, кстати, раньше крючки часто перекаливали: то перекал с завода – ломаются, то недокал –разгибаются. Купят сотню на донки или перемет и всю партию в перекалку. А где перекаливали? Да в гараже на паяльной лампе или на кухне на газу.

Сейчас такое «непотребство» стали забывать – проще новое купить, а старое выкинуть. Сменился технологический уклад. Это произошло как-то не слишком  заметно для тех, кто в мегаполисах живет, а вот кто в деревнях или небольших городах - прочувствовали это сразу. Сварочники разных видов, пилы, точила, станки по дереву и металлу, гриндеры,  болгарки и всевозможные насадки к ним появились сразу и у всех. Вчера еще рубили ленту на пилу-лучкову, а сегодня уже мощный электролобзик фигурно режет твердую древесину.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

Самодельный сварочный аппарат.

Теперь даже по дереву не часто вырезают руками, а покупают станок ЧПУ, который выпиливает почти любой рисунок.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

Уже не надо идти к знакомому мужику в гараж, что-то выточить на его точиле. А помнится не так и давно точила делали сами, как и сварочные аппараты.  Я сам как-то делал, а один такой самодельный работает у меня до сих пор. Тянет даже четверку-электрод.

А если у кого была наковальня и горн, то он мог почувствовать себя в шкуре настоящего деревенского кузнеца.

Тащили в кузницу все – от сломанных шумовок, до перил и оград. По этой причине деревенский кузнец был специалистом широчайшего профиля и делал очень многое от лужения кастрюль и ковки кочедыков, до починки часов. Один такой гад, починил трофейные старинные настенные часы, привезенные дедом из Германии в сорок пятом. Часы пошли, но завод уменьшился основательно – отрубил деревенский кузнец часть пружины на свои кузнечные нужды.

Но не всякий деревенский кузнец мог подковать лошадь – тут совсем другая специализация и подход. Да и закаливать подковы не нужно – смысла нет.

Жизнь идет вперед, быстро меняя свой вид. Уходят в прошлое старые технологии не оставляя следа. Вот, например, так называемая «дулька» на ноже. Откуда она взялась? Нет, это не для удобства заточки – это след технологии изготовления. Или «чо» («чойл») на кукри – тоже след старинной техны. Она забыта, а традиция делать – осталась, как и в случае с «дулькой». Нам конечно "знатоки" расскажут, что альтруист-кузнец, озаботившись удобством пользователя своей продукции решил как-то отметить зону заточки. А что, годная версия - тот кто покупает ножи тупой и слепой обычно, не видит где и откуда точить. Кстати, это выемка иногда очень мешает - цепляется за нее все, но делают иногда. Традиция. А может она клинок укрепляет? Подумайте на досуге.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

В общем, реальность из неспешной, когда для звонка в другой город нужно было идти на почту заказывать разговор, чтобы в определенный день, человек в другом городе пришел на свою почту там, и вы смогли пару минут поболтать о жизни, растворилась во времени. В нашу жизнь ворвался агрессивный маркетинг в прямом смысле этого слова.

Слова «продать» и «купить» стали самыми популярными. Забейте в поиск – проверьте. Со сменой уклада на нас обрушилась и масса информации. Теперь не нужно идти к какому-нибудь мастеру и спрашивать, как он что-то делает. Сейчас можно почитать статью на каком-нибудь сайте и сделать все самому. И все бы хорошо, вот только информация часто очень сильно искажена, потому как сайты порой наполняются «контентом от фрилансеров». Очень хорошо знаю парочку таких. Работать их на этом поприще жизнь заставила. Кстати, вот вам совет от одного из них, если и вы захотите влезть в эту шкуру.

«Не вкладывай душу, иначе быстро сгоришь».

Это - если хочешь стать настоящим профессионалом  и писать быстро и много, надо писать «на отвяжись». И писали они статьи на разные темы, от починки и обустройства канализации, от приготовления изысканных блюд, до советов влюбленным.

Понимаете, какого качества эти статьи? А тысячи таких висят где-то на сайтах, так как были приняты заказчиком и оплачены. А теперь читаются и откладываются в мозгах заглянувших. А потом эти читатели, впитав в себя ересь  про утерянные секреты булата, до хрипоты мне доказывают, что булат «рубил камни и самозатачивался от крови врага». Кстати, это цитата с такого сайта.

Более того, многие читатели перестали читать длинные статьи – сил, наверное, нет.  Надеюсь, до этих строк добрались не все и остались только самые терпеливые – вредный я.

Итак, перехожу к теме закалки.

Давайте пофантазируем и представим себя не в роли упомянутого деревенского кузнеца. А в роли прошаренного современного исследователя-металлурга, способного в своей лаборатории создать по желанию любую сталь.

Берем чистое железо и начинаем постепенно добавлять в него углерод – 0,1%, 0,2%, 0,3%  - и проверять сталь на закаливаемость. Вот, дошли до 0,35 или даже 0,4% углерода. Если до этого момента никаких особо заметных изменений не происходило, то при 0,4% С  сталь после закалки вдруг стала гораздо крепче и тверже. Что случилось, если углерод до этого момента тоже в железе присутствовал?

Помните из прошлой статьи доэвтектоидные стали и почему они так называются? В стали «не хватает» углерода, и чтобы наш застывший раствор получился без мягких комков его надо хорошо перемешать перед этим.  Что делает строитель, если в смеси мало цемента? Он тщательно ее перемешивает, до тех пор, пока все частички песка не будут связаны частичками цемента. Только в этом случае застывший бетон получится крепким и однородным.

Броуновское движение помните со школы? А диффузию? В нашем случае диффузия – это проникновение атомов одного элемента в кристаллическую решетку другого. Чем выше температура, тем быстрее работает углеродомешалка  – диффузия. Диффузия нам заменяет бетономешалку. Чем быстрее ее обороты, тем меньше времени уйдет на создание качественной смеси-раствора.

Как вы помните, перемешивание или образование раствора в углеродистой стали начинается при 727 градусах. Если очень долго ждать, то когда-нибудь, в теории, мы и получим этот качественный раствор, но это не точно. Поэтому чтобы процесс создания раствора шел быстрее, нужно, как вы понимаете, поднять температуру.

Раствор – это в прямом смысле раствор. Раствор углерода в раскаленном железе называется аустенитом. Могли бы назвать и просто – горячим раствором, но тут дело в том, что при определенных условиях этот горячий раствор может сохраняться в холодном виде. Тут у нас оксюморон получается, поэтому такой горяче-холодный раствор назвали остаточным аустенитом.

Пусть вас не пугает название аустенит. Раствор углерода в горячем железе назвали по фамилии англичанина его описавшего У.Робертса-Остина (W.Roberts-Austen). Если бы эту структурную составляющую сталей открыл бы Иванов, раствор назвали бы, наверное, иванитом. Ведь холодный пересыщенный раствор углерода в железе мартенсит назвали в честь немца Адольфа Мартенса, поэтому ничего такого особо умного в этих словах нет. Нам главное помнить, что есть горячий раствор и холодный раствор. И чтобы получить нужный нам очень твердый холодный, необходимо хорошо перемешать углерод в горячем. Вот это и есть вся основная «тайна» закалки любых, повторяюсь – любых сталей. Конечно тех, где  есть углерод в достаточном количестве.

Как примерно определить сколько его в углеродистой стали  я писал в прошлой статье.

То есть, чтобы закалить нашу сталь с 0,4 углерода, надо ее основательно прогреть, чтобы углерод и феррит растворились в горячем железе (аустените) полностью и равномерно. Поэтому, температура закалки доэвтектоидных сталей («с нехваткой углерода»), немного выше, чем температура закалки заэвтектоидных («с избытком углерода»).

Теперь сварим сталь с углеродом 0,6%. Как вы уже поняли, температура закалки этой стали будет немного ниже, чем стали с 0,4% С – диффузию-углеродомешалку, сильно зависящую от температуры уже не нужно включать на такую высокую мощность.

Сталь с 0,8% С потребует для закалки еще меньшей температуры нагрева – углерода больше, «перемешивать» его особо тщательно уже не нужно. Это хорошо видно на схеме закалочных температур. Берем температуру в 727 градусов, при которой начинает появляться раствор, чтобы долго не ждать добавляем 50 градусов сверху и получаем температуру закалки У8 – 760-780 градусов. Но эта схема работает только для сталей с избытком углерода, доэвтектоидные стали надо греть немного выше – углерода мало.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

В сталях с избытком углерода его так много, что он выделяется в виде комков-карбидов. Чем карбидов больше, тем до более высоких температур надо греть сталь, чтобы их растворить полностью. (Большой кусок сахара будет растворяться в чае дольше, чем ложка сахарного песка такой же массы). Однако, углерода и так хватает, поэтому карбиды не растворяют полностью, чем еще больше упрочняют сталь после закалки, потому что карбиды самая твердая фаза в стали. Гораздо тверже мартенсита – пресыщенного холодного раствора, который и получается после закалки. (Твердость мартенсита 650-750 Нв, а твердость карбидов около 800 Нв).

Более того, чем больше углерода в таком растворе, тем он тверже. Поэтому твердость заэвтетоидных углеродистых сталей больше твердости доэвтектоидных сталей. Про точку  «S» я писал в прошлой статье.  

Почему так? Да совсем просто.

Как-то видел один короткий смешной советский мультфильм, очень точно иллюстрирующий процессы, происходящие в стали во время закалки. Вы его легко найдете по запросу в Сети «советский мультфильм автобус».

На остановке стоит большая толпа народа. Подъезжает маленький автобус и часть людей впихивается в салон.

- Все влезли? – спрашивает водитель.

- Нет! – орут с остановки в ответ.

Водитель передвигает специальный рычаг и автобус немного растягивается в длину.

- Все влезли?

- Нет!

Рычаг переводится еще на одно деление вниз и автобус еще удлиняется.

- Все?

- Нет!

Водитель давит рычаг в пол и автобус становится похож на длинную колбасу.

- Все?

- Все!

- Поехали, - водитель возвращает рычаг в исходное и автобус сжимается в первоначальный вид.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

В общем, в салоне стало очень много твердых, немного искаженных и деформированных пассажиров. Точно так же происходит и в стали.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

В раскаленном  состоянии железо способно растворять углерод, а в холодном – нет. Вспомните наш солевой раствор. Кстати, для лучшей аналогии тут посоветовали соль заменить на сахар – так будет точнее. Я не против.

Напихав в кристаллическую решетку железа много атомов углерода, мы резко охлаждаем сталь, чтобы углерод не успел выделиться из раствора как тот сахар (или пассажиры не успели выскочить из сжимающегося мультяшного автобуса). Кристаллическая решетка железа, из-за того, что углерод не может в ней раствориться но и не может выделиться, искажается очень сильно и в стали образуется уже известный нам мартенсит – пресыщенный твердый раствор углерода в железе. Понимаете, почему пресыщенный? Углерод должен был «выпасть в осадок» в виде карбидов или в виде цементита в перлите, но не успел.

Чтобы углерод не успел выделиться, нужна очень большая скорость охлаждения горячего раствора (аустенита). Чем она выше – тем больше углерода останется в холодном железе, тем больше будет искажена кристаллическая решетка, тем тверже станет мартенсит.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

По этой причине, закалить раскаленную саблю размахивая ей в воздухе, пусть и на скаку, можно только на очень небольшую твердость. Но по причине того, что сталь раньше часто была хладноломкой, сабли на высокую твердость и не закаливали – поломаются.

Были, конечно, всякие экземпляры, но хорошие и стоили дорого, да и писал я уже об этом.

Короче, моча для получения высокой твердости, как закалочная среда, гораздо лучше горного воздуха. И свет луны тут как бы и ни при чем, а вот слезы девственницы, если горючие и соленые, очень даже подойдут.

Надеюсь, я понятно описал причину, по которой мы вообще нагреваем сталь под закалку. И на этом можно было бы остановиться, если бы не легирующие элементы. Продолжим моделировать нашу фантазийную сталь в следующей статье, а пока разберемся, как определить температуру закалки углеродистых сталей.

Наверное, вам надоели эти унылые черно-белые схемы, поэтому нарисую свою, яркую и веселую. Начну, с модных в нынешнее время всяких там красных линий. Но мелочиться не буду - сделаю красные линии широкими и разных оттенков. (Может в этом и все дело?)

Поначалу я хотел добавить в схему и синих тонов, но это потом сможет сделать каждый, когда дойдем до отпуска. А пока и красного хватит, тем более что некоторые красные линии я буду чертить зеленым цветом.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

Первая красная-зеленая линия это линия равная температуре 1100 градусов. Температура взята произвольно, но желательно не нагревать выше неё любую сталь: углеродистую, легированную, нержавеющую. Поэтому эта зеленая линия и красная.

Следующая линия – это линия S.  Слева от которой лежат стали доэвтектоидные, справа – эвтектоидные  - больше она ничего и не обозначает.

Еще одна очень нужная и интересная – линия равная температуре 768 градусов. Это выше температуры, при которой начинается образовываться наш горячий раствор, поэтому при такой температуре можно как-то закалить все углеродистые стали от 0,35-0,4% углерода. А углеродистые стали от 0,8% будут уже прекрасно закаливаться. Зеленая линия в 850 градусов будет красной для всех углеродистых сталей, как доэвтектоидных с нехваткой углерода, так и заэвтектоидных с его избытком. Можно нагреть и выше, но не нужно – ни к чему.

Почему 768 и как определить эту температуру? Можно по цвету каления – на глаз. Сталь цвета спелой вишни будет соответствовать этому нагреву. Цвет спелой вишни… как лирично. Так и просится сюда хокку:

Все холоднее,

Только никак не остыть

Гроздьям рябины.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

Определите температуру каления стали по цвету ягод.

Кстати, цвет заходящего солнца у горизонта соответствует примерно 850-900 градусам нагрева стали, поэтому оно у нас и остывающее после раскаленного желтого. Но это не точно, проверяйте сами.

Вообще, определять температуру визуально нужно в полумраке. На ярком свету всегда будет перегрев.

Второй, более надежный способ определения этой температуры – магнит. Выше 768 градусов железо не магнитно. На диаграмме железо-углерод вы найдете эту линию слева в углу. Она там хоть и короткая, но после нагрева выше 768 градусов немагнитны все стали и доэвтектоидные и заэвтектоидные. Только, вот, речь пока идет об углеродистых сталях. В легирующих - своя особенность, с помощью которой их легко можно определить с помощью магнита, потому что наш горячий раствор углерода в железе – аустенит - тоже немагнитен.

Хоть фото ниже и не передает точно цвета, но принцип понятен: при одном нагреве магнит притягивается к напильнику, а при другом – большем – нет.

О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост
О закалке стали 5 Нож, Меч, Археология, Эксперимент, Инструменты, Сталь, Как это сделано, История России, Сварка, Закалка, Металлургия, Изделия из металла, Кузнец, Железо, Твердость, Диаграмма, Искры, Длиннопост

Углеродка самая простая в закалке сталь. Алгоритм действий здесь прост.

Определяем по искре количество углерода с помощью маркеров или просто на глаз. Если это сталь доэвтектоидная (меньше 0,8%С) Нагреваем сталь до момента, когда магнит перестанет к ней притягивается. Запоминаем цвет каления. Нагреваем чуть выше и закаливаем в воде.

Температура таких сталей на нашей красочной схеме будет лежать слева от линии S в заштрихованной области. Цвет каления красный, светло-красный.

Если сталь заэвтектоидная, например, тот же пущенный на нож напильник, то все еще проще. Нагреваем до момента, когда магнит перестает реагировать на сталь и закаливаем в воде. Можно в масле, если не нужна очень высокая твердость. Температура закалки таких сталей в заштрихованной области справа от линии S.

Закаливать такую сталь можно двумя способами. Нагревать до момента, когда магнит перестанет «прилипать» или остужать до этого момента, нагрев сталь чуть выше.

Второй способ проще и имеет ряд преимуществ – сталь меньше коробит, меньше закалочных трещин, не нужно постоянно вынимать заготовку из горна. Такой способ называется закалка с подостуживанием. Раньше применялся очень широко, сейчас, с появлением у кузнецов муфельных печей почти не применяется, как и «закалка на магнит». Причина тут еще в том, что сменившийся технологический уклад открыл доступ к легированным и высоколегироованным сталям. Углеродистые стали в изготовлении ножей почти перестали применяться.

Действительно, зачем термисту греть печь выше положенной температуры, а потом еще «ловить момент» когда можно нагрев печь, запихнуть туда охапку заготовок калить их точно от заданной температуры. Вот так прогресс меняет технологии и приводит к неожиданным результатам. Если кузнец, закаливающий заготовки по одной может «запороть» одну-две-несколько, то при закалке в муфельной печи в брак может пойти вся партия. В то же время, если термист сделал все правильно – вся партия будет нужного качества.

Однако, при малых объемах закалка в горне выгодней – скорость нагрева больше, тратится меньше времени на закалку малой партии или единичного экземпляра. А при закалке легированных сталей закалка с подостуживанием уменьшает коробление и повышает твердость относительно обычной закалки. Она идеально подходит для закалки тонких и длинных предметов.  Да и сам процесс гораздо проще выходит. Правда магнит в этом деле нам уже не поможет. Но об этом в следующих статьях.

Показать полностью 11

О закалке стали 4

Когда люди желают заиметь хороший нож, они обращаются к мастеру-индивидуалу, а не идут на завод, просить самого умного технолога, сделать им этот нож. И так во многих вещах. Когда достаточно предлагаемых заводом свойств – идут на завод. У меня, например, очередь может достигать пары-другой месяцев  на деле выходит и до года), хотя я чаще всего делаю только клинки и поковки. У некоторых мастеров очередь растягивается на несколько лет. Почему же тем людям, которые терпеливо ждут, не обратиться на какой-нибудь завод сразу?

Дело тут в технологичности. Как-то я пожаловался одному американскому профессору - Майку Чикиндасу -, что у меня нет программируемой муфельной печи и я не могу точно выдерживать нужные температуры на больших объемах.  На что он мне ответил, что  это не недостаток маленькой мастерской, а ее преимущество. И не нужно гнаться за объемами, а надо делать так, чтобы людям нравилось.

Например, где вы возьмете сталь такого состава, если только не закажете ее у частника? Почему такая сталь (с таким углеродом) ценится в клинках – это тема других статей.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

На рисунке состав стали сваренной мной не так давно.

Действительно, мне, как и любому другому мастеру, работающему в «гаражных» условиях очень легко и просто подходить индивидуально к каждому изделию. Любой кузнец может сделать зонную закалку, что не сделают на заводе. Кузнец может острие клинка отпустить на меньшую твердость, может сделать дифферинцированным угол заточки – нет особой разницы с полной равномерной термообработкой или вытачиванием другого клинка. Все это недоступно и невыполнимо в заводских условиях, потому что там сделать это не позволяют технологии. Но это все лирика не относящаяся к данной теме – закалке.

Наверное, самое сложное в термообработке это уяснить, почему одни стали надо греть под  закалку до высокой температуры, а другие – нет.  Зная принципы процесса закалки, и умея определять примерный состав стали примитивными методами, легко и просто закалить сталь даже в гаражных или домашних условиях.  И не нужно будет каждый раз заглядывать в справочник термиста, чтобы понять, что схожие стали закаливаются одинаково.  Как там у Айзека Азимова: «вставь шплинт А в гнездо Б»? Вот так на заводе и работают – по инструкциям. И это не плохо – это условия такие. Обижаться что кузнецы работают в других условиях – глупо.

Понимая принцип закалки самому можно управлять получаемыми структурами. И вот здесь уже закалка из механического повторения инструкции превращается в творчество, в искусство.

Меня в комментариях спросили, для кого и с какой целью я здесь это пишу, так как читатели – люди грамотные и взрослые?  Однако, я не уверен в том, что большинство из читающих этот текст знает о том, о чем прочтет ниже. Слишком далеко ушел вперед прогресс, и сменившийся технологический  уклад  заставляет владельцев печей с программным управлением с презрением смотреть на «рукоблудников» закаливающих сталь «на глаз», то есть определяющих нужную температуру по цветам каления и побежалости.

Очень часто, когда меня спрашивают  до какой температуры отпускать клинок из изготовленной мной стали, называю цвет и тут же получаю встречный вопрос:

- А сколько это в градусах?

Причем спрашивают люди, работающие в больших мастерских с дорогими муфельными печами. Может они и знают про модуль Юнга, а вот на сколько градусов нагрета сталь, если имеет васильковый цвет – точно не все. Что важнее, уметь рисовать диаграмму растяжения, которая никогда вам в жизни не пригодится  или имея под рукой магнит, определить степень легированности, чтобы на коленке сделать себе инструмент? Про это тоже тему создать можно.

Понятно, что одни знания хороши в одних условиях, другие – в других. Однако, есть у этих статей еще одна цель – создать интерес к какому-нибудь делу. Любая работа руками в свое удовольствие, как говорят «излечивает гнев и заполняет время». Я знаю не одного профессора, увлеченных сталью. А один кухонный нож, сделанный руками доктора филологических наук, профессором, давно и успешно работает у меня на кухне. Очень полезный и приятный подарок. Кстати, оборудованию, которое есть в домашней мастерской этого «филолога» может позавидовать не одна профессиональная мастерская. Да и умением прекрасно слесарить профессор гордится.

Другой пример. Ушел военный на пенсию и проводит время где-то в глухой деревне  на отшибе Тверской области. Чем заняться? И начитавшись статей про железо, решил он заняться ковкой. Долго и упорно я объяснял ему с чего начать, имея под рукой молоток, кусок рельса и дровяную печь в бане… А какие кинжалы у него со временем стали получаться – загляденье. Хотите фото?

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

На фото кинжал откованный у печки в деревенской бане и обработанный с помощью напильника и наждачной бумаги (точила не было).

Вам на заводе такой сделают? Но это всё лирика, поэтому вернемся к нашей песчано-цементной смеси. Только теперь сделаем наоборот – песок у нас будет железом (ферритом, Fe –феррум – железо), а цемент – углеродом. С песком и цементом каждый имел дело, поэтому на такой аналогии объяснять будет проще, а как вы помните, основная структура стали – перлит – имеет похожее строение, только во много раз мельче.

Как и сказал ранее, буду упрощать и говорить о том, что нужно для практики в условиях обычных домашних мастерских.

Берем песок – железо, и начинаем добавлять в него цемент - постепенно создавать нашу стальную структуру. Поначалу цемента будет не хватать для того чтобы связать все частички песка и в смеси, после ее застывания, появятся мягкие участки – там цемента не хватило. Такую структуру до закалки (после отжига) имеют доэвтектоидные стали. Только в роли мягких областей у нас выступает железо – феррит. То есть, в структуре такой стали перлит (смесь) и феррит.

Добавляя постепенно в смесь цемент, мы неизбежно добьемся того момента, когда все наши песчинки будут связаны цементом. То есть, цемента ровно столько, сколько надо, чтобы получить равномерную песчано-цементную смесь без мягких песочных участков. На диаграмме стояния железо-углерод эта точка соответствует точке S и называется точкой эвтектики.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Добавляя далее цемента-углерода в смесь, мы добьемся того, что его количество станет лишним и он будет находиться в смеси в виде комков-карбидов. То есть, точка S разделяет смеси-стали с недостатком и избытком углерода. Стали лежащие до этой точки слева, называются доэвтектоидными, справа – заэвтектоидными по названию самой точки S – точка эвтектики.

Самой точке соответствует сталь У8 с содержанием углерода 0,8%. То есть, в отожженном состоянии в У8 только перлит. В сталях с меньшим количеством углерода – перлит и феррит-железо. В сталях справа, с большим количеством – перлит и карбиды (комки цемента-углерода).

Надеюсь, разжевал полностью, для чего нам это нужно знать, объясню позже, так как пока теории хватит и пора приступать к практике. Действительно, зачем нам знания о кристаллических решетках, напряжениях, модулях упругости, если мы не можем отличить без бирки закаливающую сталь он незакаливающейся на высокую твердость, а легированную от нержавеющей? И вот только после того, как мы сумеем понять, что у нас в руках, можно перейти к вопросам как это закаливать и почему.

Все помнят со школы, что опущенная в кислород железная проволока горит с яркими искрами? Горят в воздухе  и быстро летящие нагретые до высоких температур опилки железа. Сноп искр из-под болгарки видели все.

Однако, так как химический состав сталей разный, то и искры тоже разные.  Проще всего определить сталь с низким или высоким содержанием углерода без легирующих элементов.

На фото сноп искр стали с содержанием углерода 1,8%.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Видите эти пушистые звездочки? Это горит углерод. Чем больше его в стали, тем пушистее хвост искр и тем он короче. Дело в том, что железо с углеродом в потоке воздуха сгорает быстрее, и углеродистый сноп короче малоуглеродистого. Это проверить не сложно, достаточно закрепить в тисках два куска разных по углероду сталей и посмотреть, попипив их болгаркой.

Но легирующие элементы вносят небольшие (если легирующих немного), и очень большие (если их много) изменения в способность углерода гореть. В легированных сталях он связан в карбидах, поэтому даже при одинаковом количестве углерода в сталях, в легированных сноп искр будет отличаться не только по ширине, длине и количестве пушистых звездочек, но еще и по цвету. В низкоуглеродистых сталях искры светлее.

На фото искры стали с примерным содержанием углерода 0,35%

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Вы уже догадались, что сноп искр у стали ШХ-15 будет другой.

На фото ниже сноп искр стали ШХ-15. Содержание углерода в ней около 1%.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Заметили, что строчек-линий, которые заканчиваются звездочками в этой стали гораздо больше, чем в стали с углеродом 0,35? А расстояние пролета искр больше чем в стали с 1,8%С? В этой последней все росчерки со звездочками на конце.

В сталях с небольшим содержанием углерода,  строчек оканчивающихся горячей маленькой точкой-капелькой, больше, чем линий оканчивающихся пушистой звездочкой.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост
О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Искра высоколегированных и нержавеющих сталей отличается, как писал, еще и цветом. Но есть более надежные способы определения этих сталей, чем определение их по искре. Об этих способах в следующей части, так как они связаны с нагревом стали.

На фото ниже искра «нержавеек» разных классов.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост
О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Заметили длинные красные линии, не заканчивающиеся звездочкой? Эта искра совсем непохожа на предыдущие. Но разбираться с нержавейками мы будем позже. Это на графиках все быстро и непонятно, а на практике много чего нужно узнать, чтобы в своей домашней мастерской закалить нож или пружину.

Кстати, здесь, уверен, есть те, кто закаливает пружины для себя, перевивая их из заводских. Слишком убого иногда получается на заводах.  Но это не в пику заводчанам, там просто технологии заточены не под качество, а под количество с приемлемым качеством. Знаний много, а развернуться не дают жесткие рамки заводских условий. Но это опять лирика, и о ней в следующей статье, в которой сами нарисуем такую диаграму, которая понятна домохозяйкам и практически нужна для закалки, а не для балабольства.

В чугуне тоже много углерода, но часть его в форме тех же слаборючих карбидов и вообще негорючего графита.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Определение марки стали по искре древний и довольно надежный способ доступный всем.  Можно найти в Сети материалы по этой теме.

О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост
О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост
О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост
О закалке стали 4 Меч, Полезное, Нож, Изобретения, Археология, Средневековье, Как это сделано, История России, Познавательно, Сталь, История (наука), Факты, Закалка, Технологии, Металлургия, Техника, Научпоп, Наука, Длиннопост

Авторство:

Авторская работа / переводика

Показать полностью 15

О закалке стали 3

«Сама по себе закалка стали – довольно распространенный и хорошо изученный процесс, описанный во многих умных книгах, но вот только описан он такими умными и непонятными словами, что обычные люди, такие как мы с вами, запутаются на второй странице и не вынесут для себя ничего полезного. Мы же поставили себе цель не запутаться и сойти с ума от обилия непонятных терминов и формул, а разобраться…»  (Ю. Иванов «Азбука ножа»)

Сталь есть сплав железа с углеродом – это все знают. В нагретой до определенного момента стали углерод находится в растворенном виде. Сам углерод в сталь проникнуть не может, для этого ее надо нагреть докрасна в науглероживающей среде – это процесс цементации. Запомните это слово похожее на всем известное «цемент». Цемент (лат. caementum — «щебень, битый камень»)

Углерод можно добавить и в расплавленную сталь, как повар добавляет в суп специи. При получении стали из чугуна, углерод наоборот «вынимают» различными способами. Все это только для понимания того, что без углерода стали не бывает. То есть, любая сталь состоит из железа и углерода, плюс некие специи, которые добавил повар в этот стальной суп при варке.

Кстати, это очень точная аналогия, хотя и не моя. Когда у меня спрашивают, как и где я варю сталь, то довольно правдиво отвечаю: «На даче, в горшочке». Мне, конечно, не верят, думая, что шучу. Однако, если под дачей понимать расположенную за городом небольшую мастерскую, а за горшочек - шамотный тигель, то все остальное совершенно точно. И специи по ходу варки добавлять приходится, и помешивать иногда, и смотреть – готово или не готово мое варево.

Несколько лет назад в свет вышла книга «Азбука ножа» инженера-конструктора одного из уральских предприятий Юрия Иванова. В этой книге автор простым языком в форме дружеской беседы пытается представить читателю свой взгляд на теорию резания. Аналогия про повара  из этой книги. Мне очень приятно, что я был консультантом при написании одной из ее глав. Позволю себе привести еще парочку интересных сравнений оттуда.

«Представим себе, что наш кусок стали состоит не из каких-то невидимых фигур, а, скажем, из тряпичных сумок, с которыми мы ходим в магазин за продуктами. Развесим эти сумки на веревку, одна за другой, рядом натянем еще веревку с сумками, потом еще и еще. Зрелище фантастическое – поляна, поле, целый аэродром затянут рядами веревок, на которых болтаются подвешенные  авоськи. Мы можем подойти и смять каждую сумку, сложить ее пополам, вчетверо – как угодно, ведь это просто кусок материи. Даже простой ветер заставит эти сумки болтаться в разные стороны.

Теперь давайте представим, что кто-то огромный … в каждую насыпал доверху яблок или картошки… Теперь каждая сумка уже не просто бесформенная тряпка, а тугой раздувшийся мешок… каждую сумку со всех сторон подпирают такие же раздувшиеся соседи и все вместе они образуют нечто плотное и крепкое… Мы увлеклись фантазиями, но именно сейчас на наших глазах произошел процесс, который на языке специалистов называется закалкой стали… Чтобы не томить любознательного читателя, сразу скажу, что под развешенными на аэродроме сумками мы подразумевали мельчайшие частицы железа, картошка в этих сумках выступала в роли частичек углерода, которые каким-то образом смогли туда проникнуть, а весь этот картофельно-сумочный аэродром и есть кусок стали, внутри которого мы путешествуем».

Кому-то эта аналогия покажется не совсем подходящей, не спорю, но главное сделана попытка объяснить сложное простыми словами. А так как я уверен, что автор книги  на меня не обидится, дам еще одну большую цитату. И то, что написано в ней очень важно уяснить, так как на этом процессе и основана закалка любых сталей.

«Для растворения углерода в стали наш слиток необходимо нагреть до определенной температуры (около 740…850 градусов) и выдержать некоторое время. Этот процесс очень похож на растворение поваренной соли в воде – в стакане очень холодной воды мы вряд ли сможем растворить даже чайную ложку соли, сколько бы ее ни перемешивали.  Но если в этот же стакан налить кипяток, то в нем эта ложка соли без труда растворится за несколько секунд. Добавим еще ложку соли – растворилась, добавим еще – опять растворилась, еще и еще… В результате мы получим очень соленую воду, в которой соль уже не сможет  растворяться, как бы мы не старались».

Причины и механизмы растворения углерода в стали, как и его выделения в определенных условиях, нам для закалки знать не обязательно. Древние мастера вообще не знали что такое углерод и градусы, однако сталь калили и, пишут, иногда очень неплохо получалось.

Замечу, что как бы мы не старались мы не сможем запихнуть в железо больше 6,67% углерода. Да нам столько и не нужно. Обычно производители ножей работают со сталями с количеством углерода в них 0,35..1,2%. Я лично с несколько большим - где-то  1,5…2,2%, но, как вы увидите ниже, серьезной разницы в закалке любых сталей нет, нужно учитывать только температуру нагрева под закалку, чтобы растворить как можно больше «соли» и скорость остывания.

«Если теперь мы оставим наш рассол спокойно остывать, то через некоторое время увидим, как соль начнет выпадать в виде кристаллов, и чем сильнее будет остывать наш стакан с рассолом, тем больше соли выпадет в осадок, то есть, при охлаждении вода в стакане будет становиться менее соленой, поскольку соль будет выделяться из воды и выпадать в стакан в виде кристаллов.

Давайте теперь попробуем охлаждать наш пересоленый кипяток не постепенно, а резко, чтобы он за несколько секунд превратился в лед. В этом случае мы не увидим никаких кристаллов выделившейся соли – она просто не успеет вырасти в кристаллы и выпасть в осадок, в результате чего мы получим очень соленый лед. К чему мы затеяли этот соленый эксперимент? Да к тому, что растворение углерода в железе, равно как и выпадение его обратно при медленном охлаждении происходит точно так же, как и соль в воде – природа этих процессов одинакова и изменить ее мы не в силах.

Отсюда следует простое правило – чтобы закалить сталь, то есть сделать ее более прочной и твердой, ее необходимо нагреть до определенной температуры, выдержать какое-то время (чтобы углерод успел полностью раствориться в железе) а затем резко охладить. Именно при резком охлаждении углерод не успеет выделиться из железа (картофелины не успеют повыскакивать из сумок) и наш будущий нож станет твердым и прочным».

Температура при которой в стали начинается растворяться углерод, называется критической точкой стали и обозначается Ас1. Вообще-то, слово «критическая» как-то путает и немного пугает, сразу представляется что-то опасное и неудобное. Поэтому для лучшего понимания определение «критические точки» проще заменить на «нужные точки». Это для стали они может быть и критические, а нам без них в закалке – никуда.

Эти нужные нам критические точки в 1886 году открыл наш соотечественник Д.К. Чернов, поэтому эти точки называют еще точками Чернова. Они всегда обозначаются буквой «А».

О закалке стали 3 Меч, Нож, Наука, Физика, Археология, История России, Факты, Научпоп, Закалка, Металлы, Металлургия, Температура, Термопара, Химия, Нагрев, Исследования, Ученые, Длиннопост

Первая нужная точка, (а критические, но нам не нужные, я постараюсь не упоминать), лежит на температурной линии в 727 градусов. Эту линии еще называют линией эвтектоидного превращения. Только для закалки эта линия нам особо-то и не нужна, поэтому позже заменим ее другой, пусть и не совсем критической, но более полезной.

Для понимания: эвтектика – это механическая смесь двух или более видов кристаллов, одновременно кристаллизовавшихся из жидкости (нашего солевого раствора). Так как из солевого раствора выделяется только один вид кристаллов, то никакой эвтектики там нет. Однако, если бы одновременно выпало в осадок еще что-то отличное от соли, допустим известь, то была бы и мы смогли бы начертить диаграму, а выпавшие кристаллы извести и соли у нас стали бы фазами.

Фаза - это то, что имеет четкую границу,  то есть, -  составляющая смеси, резко отличающихся от других составляющих.

Почему такая важная критическая линия PSK на диаграмме железо-углерод нам не нужна?

О закалке стали 3 Меч, Нож, Наука, Физика, Археология, История России, Факты, Научпоп, Закалка, Металлы, Металлургия, Температура, Термопара, Химия, Нагрев, Исследования, Ученые, Длиннопост

Да потому что мы редко имеем дело с чисто углеродистыми сталями, а легирующие элементы двигают эту линию по температурной шкале туда-сюда: одни ее повышают, другие понижают. Большинство, конечно, повышает, поэтому для каждой марки стали критические температурные точки - точки необходимого нагрева, когда в ней начинает растворяться углерод, и охлаждения, когда он выделяется – разные. Да и для закалки стали при нагреве температура должна быть немного выше этих точек, чтобы углерод растворялся активнее.

Для наиболее распространенных сталей закалочная температура находится в пределах 760-860 градусов, поэтому вторую нужную нам линию в нашей будущей закалочной таблице можно провести по температуре в 850.  Это будет некая усредненная температура закалки.

О закалке стали 3 Меч, Нож, Наука, Физика, Археология, История России, Факты, Научпоп, Закалка, Металлы, Металлургия, Температура, Термопара, Химия, Нагрев, Исследования, Ученые, Длиннопост

Если рассматривать диаграму железо-углерод, то правая часть с чугунами нам не нужна. Не нужна и верхняя с расплавами, поэтому диаграмму спокойно можно урезать вот до такого вида еще и срезав ее до температуры 1100 градусов.

О закалке стали 3 Меч, Нож, Наука, Физика, Археология, История России, Факты, Научпоп, Закалка, Металлы, Металлургия, Температура, Термопара, Химия, Нагрев, Исследования, Ученые, Длиннопост

Но даже такая упрощенная схема нам мало поможет, потому как есть еще высоколегированные популярные у любителей ножей стали и их температура закалки не будет попадать в обозначенную на рисунке область закалочных температур. Поэтому придется поработать с новыми терминами для лучшего понимания процессов и начертить свою упрощенную но понятную закалочную схему для всех классов популярных ножевых сталей.

Сразу прошу прощения за то, что вряд ли смогу обойтись без специальных терминов, но что поделать – структуры стали и закалка даже сейчас остаются великим колдунством. Например, при одной и той же температуре закалки некоторые стали могут закалиться, а могут и не закалиться вообще. Дело здесь в направлении закалки – снизу вверх или сверху вниз по температурной шкале. То есть, нагреваем мы сталь до нужной нам температуры, или остужаем ее.

То, что углерод растворяется – это непонимания, думаю, не вызывает. А вот на слова что он выделяется, сразу возникает вопрос: «в каком виде?».

Углерод выделяется в виде его соединения с железом в форме карбида железа – Fe3C. Это самая твердая фаза, какая может только быть в стали. Называется она цементитом, видимо от того, что под микроскопом похожа на битые камни, в вязкой перлитной матрице. Но это не точно. Проскочило слово «перлитной», так вот «перлит» - это основная, ключевая фаза большинства сталей. Состоит перлит из феррита (железа) и цементита – карбидов железа.

Здесь все очень просто – все стали состоят из феррита и цементита, потому как больше не из чего. То есть, если простыми словами, все стали состоят из железа и соединений углерода с ним. А разные структуры получаются по причине дисперсности (измельчения) этих структур и формы соединений углерода.

О закалке стали 3 Меч, Нож, Наука, Физика, Археология, История России, Факты, Научпоп, Закалка, Металлы, Металлургия, Температура, Термопара, Химия, Нагрев, Исследования, Ученые, Длиннопост

Проще всего представить перлит можно в виде цементно-песчаной смеси, где связующее - цемент выступает в роли железа, а песок в виде цементита – Fe3C. А так как песок может быть мелким, крупным по фракции, то и названия таких смесей разные, хотя основа одна – цемент и песок.

Помимо мелких частичек и чешуек цементит может образовывать крупные карбиды – камушки или, если принимать во внимание его большую твердость и хрупкость, «алмазы». Скопления карбидов и выглядят под микроскопом как скопление маленьких блестящих алмазиков. Если в нашу цементно-песчаную смесь добавить немного щебня, это и будет очень похоже на структуру такой стали – перлит плюс цементит.

Надеюсь, всем понятно, что количество, размеры, форма нашего «щебня» очень сильно влияют на свойства получаемого «бетона» или стали в нашем случае? Если щебня не очень много – свойства мало будут отличаться от свойств цементно-песчаной смеси, если только один щебень, а смеси мало, то наш бетон будет очень хрупким, хотя и твердым.

О закалке стали 3 Меч, Нож, Наука, Физика, Археология, История России, Факты, Научпоп, Закалка, Металлы, Металлургия, Температура, Термопара, Химия, Нагрев, Исследования, Ученые, Длиннопост

Есть в стали цементит в виде карбидов (битый камень) или нет, очень важно знать для определения режимов закалки и получения нужных нам свойств. Приправы в виде легирующих элементов изменяют свойства карбидов, делая наш щебень более тугоплавким и более твердым. То есть, изменяется состав карбидов – он усложняется, и изменяются свойства нашего связующего железа. Если проводить аналогии, то с добавлением легирующих в сталь (бетон) наш цемент становится не трехсотой марки, а пятисотой, только и всего. И при этом щебень стал прочнее – из мрамора с твердостью 6 превратился в кварц с твердостью 7 по Моосу.

В так называемой «алмазной стали» нет никаких алмазов, но зато там много легированных вольфрамом твердых карбидов, которые упрочняют мартенсит. «Мартенсит» - еще одно слово, которое надо запомнить. Это собственно та структура, которую нам нужно получить при закалке. Это структура представляет собой не песчано-цементную смесь, а наш замороженный лед – твердый раствор углерода в альфа-железе, часто в перемешку с битым камнем – карбидами.

Я написал твердый раствор в альфа-железе специально, чтобы потом сказать, что бывает еще один твердый раствор – раствор углерода в гамма-железе. И это важно, потому как раствором в альфа-железе мы режем, а с раствором в гамма-железе работаем при закалке. Ну, такое вот оно железо – при нагревании меняет свои свойства и кристаллическую решетку. Есть еще и бета-железо, и хотя про него говорят мало, как важный элемент закалки оно нам понадобится.

Итак, пока мы знаем основные фазовые составляющие стали, состоящие из разнокалиберного железа и углерода: перлит, цементит, мартенсит. Чтобы закалить сталь, нам нужно из смеси железа и углерода – перлита или перлита с цементитом, получить твердый раствор углерода в железе - мартенсит. Из цементно-песчаной смеси с гравием сделать очень соленый лед. А для этого, как вы помните, нужно просто нагреть сталь до определенной температуры.

Причем нужно понимать, что нагрев стали под определенную температуру и остывание стали до этой температуры приведет иногда к совершенно разным результатам при закалке. И диаграмма железо-углерод (цементит) нам в закалке поможет не много, так как она описывает идеальные условия: изменения в углеродистых сталях при очень медленном нагреве. Поэтому ее проще забыть и нарисовать свою закалочную таблицу, ориентируясь при этом не на термопары и муфельные печи, а на тысячелетний опыт мастеров работающих со сталью.

О закалке стали 3 Меч, Нож, Наука, Физика, Археология, История России, Факты, Научпоп, Закалка, Металлы, Металлургия, Температура, Термопара, Химия, Нагрев, Исследования, Ученые, Длиннопост

Эта часть рассказа о закалке вышла какой-то уж слишком фантазийной по причине множества аналогий, зато следующая будет сугубо практической с минимумом определений и сравнений. Но это не точно. Добавлю только еще один термин, чтобы читатель мог понимать и представлять процессы, происходящие в стали. Хотя можно обойтись и без всего этого, как обходились без знаний о фазах и структурах наши предки.  Определить углеродистая перед вами сталь, легированная или нержавеющая довольно просто. А это необходимо знать перед закалкой.

Показать полностью 7

О закалке стали 2

То, что закалка изменяет свойства стали не заметить трудно. И в соответствии с житейской логикой, если изменяются одни свойства, то, скорее всего, меняются и другие. Поэтому изменение свойств стали после закалки в головах наших предков значительно расширило свои границы.

Закалка стала обрастать мифами и легендами. Действительно, что мог подумать какой-нибудь солдат из афинского войска глядя на то, что одна рана после пореза заживает быстро, а другая, даже меньшая, гноится и воспаляется?

Если в  середине 19 века акушера, профессора Игнаца Филиппа Зиммельвейса «просвещенные европейцы» насильно упекли в психушку и забили там до смерти за то, что он предложил врачам хорошенько мыть руки перед операцией, то что говорить о жителях далеких эпох? Микробы – это точно не про греков.

О закалке стали 2 Меч, Нож, Археология, История России, Диаграмма, Железо, Закалка, Заточка, Металлообработка, Металлург, Металлургия, Соревнования, Ножемания, Точилка, Древняя Греция, Длиннопост

Приведу немного цитат из седьмой главы ремесленного трактата 12 века под авторством Абу-л-Фазл Хубайши Тифлиси (Персия) «Описание ремесел».

«Закаливание меча. Если кто-либо захочет так закалить клинок, что он будет рубить все что им не ударить и станет очень острым, пусть смешает желчь барана с мочой осла и закаливает в этой смеси клинок. После этого клинок будет рубить все, что не ударить и станет очень опасен».

Все эти заморочки и пляски древних вокруг обычной закалки - только из-за низкого качества стали, ее неоднородности и, зачатую, малого содержания углерода.  Что такое углерод и как он влияет на свойства стали старые мастера, конечно, не знали. Однако давали вполне вменяемые рецепты, не понимая основ и механизмов происходящих при этом процессов. Из упомянутой выше книги.

«Превращение мягкого железа в сталь. Если кто-либо захочет превратить мягкое железо в сталь, пусть сначала его расплавит, а когда оно расплавится на огне, смешает корки кислого граната и желтого миробалана и посыплет этим — железо превратится в хорошую сталь».

Здесь вполне внятно описан процесс науглероживания стали, где в качестве карбюризатора использованы корки граната. Как собственно и моча – раствор солей увеличивающих скорость охлаждения закаливаемого изделия.

Жаль только, что железо расплавить в то время было нельзя – технологии не позволяли. Засыпать все в тигель и науглеродить – да, кинуть корки в расплав железа – нет.

Все рецепты мастера тщательно хранили, потому как от этого зависели их заработки и, значит, благосостояние.  Пишут, что знаменитый японский мастер Масамуне тут же отрубил руку своему приемному сыну Самонджи, от чего тот умер. Отрубил за то, что Самонджи во время закалки мастером клинка сунул руку в воду, чтобы узнать ее температуру. Еще пишут, Мастер Масамуне был очень добрым человеком.

Еще парочка рецептов от Хубайши Тифлиси, чтобы понять всю глубину тех изысканий.

«Закаливание любого клинка. Если кто захочет так закалить клинок, чтобы место куда он ударил, не заживало бы и превратилось в свищ, пусть смешает кровь собаки, человеческую мочу и сок лука-порея и пропитает этим старых хлопок. Затем накалит на огне клинок, обернет этим влажным хлопком и составит на три дня в горячем навозе. Потом пусть вынет и пользуется».

На первый взгляд кажется бессмыслицей, однако навоз – это очень агрессивная среда, заставляющая сталь усиленно корродировать. В появившиеся микропоры попадает питательная среда из состава обмазки и навоза, в которой активно размножаются патогенные микробы.

Это вам напоминание про «полезность» дола на кухонных ножах или тех охотничьих ножах, которыми время от времени разделывают пищу.

Кстати, рецепт закалки топора для незаживающих ран отличается от рецепта закалки ножа. Разительно. Рецепт закалки острия копья тоже не плох.

«Если кто захочет закалить копье так, чтобы раненый им за час почернел от раны и погиб, пусть возьмет осиные яйца, сожжет их, смешает с кровью осла и все это прокипятит в воде. Потом станет закаливать в этом наконечник». И, конечно, рецепт закалки меча для таких ран совершенно другой.

В книге собрано более десятка рецептов закалки стали. Можно как-нибудь рассмотреть их все и поискать зерна рациональности…

Еще рецепт зонной закалки, но уже не такой старинный как прошлые.

«Как известно, стали можно придать путем особой закалки такую твердость, что она будет резать стекло, подобно алмазу. Но не всем известно, что существует очень простой способ для придания стали такой твердости. Шило, лезвие ножа или другой инструмент накаливаются добела и тотчас же погружаются в обыкновенный сургуч на одну секунду. Эту операцию повторяют беспрерывно, выбирая каждый раз для погружения свежее место в сургуче, до тех пор, пока сталь не остынет и не будет больше входить в сургуч. Тогда процесс закалки считается законченным. Остается снять приставшие частицы сургуча. При употреблении закаленного таким способом острия или лезвия из стали рекомендуется каждый раз смачивать их скипидаром».

Думаю, дефицитный сейчас сургуч можно попробовать заметить парафином, так как температура плавления  у них примерно одинаковая около 60 у сургуча и 65 – 80 у парафина. Правда плотность разная.

Современные мастера не отстают от мастеров прошлых веков и придумывают все новые и новые рецепты, для своих дамасков и ламинатов. Эти изыскания оплачивает в конечном итоге покупатель. Покупатель всегда все оплачивает.

Вот, взять к примеру известные и популярные «канатные тесты» на результаты которых покупатель и ориентируется. Он думает, глядя на результат тестов, что купит себе у победителя прочный нож, который не будет тупиться дольше других? А вот фигушки. Давайте разбираться, так как заголовок статьи к этим тестам имеет самое прямое отношение.

Вообще, среднестатистический пользователь почему-то думает, что «канатный тест» придумали мудрые ученые. А это совершенно не так. Ученые, да и известные мастера, как раз предостерегают людей ориентироваться на результаты нарезки канатов. И причин тут даже не одна, а целых две. Серьезных таких причин.

Так как пока никто не взял на себя обязанности летописца истории нашей современной ножевой индустрии, то попробую побыть им немного.

Итак, всего лишь двадцать лет назад никаких таких канатных тестов не было. Мастеровой народ и любители ножей тихо-мирно поживали себе на форумах и неспешно обсуждали всякие пришедшие в голову мысли – свои и коллег. Ножевой мир тихо варился в собственном соку, словно папоротники в болотах девонского периода палеозойской эры.

И тут бац…Нет, не метеорит, а так называемые «дамаско-булатные войны» – первая и вторая.  Умолчу пока об их причинах, как и об основных участвующих сторонах, нам главное - результаты этих жестоких сетевых баталий. У каждой войны есть результат, и у этих войн он был, причем довольно значимый.

Во-первых, уютно угнездившуюся на ножевом Олимпе публику из известных мастеров спустили немного пониже - они стали ближе к народу. Во-вторых, в России резко увеличился интерес к булатам, что повлекло за собой появление целой плеяды новых мастеров работающих как с дамаском, так и с булатом.

В-третьих, чувствительный пинок расслабившимся мэтрам заставил их зашевелиться и выдавать на гора уже совершенно другие по качеству и сложности работы.

В общем, ножевой мир всколыхнулся и задумался, а что же мы делаем? Вот тут и возникла идея проверки ножей на качество. Предлагались самые разнообразные варианты от забугорных тестов типа прокатки режущей кромки по латунной трубке (одно время популярный тест), до рубки проволоки и постройки специальных механизмов.

Думали, думали и придумали резать ножом что-то такое, что быстро его затупит. В качестве такого материала был выбран… а вот и не угадали – войлок. Все резали войлок и делились результатами друг с другом. Однако, валенки быстро закончились, да и войлок у энтузиастов часто был не той системы, поэтому народ опять напряг мозги.

В итоге кто-то шибко умный посоветовал канат. Желающие могут покопаться в архивах ножевых форумов и найти точную дату данного события. Предлагаю этот день сделать всенародным праздником и выходным.

Первые публичные тесты прошли в Москве при небольшом скоплении народа. Результаты многих озадачили, так как в тестах участвовали клинки от известных мастеров и они первые места не заняли, как ожидалось. Это был шок. Все чесали репу и тихонько обсуждали случившееся. Мастера искали оправдания, хотя надо было просто забить и послать.

О закалке стали 2 Меч, Нож, Археология, История России, Диаграмма, Железо, Закалка, Заточка, Металлообработка, Металлург, Металлургия, Соревнования, Ножемания, Точилка, Древняя Греция, Длиннопост

Один публичный тест, другой и тут кое-кто просёк, что это же золотое дно! Нахрена годами набирать авторитет, пробираясь к вершине Олимпа, когда туда можно пройтись прямо по головам наших мэтров ими же любезно подставленными. И люди пошли…

Этот лохотрон выглядел так: собираем кучу ножей известных мастеров и брендов, делаем свой нож для резки канатов - и мы в дамках. Покупатель видит, что наш нож перерезал всех и идет к нам, а вот тут-то мы и продаем ему за дорого (мы же крутые победили мэтров) всякую лабуду.

И ведь прокатывало. Потом, правда, в сети появлялись робкие вопросы  купивших такие ножи: «А почему они не режут?». Только кто их слушал?

Мастера – не дураки, эффективных менеджеров раскусили быстро и на такие соревнования тоже стали выставлять свои канаторезательные ножи. Случались и казусы – закаленные до ужаса клинки ломались об мягкий канат. В итоге у нас появился новый вид спорта – резка канатов.

Для победы в нем требуется особый инструмент – специально закаленные ножи. То, что кроме как резать что-то относительно мягкое такими ножами ничего нельзя, это никого не смущало и не смущает – главное победа и имя в первых строчках рейтинга. Чтобы набрать большую твердость не так давно некоторые шли на всякие ухищрения, и даже обрабатывали сталь в жидком азоте.

Маркетинг набирал обороты…

Частенько то, что их ножи участвуют в тестах, мастера даже не знали. Более того: как точили их ножи, у кого взяли, для чего данный нож предназначался никого не волновало – главное чтобы клеймо стояло. Да и о результатах тестов их участники (посредством своих ножей) порой случайно узнавали от клиентов или же еще кого-то.

Как сделать нож-победитель для резки канатов? Не сложно – нужно закалить его на максимально возможную твердость. Желательно если клинок будет из легированной карбидообразующими элементами высокоуглеродистой стали. Угол заточки можно делать большим, так как проверяется не качество реза, а его продолжительность. То, что ножом будет трудно заточить карандаш – не важно: канат-то он будет пилить очень долго.

Если такой нож уронить на бетонный пол, то он, скорее всего, расколется. Но низкая прочность окупается износостойкостью лезвия. В поход такой нож брать тоже не стоит, но кто сейчас в походы ходит? Настоящие такие - дней на несколько в отрыве от цивилизации?

А вот что писал профессор Колчин, советский историк и археолог о том, каким должен быть хороший нож. Ориентируясь на эти упомянутые качества мастера и проигрывали канатные тесты, пока за ум не взялись.  

«Переходя к технологии изготовления, определим, каким техническим требованиям должен отвечать нож в эксплуатации.  Этих требований три. Первое – максимальная твердость острия лезвия, способная удерживать остроту, второе – вязкость клинка, позволяющая лезвию при изгибах и ударах не ломаться, и третье – возможность восстановления затупленного лезвия».

Получается, что благодаря тестированию на канате у нас в ноже осталось только одно ему нужное требование – максимальная твердость острия». Хорошо это? Нет, конечно, но других ориентиров у покупателей нет. Интересуясь свойствами клинка, покупатель ориентируется только на твердость. Это заставляет изготовителей гнаться за ней, как за убегающим горизонтом и конца этой гонки не видно, потому как окружающая среда все меньше требует от ножа двух следующих качеств: ударной вязкости и способности к быстрой заточке.

Гай Плиний Старший (род в 22-24 году н.э.) «Естественная история…» (1810 г. издания)

«Железные рудокопи находятся почти везде… Разности железа многочисленны… Некоторые земли дают токмо мягкое, к свинцу подходящее железо, другие хрупкое и рудянистое, коего в употреблении на колеса и гвозди избегать должно… (запомните эти слова). Иное скорее ржавеет... Между всеми же имеет преимущество Серическое железо… второе место  заслуживает Пароское.  Другие виды железа не переделываются в чистую сталь, но получают примесь мягчайшего железа… Тончайшие железные вещи обыкновенно закаливаются в масле, дабы от воды они соделались до хрупкости крепкими».

Заметили, никакой заморочки с закалкой. Закаливали, как и сейчас, обычно или в масле или в воде. И даже древние греки знали, что крепкий нож может быть хрупким, только вот современным покупателям это невдомёк. Или не нужно совсем – ему и так пойдет. Это в прошлом требовались и другие свойства оружия.

Об этом писал в середине 19 века поручик Максимов в своем наставлении «О распознании достоинства холодного оружия».

«…Здешние клинки, не уступая ни в чем знаменитым азиатским. Разве только затейливостью узора, в некоторых, очень важных отношениях имеют большое преимущество, так например гибкость, вязкость и упругость. Обыкновенные качества здешнего оружия, совершенно чужды азиатскому. Все достоинство которого заключается в твердости и красоте узоров.

Но одна чрезмерная твердость клинка, достигающая иногда до того, что искусные бойцы перерубают ими оружейные стволы, в неопытных руках не принесет пользы, даже может быть вредна, ибо при избытке твердости металл может быть хрупок и тогда от случайного удара плашмя клинок разобьется на несколько кусков. Я был свидетелем подобного случая, бывшего в 1846 году в Собственном конвое Его Величества с знаменитою турецкою саблей, принадлежавшей моему товарищу, сыну шамхала Тарковского.

Твердость клинка может быть безусловно полезна в одном только роде холодного оружия в кинжале, но и тут гибкость никогда не будет лишняя».

А вот что пишет о твердости в своей книге «Секреты булата» наш известный мастер-оружейник Л.Б. Архангельский.

«Сама по себе высокая твердость не обеспечивает прочность клинка, ни стойкость его лезвия. (В самом деле, стекло твердое, но из-за полного отсутствия эластичности не прочное, поэтому делать из него сабли и ножи не следует)… Только сочетание твердости и прочности придает лезвию клинка в холодном оружии необходимую стойкость к истиранию и ударам». Кроме того, клинки должны иметь и некоторую упругость».

Были попытки сделать в канатных тестах вторую часть – испытание на излом и ударную вязкость, но, по понятным и описанным выше причинам это не прижилось. Действительно, какая такая ударная вязкость, если мы большей частью режем огурцы и помидоры не выходя из дома? Кстати, помидорный тест тоже есть.

Да стоит открыть любой учебник, как мы прочитаем:

«Предел прочности возрастает одновременно с ростом твердости до 48 – 52HRC, дальнейшее увеличение твердости вызывает резкое падение предела прочности. Это связано с изменением механизма разрушения. На первом этапе роста твердости разрушение вязкое, оно предваряется пластической деформацией, осуществление которой требует затрат энергии; на втором этапе разрушение хрупкое. Твердость режущих инструментов значительно выше 48 - 52HRC, поэтому повышение твердости материала, используемого для изготовления режущего инструмента, всегда сопровождается снижением прочности.

Прочность и ударная вязкость используемого материала должна назначаться из принципа достаточности – не должно быть выкрашивания режущей кромки и, тем более, поломки инструмента».

О закалке стали 2 Меч, Нож, Археология, История России, Диаграмма, Железо, Закалка, Заточка, Металлообработка, Металлург, Металлургия, Соревнования, Ножемания, Точилка, Древняя Греция, Длиннопост

Рис. 1.4. Зависимость предела прочности (ов) и ударной вязкости (КС) от твердости (схема)

«Одновременное повышение и твердости, и прочности для инструментальных материалов реализуется весьма ограниченно. Это может быть достигнуто только для сталей и только до определенного уровня твердости.

Для прочих инструментальных материалов — сталей высокой твердости, твердых сплавов, режущей керамики, СТМ повышение твердости сопровождается снижением прочности. Это связано с изменением механизма разрушения. На первом этапе роста твердости разрушение вязкое, оно предваряется пластической деформацией, осуществление которой требует затрат энергии; на втором этапе разрушение хрупкое.

Зависимость между твердостью и ударной вязкостью принципиально одинакова для всех материалов. Увеличение прочности приводит к снижению ударной вязкости (см. рис. 1.4).

Эти закономерности определяют принцип выбора прочности и ударной вязкости инструментальных материалов. Эти характеристики должны назначаться из принципа достаточности — необходимо предотвратить локальное (например, сколы режущей кромки) и, тем более, полное разрушение инструмента (поломка)».

«Трещиностойкость характеризует способность материала сохранять свою работоспособность (не разрушаться) при наличии трещины. Чем выше твердость инструментального материала, тем меньше его трещиностойкость».

Так  зачем клинку нужна твердость?

При резании режущая кромка ножа в результате работы подвергается истиранию и абразивному износу. Абразивный износ измеряется объемом V материала сошлифованного с единицы поверхности данным абразивом за единицу времени в данных условиях.

Существует определенная связь между износом V  и микротвердостью H материала. Износ хрупких материалов, (а закаленная кромка ножа особенно для соревнований по резке каната материал хрупкий), обратно пропорционален квадрату их твердости.

О закалке стали 2 Меч, Нож, Археология, История России, Диаграмма, Железо, Закалка, Заточка, Металлообработка, Металлург, Металлургия, Соревнования, Ножемания, Точилка, Древняя Греция, Длиннопост

То есть, износ тем меньше, чем больше твердость. А это значит, что закаленным на большую твердость клинком можно сделать больше резов.

Вот только износостойкость не всегда польза. Затачивание основано на износе кромки до нужной толщины под влиянием абразива. Если кромка тверже абразива – заточить нельзя. Чем тверже нож – тем дороже абразив и дольше заточка. Как и чем затачивать твердый нож в полевых условиях? Да даже дома не все это смогут сделать сами.

Получается, что продолжи мы канатный тест во времени используя заточку по ходу испытаний, совсем не факт что выиграет тот нож, который победил на первом этапе. Пока его заточат, менее твердый успеет не только восстановить кромку, но и сделать некоторое количество резов. И чем дольше будут продолжаться соревнования, тем меньше шансов будет у твердых ножей  – с каждым разом его правка будет занимать все больше времени. И в итоге нож придется нести в мастерскую, а более мягкий в это время будет продолжать резать.  

Если бы гонки «Формулы-1» продолжались до первой заправки или первой смены колес, они точь в точь походили бы на тесты по резке каната. И в итоге мы увидели бы на трассе не привычные мощные болиды,  а легкие шаткие трехколесные конструкции на велосипедных шинах. Вот в эту сторону пока и движется наша ножевая индустрия.

Как можно графически представить совокупные свойства ножа в зависимости от трех  предъявляемых к нему требованиям?

Твердость – Т, затачиваемость – З и прочность – П, примем площадь круга и как нибудь оценим - дадим на каждое свойство пять единиц. В итоге сбалансированный по свойствам нож у нас будет иметь 15 единиц этих свойств.

О закалке стали 2 Меч, Нож, Археология, История России, Диаграмма, Железо, Закалка, Заточка, Металлообработка, Металлург, Металлургия, Соревнования, Ножемания, Точилка, Древняя Греция, Длиннопост

Увеличим твердость ножа. Увеличить можно только за счет других своств. Поэтому добавляя единицу к твердости мы по единице отнимем у прочности и затачиваемости. В итоге получим в ноже уже не 15, а 14 единиц своств.

Добавив еще единицу твердости, получим только 13 единиц общих свойств.  Вообще-то давно пора было открыть закон сохранения свойств, так как свойства стали есть по сути энергия удерживающая структуры в стабильном состоянии. И выглядеть наша секторная диаграмма свойств должна так:

О закалке стали 2 Меч, Нож, Археология, История России, Диаграмма, Железо, Закалка, Заточка, Металлообработка, Металлург, Металлургия, Соревнования, Ножемания, Точилка, Древняя Греция, Длиннопост

А дальше последует самое сложное и самое интересное: научно-практическая часть. В которой попробую на пальцах объяснить то, что нарисовано в этом, как многим кажется, кошмаре:

О закалке стали 2 Меч, Нож, Археология, История России, Диаграмма, Железо, Закалка, Заточка, Металлообработка, Металлург, Металлургия, Соревнования, Ножемания, Точилка, Древняя Греция, Длиннопост
Показать полностью 7

О закалке 1

Изготовление хоть ножа, хоть меча состоит из трех основных видов технологии. Первое – это получение самого металла, второе – получение изделия заданной формы и третье – термическая обработка изделия.

Изменение свойств металлов при термической обработке очень велико. А изменение свойств стали, так как речь сейчас идет именно о ней, просто громадно. Из мягкой и пластичной после закалки она становится твердой и прочной, причем иногда настолько, что изделие не усиливают какими-то способами, а тупо не закаливают полностью или применяют термообработку понижающую ряд полученных свойств.

Как простейший пример -  клинки спортивного оружия. А теперь немного документов. Обращусь к Правилам вида спорта «Фехтование» утвержденным приказом Министерства спорта Российской Федерации от 08.08.2016 № 944.

В этих правилах обговаривается все до мельчайших деталей. Нам, в данном случае, интересны два параметра оружия:  длина, толщина и жесткость.

§5. Сабля.

1. Длина и вес.

Общая максимальная длина сабли – 105 см. Общий вес готовой к использованию сабли составляет менее 500 граммов.

2. Клинок.

2.1. Клинок сделан из стали; его сечение близкое к прямоугольному. Максимальная длина клинка – 88 см; минимальная ширина клинка 4 мм, она должна находиться около головки. Минимальная толщина клинка – 1,2 мм, и она также должна находиться ниже головки (рис.12).

2.2. Его конец может состоять из единого целого или должен быть завернут таким образом, чтобы образовалась головка, вид которой сверху должен представлять квадратное или прямоугольное сечение минимум в 4 мм и максимум в 6 мм; максимальный размер сечения должен находиться не более чем в 3 мм от окончания клинка.

2.3. Оконечность клинка может быть выполнена также в виде цельной головки; в этом случае он должен иметь такое же сечение, как и загнутое окончание клинка (рис.12).

2.4. Если клинок имеет изгиб, то последний должен быть плавным и не превышать 4 см (рис.13). Запрещены клинки, концы которых могут цепляться, и клинки, которые изогнуты в сторону лезвия.

О закалке 1 Нож, Меч, Археология, Мужское, История России, Средневековье, Сталь, Железо, Металлургия, Кузнец, Кузница, Закалка, Закаливание, Технологии, Древняя Греция, Длиннопост

. Допустимый изгиб клинка сабли.

2.5. Клинок сабли должен иметь гибкость, соответствующую стреле прогиба минимум 4,0 см и максимум 7,0 см, измеряемой в следующих условиях:

- клинок закрепляется горизонтально в 70 см от края головки;

- гирька весом в 200 гр. подвешивается в 1 см от края головки;

- стрела прогиба измеряется по концу наконечника между двумя положениями головки – нагруженным и ненагруженным (рис.8, стр.88)».

Ничего интересного не заметили в этом описании? Нет? Тогда еще одна картинка с размерами.

О закалке 1 Нож, Меч, Археология, Мужское, История России, Средневековье, Сталь, Железо, Металлургия, Кузнец, Кузница, Закалка, Закаливание, Технологии, Древняя Греция, Длиннопост

Это кончик спортивной сабли. Ширина клинка 4 мм, толщина 1,2 мм. Теперь возьмите линейку и отметьте на ней 4 мм и 1 мм. Не 4 см шириной как у некоторых сабель, а 4 мм. Не 6 мм толщины, а 1,2 мм. И такой узкой и тонкой полоской спортсмены не только наносят удары, но и парируют чужие.

О закалке 1 Нож, Меч, Археология, Мужское, История России, Средневековье, Сталь, Железо, Металлургия, Кузнец, Кузница, Закалка, Закаливание, Технологии, Древняя Греция, Длиннопост

И это притом, что спортивное оружие «недокалено». Вернее, оно термообработано так, чтобы не нанести травму сопернику - при сильном ударе клинок спортивного оружия согнется. Однако, можно закалить и посильнее.

Возьмите в руки широкую стальную линейку. Ее толщина даже меньше миллиметра, однако, если у нее заточить край – это будет довольно грозное оружие. При такой малой толщине, линейке хватит жесткости, чтобы нанести опасную рану. А теперь вспомните про что-то там «упрочняющий» дол и найдите для него место на этой сабле. Причем я специально отметил, что данному оружию термической обработкой «недодали» жесткости, чтобы не делать его травмоопасным.

О закалке 1 Нож, Меч, Археология, Мужское, История России, Средневековье, Сталь, Железо, Металлургия, Кузнец, Кузница, Закалка, Закаливание, Технологии, Древняя Греция, Длиннопост

Клинок спортивной сабли.

Хотя говорить что все стали после закалки становятся тверже – нельзя. Например, некоторые «нержавейки» после закалки становятся мягче, но это уже частности, а пока о том, что и так всем известно.

И вот здесь начинается самое интересное. Дело в том, что многие пользователи закаленных изделий путают свойства после термической обработки со свойствами сталей разных марок. Чаще всего закаленными (термически обработанными, давайте под закалкой примем этот термин) у нас выступают ножи, с которыми мы имеем дело ежедневно. (Те же ложки и вилки тоже прошли термообработку, но немного другую). Поэтому часто можно слышать, что сталь, ну, допустим 65Г, хуже в клинках чем, например, Х12МФ.

Хотя после термической обработки первая может быть тверже второй намного, да и эта вторая при желании термиста станет вообще непригодной для использования в каком либо изделии.  «Убить» полностью сталь закалкой сложно, но нет ничего невозможного. И чаще нам приходится сталкиваться не с неподходящей маркой стали, а с несоответствующей задачам термической обработкой.

И тут опять приходится бороться с тараканами в чужих головах, а все из-за того, что многие любители  ножей, как и мастера эти ножи изготавливающие, путают закалку стали, прокаливаемость стали и неполную закалку стали. Все эти непохожие друг на друга термины смешались в кучу в их головах как кони и люди в доме Облонских.

Пример. После прочтения одной моей статьи, некий мастер по изготовлению ножей очень расстроился из-за того, что я якобы нелицеприятно высказался о современном ламинате (и дамаске) после закалки теряющем смысл.

Суть в том, что на центральный слой и на обкладки мастера используют стали популярные и хорошие, но после термообработки имеющие примерно одинаковую твердость.  В качестве контраргумента мне привели клинок, изготовленный из У8 – центральный слой и 95Х18 – обкладки.

95х18 нержавеющая сталь и конструкция ножа, как и выбор материалов на первый взгляд кажутся идеальными – углеродка режет, а «нержавейка» усиливает механические свойства и уменьшает коррозию.

На вопрос как 95х18 «усилит» клинок обычно ссылаются на справочник, в котором указана температура ее закалки – 1050 градусов (температура закалки У8 – около 800 градусов). По логике мастеров, а такой пакет как оказалось довольно популярен, нержавейка получит частичную закалку или не закалится вообще, что сделает обкладки из нее более прочными и вязкими. На практике ничего такого не получится, а выйдет совершенно наоборот. Более того, ударная вязкость обкладок может стать меньше, чем у центрального слоя при закалке от 800 градусов. А все потому, что мастерами  в данном случае попутаны свойства сталей после изотермической закалки и коррозионная стойкость сталей, в частности нержавейки.

Почему так получится, объясню ниже, хотя мифов в головах мастеров бродит множество и они частенько делятся ими со своими клиентами. Например, рассказами о том, как быстро углерод «перебегает» из одного слоя стали в другой. Тут вообще слово «диффузия» - забыто, а от чего она зависит мало кто знает, так как страницы учебников пошли на самокрутки или потрачены  на растопку горнов.

Вообще, тема диффузии и как разные элементы в стали на нее влияют очень интересна. Интересна тем, что на способности углерода глубоко диффундировать (проникать) в железо базируются некоторые методы получения самой стали или ее упрочнения. Цементация стали – древнейший способ ее получения, имеющий как свои достоинства, так и существенные недостатки.

Представляете, если некоторые современные мастера изготавливающие ножи незнакомы со всеми «тайнами» закаливания сталей, то что говорить о мастерах древности? Именно в древности родилось великое множество мифов о закалке, часть из которых дошла и до нас. Более того, в эту часть мы свято верим, хотя обычный критический взгляд на миф его тут же рушит.

Давайте немного пройдемся по мифам, но перед этим о том, что же их вызвало, хотя если вы прочли прошлые статьи, прекрасно это знаете – никакое качество стали тех лет, а вернее наличие такой вредной примеси как фосфор. Фосфор вызывает хладноломкость стали, даже железо с фосфором становится хрупким. Были времена, когда железо считалось хорошим, если его можно было согнуть в обруч для бочки. Я не буду повторяться и приводить цитаты из первоисточников – они есть в прошлых статьях, как и данные по наличию фосфора.

Неоднородную сталь да еще с фосфором хорошо закалить трудно, так как после закалки вязкая сталь станет хрупкой сама по себе, а наличие фосфора сделает ее «стеклянной».  Хотя древние греки проблем с закалкой не испытывали и калили клинки как и сейчас в масло. Но вот когда закончились их качественные руды…

В книге Дж. Р. Толкиена «Властелин колец» в части «Хоббит» упоминается тройная закалка наконечников копий гномов. Здесь, видимо, сработала «житейская логика» как и в случае с 95х18 на обкладках. У гномов: «чем больше раз закалим, тем большую твердость получим», у наших мастеров: «если недогреем, то получим меньшую твердость».

В первом случае мы можем получить растрескивание клинка, так как в процессе закалки возникают огромные напряжения. И если в стали есть сера или фосфор, то при бесконечных закалках мы, в конце концов, сломаем клинок. А если у нас сталь неоднородна, да еще с непроварами?

Как-то я решил испытать сколько закалок выдержит пруток из У8. Где-то в районе десятой он лопнул вдоль (не поперек) и я получил две почти ровные длинные половинки. Я уже писал про звенящие клинки после закалки и ссылался на видео, где в замедленной съемке показано как извивается закаливаемый в воде клинок, пытаясь это проиллюстрировать.

Кстати, Толкиен упоминает в своих произведениях еще один меч На́рсил, который был разбит на шесть частей и затем перекован в новый меч Анду́рил.

О закалке 1 Нож, Меч, Археология, Мужское, История России, Средневековье, Сталь, Железо, Металлургия, Кузнец, Кузница, Закалка, Закаливание, Технологии, Древняя Греция, Длиннопост

Интересный факт: кузнец-консультант принимавший участие в создании фильма усомнился в том, что в ту эпоху была возможность как-то сварить обломки меча в единое целое. И я так думаю. И даже мастерство кузнецов-эльфов здесь бы не помогло. И сейчас нет таких технологий у кузнецов, кроме как сварить все вместе электросваркой, а потом зачистить болгаркой швы. Можно только осторожно сварить куски металла в кучу наподобие уклада и уже из бруска оттянуть новый клинок.

Кстати, то, что меч развалился на части, говорит о «перекале» или некачественной стали. Да и вообще этот меч очень прост по конструкции – нет никакой вязкой сердцевины – одна сплошная закаленная на одинаковую твердость железка. У хорошего меча могло выкрошиться лезвие, но лопнуть на несколько частей – явный брак гномов. Ладно – сломался, но не развалился же…

Многие, наверное, слышали про закалку мечей в моче черных козлов или рыжих мальчиков и, вполне возможно, посмеялись над этим. А зря. Моча – это солевой раствор, а в этой среде скорость охлаждения стали в некотором интервале температур гораздо выше.

«В 10-процентном водном растворе поваренной соли скорость охлаждения стали в области трооститных превращений (500-600°С) в два раза больше скорости охлаждения в пресной воде. А в интервале 200-300 почти как у пресной воды. Это преимущество водных растворов солей используется в практике термической обработки»

А вот закалка в теле рабов – явный миф. Обычно пишут, что для того чтобы хорошо закалить меч нужно раба-нубийца долго и упорно откармливать. А потом вставить раскаленный меч ему в зад. Что-то в этом конечно есть, потому как поначалу скорость охлаждения будет высокой, а потом, по мере обгорания и налипания внутренностей на сталь уменьшится, что вполне выгодно. Однако так меч золотым выйдет. Рабы они ведь не от грязи заводятся. Чтобы доставить раба работоспособным в мастерскую это немало труда и средств надо затратить. Недаром, мечтая о светлом будущем и прекрасном далеко, Аристотель видел у каждого гражданина по три раба. А тут ценный ресурс для какой-то закалки разбазаривается…

И вообще мы упускаем такой существенный момент как коробление стали.  Неоднородную сталь сильно коробит (а однородную раньше и взять было негде) поэтому после закалки необходимой операцией было выпрямление закаленного клинка.

Еще один не выдерживающий критики миф про то, как казаки закаливали клинки.

«В давние времена таким же способом закаливали кинжальные клинки кубанские казаки. Во время инициации - посвящения молодого казака в воины, он должен был несколько раз воткнуть в землю раскаленную заготовку своего личного кинжала».

Давайте разбираться. Если и был такой обычай, то он никак не связан напрямую с закалкой. С болью, как и всякая инициация – да, с термообработкой – точно нет. Во-первых, нет такого понятия «личный клинок». Сегодня клинок один – завтра казак побогаче купит.  Во-вторых, после втыкания раскаленного клинка в землю – он будет весь кривой.

Тут на углях нагревая под закалку стараешься расположить так, чтобы пустот не было и искривления во время нагрева под собственным весом, а здесь раскаленный - и в землю. Да его и не воткнешь – согнется, не говоря уже о том, что не закалится.

А вот порассуждать о том, что раскаленную заготовку как-то надо держать – смысл есть. Пересилить боль какое-то время – это в порядке вещей при любой инициации. Выдержал боль – ты мужчина. Нет – готовься к следующему разу.

Все это опровергает еще один миф о закалке: закалке на скаку.

«Кузнецы передавали раскаленный клинок всаднику и тот мчался на резвом скакуне по горным долинам, размахивая клинком… Некоторые мастера закаливали таким образом клинки сабель только ранним утром, пока не сошла ночная роса и воздух прохладен и влажен, другие же дожидались тумана, когда воздух густо насыщен мельчайшими капельками воды».

Красиво, романтично, но невыполнимо. Итак, нагреть клинок нам нужно до 850 градусов максимум. Затем взять его клещами и быстро донести до газующего на месте всадника.

А как еще, это только в кино и на картинках мечи уже с готовыми рукоятями куют.

О закалке 1 Нож, Меч, Археология, Мужское, История России, Средневековье, Сталь, Железо, Металлургия, Кузнец, Кузница, Закалка, Закаливание, Технологии, Древняя Греция, Длиннопост

Нести нужно бегом, потому как сталь быстро остывает, и если остынет до 727 градусов, закалить мы ничего не сможем.

У всадника тоже должны быть клещи – он же не инициацию проходит – и этими клещами он должен ловко ухватить клинок и, тронув поводья, начать клещами размахивать. Правда уже не так красиво и романтично выглядит? А пока все это делается, ни скакать, ни размахивать уже и не нужно – остыло всё.

Еще один миф – это прижигание ножом ран и укусов змей и жарка мяса на кончиках кинжалов или саблях. Эту фигню часто можно видеть в кино – тоже романтично и брутально. Однако нагрев стали выше 150-200 градусов вызывает изменение ее свойств достигнутых ранее термообработкой. Нагрев до красна делает сталь такой же, как и до закалки – то есть мягкой пластичной.

В этой части старался избегать специальных терминов, они в следующей, как и то, почему же обкладки из 95х18 не работают и что мы измеряем на канатных тестах.

Показать полностью 6
Отличная работа, все прочитано!