Серия «Занимательная физика»

Наука | Научпоп
Серия Занимательная физика

Сколько весит пустота? Рассказывает журнал «Лучик»

Мы называем «пустой» банку, из которой съедено всё варенье. Но с точки зрения физики она не пустая. В ней есть воздух, и этот воздух сколько-то весит. А если откачать из этой банки весь воздух и вообще всё-всё-всё, чтобы внутри остался абсолютный вакуум? Что тогда? Ведь вакуум ничего не весит?

Как бы не так...

Давайте вспомним, что существуют две физики, причём очень непохожие друг на друга – классическая физика (та самая, которую изучают в школе) и квантовая физика.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Что будет, если мы разгоним до сверхбольшой скорости две малые элементарные частицы, скажем, два электрона, а потом столкнём их друг с другом? С ними ничего не случится, они останутся такими же, как были. Но при столкновении родится несколько новых элементарных частиц! Откуда? Из ниоткуда!

Сколько именно частиц родится и каких? А это зависит только от скорости электронов. Чем она будет выше, чем ближе она будет к скорости света в вакууме (примерно 300 000 километров в секунду), тем больше частиц вещества будет рождено при столкновении. И в теории при столкновении всего лишь двух крохотных электронов может родиться миллион частиц. Миллиард. Квадриллион. Из столкновения двух электронов может родиться целая вселенная!

Поверить в такое «просто так», на интуитивном уровне, не получится. Тем не менее, так оно и есть.

Но может быть и по-другому. Допустим, летят друг другу навстречу электрон и другая элементарная частица – позитрон. Сталкиваются – и... Исчезают! Мы видим яркую вспышку – при столкновении рождаются две частицы света, два фотона. А сами электрон и позитрон исчезают в никуда, аннигилируют, как говорят учёные. Слово «аннигиляция» происходит от латинского «нигиль», то есть «ничто». От электронов не останется никаких осколков или обломков – они именно исчезнут. Как в сказке.

Что же разделяет классическую физику и квантовую? Классическая физика – это физика «большого мира», макромира. А квантовая физика – это физика микромира, мира, в котором всё вокруг немыслимо маленького размера, мира, в котором все события происходят за невообразимо короткое время, мира, в котором скорости движения запредельно огромны.

Классическую физику можно представить в виде куклы-матрёшки: внутри самой большой матрёшки спрятана матрёшка поменьше, потом ещё поменьше, и так далее – но по сути у всех этих «матрёшек» свойства одинаковы, они подчиняются одним и тем же законам. Например, закону сохранения энергии: «энергия не возникает из ниоткуда и не исчезает в никуда». Ну, или «из ничего не выйдет ничего».

А вот квантовая физика – совершенно иное. И очень многие законы «нормальной» физики в квантовой физике не работают или работают, но совсем не так... В частности, в квантовой физике пустоту можно взвесить!

Во поле, во тензорном...

Чтобы взвесить пустоту, сперва немножко подготовимся. Начнём вот с чего. А знаете ли вы, что такое «поле»? В научном смысле? В физике, в математике? В этом нет ничего сложного: полем называется какой-то объект, каждой точке которого приписано определённое число. Возьмём, например, кусочек листа из тетради в клетку, и в каждой клеточке напишем число.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Такая штука называется "скалярное поле"

Чем-то напоминает поле для какой-то настольной игры, правда? Вот то, что мы сейчас нарисовали, и называется полем. Более научно – скалярным полем. Слово «скаляр» происходит от латинского слова «скала», то есть «лестница» (отсюда же наше слово «шкала» – на линейке, на термометре и так далее).

А если мы в каждой клеточке не напишем число, а нарисуем стрелочку-направление? Или, как любят говорить учёные, «вектор» (по-латыни слово «вектор» буквально означает «носильщик», «транспортировщик»)? Что у нас получится – тоже поле? Совершенно верно, это тоже поле. Только уже не скалярное, а векторное.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

А это уже векторное поле

А если мы в каждую клеточку листа «впихнём» какой-нибудь сложный объект? Скажем, у математиков и физиков большой любовью пользуются «суперчисла», которые называются «матрицы» и «тензоры». Что если мы впишем в каждую клетку матрицу или тензор? Что у нас получится? Да тоже поле. С матрицами – матричное поле. С тензорами – тензорное поле. Всё как в деревне: сеем пшеницу – будет пшеничное поле. Сеем картошку – картофельное. Сеем рис – рисовое. Так что ничего сложного!

А теперь магнитное!

Само собой, реальные физические поля – в отличие от тетрадного листа – никаких чисел или векторов нам не показывают, потому что они невидимы. Тем не менее, в каждой точке поля существует некая величина (скажем, сила), которую можно обнаружить, увидеть и даже измерить. Скажем, собрались вы искупаться в ванной. А чтобы было весело и не скучно, взяли с собой резиновый мячик (или другую маленькую игрушку) и пустую пластиковую бутылку. Наполняем бутылку, потом под водой резко сжимаем её – и любуемся, как под действием абсолютно невидимой водяной струи мячик вдруг «сам по себе» отпрыгивает на другой край ванной! Невидимая под водой струя – это грубый, но наглядный пример того самого поля (силового поля из фантастических книжек): в каждой точке внутри ванной каждая крохотная частичка воды движется с определённой скоростью, то есть обладает импульсом, силой (эту силу можно даже измерить и написать «в клеточке» на бумажке). Снаружи мы этого не видим, но брошенный в ванну мячик под действием множества таких сил начинает двигаться!

Но... Почему мы назвали этот пример «грубым»? Потому что – вы сами прекрасно это понимаете! – мячик движется под действием потока воды, в общем случае – какого-то вещества. Если мы вместе с мячиком и пластиковой бутылкой вдруг перенесёмся в космическое пространство (где нет ни воды, ни воздуха, где царит абсолютная пустота, то есть вакуум), то «погонять» мячик у нас уже не выйдет – сколько мы ни будем сжимать-разжимать бутылку, игрушка даже с места не сдвинется. Потому что вещества вокруг нет!

А вот настоящее физическое поле – дело другое, ему вещество совершенно не требуется! Скажем, магнитное поле. Самый обыкновенный магнитик для холодильника будет прекрасно работать и в воде, и в воздухе, и в вакууме космоса! Потому что магнитному полю никакое вещество, никакое «рабочее тело» не требуется. Как такое может быть, как можно действовать «сквозь абсолютное ничто» – об этом немного погодя, хорошо?

Итак, магнитное поле – его нельзя увидеть, нельзя услышать, невозможно потрогать или понюхать. Тем не менее, оно есть, оно реально, оно обладает силой! Достаточно поднести к магниту гвоздь, ключ или другой металлический предмет – и вы сразу же почувствуете ту самую силу. А мощный магнит вообще может вырвать металлический предмет у человека из рук или даже поднять настоящий автомобиль!

Проведём простой классический опыт, который много раз был описан в учебниках: насыплем на бумажный лист горсть железных опилок и поднесём с другой стороны магнит. Опилки тут же «нарисуют картинку», вытянутся в тонкие линии – то есть соберутся вдоль силовых линий магнитного поля.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Силовые линии магнитного поля видны благодаря железным опилкам

Мы не можем увидеть само магнитное поле, но можем видеть направление его силы, его воображаемые стрелочки-векторы. Так что магнитное поле – да, абсолютно правильно, это векторное поле, если вы уже сами об этом догадались, то просто молодцы!

Как устроен атом?

Когда я пошёл в младшую школу, на рукаве моей формы был шеврон – красный, с раскрытой книгой и солнышком. А когда перешёл из младшей в среднюю, шевроны у нас стали другими – синими, а на фоне солнышка появился какой-то странный «цветочек». Учительница быстро объяснила нам, что это никакой не цветочек, а атом – в центре атомное ядро, вокруг которого по орбитам летают электроны.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Шевроны (нарукавные нашивки) старой школьной формы

Между прочим, во многих книгах так атомы изображают до сих пор – с шариками-электронами, которые вращаются вокруг ядра по орбитам, в точности как планеты вокруг Солнца.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Это не очень правильная картинка (с точки зрения современной науки), но зато простая, понятная и наглядная, так что мы воспользуемся именно ей. Итак, каждый атом содержит центральное ядро, вокруг которого летают маленькие отрицательные электроны. Самый простой атом – это атом водорода: у него всего лишь один отрицательный («-») электрон, и в ядре всего лишь один положительный («+») протон.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Модель атома водорода

Глядя на эту картинку, физики уже давно задались вопросом: а какая же сила заставляет электрон никуда не улетать, а вращаться вокруг протона? Земля вращается вокруг Солнца благодаря притяжению, гравитации. Может быть, и электрон тоже притягивается к протону гравитацией? Расчёты сразу же показали – нет, этого не может быть. Значит, тут работает какая-то другая сила. А какая?

Нетрудно сообразить – это сила магнитная, точнее, электромагнитная! В магните «минус» всегда притягивается к «плюсу», верно? Вот и «минусовый» (то есть отрицательно заряженный) электрон точно так же притягивается к «плюсовому» (положительно заряженному) протону.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Та же самая модель атома водорода

А это означает, что между электроном и протоном, то есть ядром атома, существует электромагнитное поле. С точки зрения школьной, то есть классической, физики электромагнитное поле ни в каком вещественном «носителе» не нуждается – оно просто существует, и баста! Однако, как мы уже говорили, с точки зрения «другой» физики, то есть квантовой, «всё всегда не так».

В квантовой физике для того, чтобы существовало поле, обязательно нужна некая элементарная частица, которую учёные называют калибровочный бозон... А расчёты показали, что калибровочный бозон электромагнитного поля внутри атома физикам давно известен – это уже упоминавшийся нами квант электромагнитного излучения, «частица света», то есть фотон!

Необыкновенный настольный теннис

С точки зрения расчётов и формул квантовой физики электрон «привязан» к ядру потому, что испускает фотон, который летит к протону и поглощается. Затем протон, в свою очередь, испускает фотон, который летит к электрону и тоже поглощается. Если бы этого фотона не существовало, то атом бы развалился, рассыпался на составные части.

Это как будто игра двух детей в настольный теннис – играть в эту игру можно только если есть мячик. Без мячика в теннис не поиграешь... В смысле, если протон и электрон не будут постоянно «играть в теннис» фотоном, то не будет и атома...

Но – и тут многие учёные схватились за головы! – при этом нарушается чуть ли не самый главный закон физики, а именно закон сохранения энергии. С точки зрения этого закона фотон не может испуститься «сам по себе», для этого нужна энергия извне, «толчок», «пинок». А никакого поступления энергии снаружи нет. А атом водорода спокойно себе существует.

В итоге физики пришли вот к какому выводу: протон и электрон обмениваются фотоном с немыслимой скоростью. Всего за одну секунду «мячик»-фотон перелетает от одного «игрока» к другому триллион миллиардов раз (цифрами: 1 000 000 000 000 000 000 000).

И вот в масштабах такого микроскопически малого времени начинают изо всех сил работать законы квантовой механики – в таких случаях закон сохранения... не работает! Если быть совсем-совсем точным, то работает, но уже «немножко не так», «с ошибками». Результатом этих «ошибок» и является рождение «из ничего» фотона. Физикам эта особенность показалась настолько примечательной, что такие фотоны (и вообще такие частицы) стали называть виртуальными.

Что такое «виртуальный»?

Слово «виртуальный» вам наверняка знакомо. Изначально слово «виртуальный» означало «действующий», «сильный», «способный произвести эффект», оно происходит от латинского слова «вир» – то есть «мужчина». Но уже в XV веке это слово приобрело другой оттенок – слово «виртуальный» стало обозначать «нечто, производящее какой-то эффект, но при этом не существующее в действительности».

Физики пользуются словом «виртуальный» уже почти 100 лет, то есть с 1924 года. Внутри атома водорода происходит постоянный обмен виртуальными фотонами – именно благодаря этому существует электромагнитное поле, и электрон «не убегает» от атомного ядра...

Пустота превращается... в квантовую пустоту!

Но если такие виртуальные частицы существуют внутри атома, – рассудили учёные, – то почему бы им не существовать и вообще везде? Ведь тогда получается, что тот самый вакуум является «абсолютной пустотой» только с точки зрения классической физики. А с точки зрения квантовой он совсем не пуст! В каждой его точке постоянно рождаются пары виртуальных частиц и античастиц – например, электрон и позитрон.

Эта пара частиц рождается «из ничего», какое-то время «живёт», а затем сталкивается друг с другом и исчезает – аннигилирует! – «в никуда». Без выделения энергии в окружающую среду. Этот совершенно невообразимый бурлящий «коктейль» из виртуальных частиц назвали квантовым вакуумом.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Рождение и аннигиляция виртуальной пары частиц в квантовом вакууме

Квантовый вакуум можно сравнить со спальней в детском лагере. Тихий час, детишки из младшего отряда мирно спят, закрыв глазки и укрывшись одеялками; тут вожатую срочно вызывают к начальнику, она уходит... Немедленно начинается жуткий тарарам, беготня, визг! Кто-то прыгает на матрасе, как на батуте, кто-то дерётся подушками, кто-то, завернувшись в простыню, изображает привидение. Но вот на тропинке появилась вожатая. «Вожатка идёт!!!» – раздаётся клич, и тут же дети разбегаются по кроватям, накрываются одеялами и закрывают глаза. Вернувшаяся вожатая чуть не плачет от умиления – какие же у неё в отряде примерные детки.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Вот и квантовый вакуум – казалось бы, абсолютная пустота. В которой ничего нет. Но на самом деле там постоянный кавардак, и в каждой точке триллион миллиардов раз в секунду рождаются и аннигилируют пары виртуальных частиц! Учёные назвали этот механизм флуктуациями квантового вакуума или просто квантовыми флуктуациями.

(Слово «флуктуация» тоже латинское, и означает «колебание, отклонение, волнообразное движение».)

«Они настоящие!!!»

Сперва физики считали, что квантовый вакуум, квантовые флуктуации и виртуальные частицы – это чистой воды выдумка, игра ума, просто удобная математическая модель для вычислений. Что в реальности виртуальных частиц не существует, что виртуальный фотон или электрон никогда не сможет превратиться в настоящий, проявить реальное наблюдаемое со стороны действие. Но в 1948 году голландский физик Хендрик Казимир сделал очень важное открытие.

Если в вакууме разместить две отполированные параллельные пластины – причём очень близко – тогда внутри пространства между ними квантовых флуктуаций будет происходить меньше, чем снаружи. И тогда «из ничего», «из вакуума», образуется сила, которая будет притягивать пластины друг к другу! Учёные обрадовались – у них появилась возможность произвести критический эксперимент, то есть понять, являются ли виртуальные частицы чисто виртуальными «формулами на бумажке», или же они всё-таки реальны?

В 1958 году опыт был поставлен. Эффект Казимира действительно существовал! Виртуальные частицы оказались реальностью! Они были настоящими!!! Казавшийся абсолютно пустым вакуум («ничто») оказался буквально «под завязку» нашпигован энергией!

Три синих озера малинового цвета

Но можно ли эту энергию из вакуума каким-то образом «достать», «извлечь»? На помощь пришла астрономия. В 1973 году советские учёные Алексей Старобинский и Яков Зельдович предсказали, что энергию из квантового вакуума могут извлекать особенные звёзды, а именно вращающиеся чёрные дыры!

Идея советских исследователей очень понравилась английскому физику-теоретику Стивену Хокингу – и в 1975 году он снабдил её математическим аппаратом, произвёл расчёты и показал, что «выжимать» вакуум могут любые чёрные дыры (а не только те, которые вращаются). Открытое новое излучение назвали излучением Хокинга.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Стивен Хокинг на обложке журнала "Лучик", № 9, 2021 год

Как возникает излучение Хокинга от чёрной дыры? Вы, наверное, читали или слышали, что чёрная дыра – это звезда, гравитационные силы которой настолько огромны, что ничто – даже свет! – не может от этой звезды «убежать». Чёрная дыра потому и называется чёрная – что она реально чёрная, чернее самой чёрной черноты. И вдруг – от такой вот дыры – излучение? Но как?! Этого же не может быть...

Ну да. В обычной физике такого быть не может. Но в квантовой – сколько угодно (в какой по счёту раз мы это повторяем?).

У каждой чёрной дыры существует граница, «рубеж, из-за которого нет возврата», который в физике называется горизонтом событий. Всё, что неосторожно попадает под горизонт событий, безжалостно засасывается колоссальным притяжением чёрной дыры, «попадает в сингулярность».

Но чёрную дыру окружает квантовый вакуум, в котором постоянно происходят флуктуации, то есть рождение пар виртуальных частиц. Как мы уже говорили, существуют эти частицы ничтожно малое время. Время-то ничтожно малое, практически неуловимое – но и движутся наши частицы со скоростью света! Поэтому за то самое ничтожное время могут успеть пролететь весьма солидное расстояние – порядка нескольких сантиметров. А этого, оказывается, вполне достаточно для того, чтобы случилось самое удивительное на свете...

Если пара частиц возникла вблизи горизонта событий, то в движении одна из двух частиц может случайно провалиться под горизонт. А вторая – остаться над горизонтом. Тогда первую частицу «засосёт в сингулярность», а вторая полетит в окружающее пространство! И с точки зрения стороннего наблюдателя это будет выглядеть, как рождение чёрной дырой частицы.

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

А поскольку виртуальные пары частиц в квантовом вакууме рождаются постоянно (повторим: триллион миллиардов раз в секунду), то в итоге получается самое настоящее излучение! У которого есть температура!

Расчёты показывают, что чем массивнее чёрная дыра – тем холоднее её излучение Хокинга. Скажем, чёрная дыра массой в шесть масс Солнца будет «нагреваться» до температуры всего лишь в одну стомиллионную долю градуса. Но если чёрная дыра будет меньшей массы?

Оказывается, чёрная дыра массой в два миллиона раз легче массы нашей Земли из-за излучения Хокинга приобрела бы температуру около 7200 градусов, то есть чёрная дыра была бы раскалённой добела!

«Этого не может быть потому что этого не может быть никогда» (как писал помещик Семи-Булатов в рассказе А.П. Чехова «Письмо к учёному соседу»), однако, друзья мои, это квантовая физика.

И чёрная дыра ослепительно-белого цвета, чёрная дыра ярче Солнца, «три синих-синих озера малинового цвета» – да пожалуйста, сколько хотите. Более того, в процессе излучения такая «мини-чёрная дыра» теряет массу, «испаряется» всё быстрее и быстрее, и, в конце концов, взрывается, выбрасывая энергию, сравнимую со взрывом примерно 1 миллиона водородных бомб!

Кстати, взрыв в 1 миллион водородных бомб (мощностью, скажем, в 1 мегатонну каждая) – это звучит страшно и пугающе... для Земли и людей. А вот для космоса такой взрыв – это так, «мыльный пузырь лопнул», пустячок, имейте в виду.

Полный бензобак пустоты, пожалуйста!

Тем не менее, взрыв – это выделение энергии. А что, если эту энергию получится «обуздать», скажем, как у людей получилось с атомной энергией? Во всяком случае, теоретически создать «чёрно-дырную электростанцию», генератор электричества или даже ракетный двигатель, работающий на «микро чёрных дырах», вполне реально. И уже во многих фантастических рассказах и видеоиграх в том или ином виде можно встретить «сингулярный реактор», «генератор сингулярности», который как раз извлекает «скрытую энергию вакуума» из чёрных дыр сверхмалой массы. Фантастика? Конечно. Однако в науке бывает и так, что рано или поздно фантастика превращается в реальность.

Сколько весит пустота, и сколько энергии в нигде?

Напоследок – страшная тайна и настоящая научная загадка. Многие думают, что наукой раскрыты уже все-все-все тайны природы, что «все важные открытия уже сделаны», и осталось только «уточнить некоторые детали». Так вот, это не так. И одна из самых «кричащих» загадок современной науки – это количество энергии, скрытой внутри вакуума.

Квантовый вакуум содержит энергию – это, надеемся, вы уже поняли. Но сколько именно её внутри?

С одной стороны, энергию в вакууме можно оценить по астрономическим наблюдениям – и они дают значение примерно в 1 джоуль на кубический километр. Подставим это значение в самую знаменитую формулу Эйнштейна (да-да, та самая «е равно эм цэ квадрат»), и получим эквивалентную плотность вакуума: она равняется примерно 1.1 килограмма на 1 миллиард кубических километров.

Вы можете усмехнуться – мало! Вот и нет. Для масштабов космоса это очень большая цифра! Скажем, куб вакуума со стороной, равной расстоянию от Земли до Луны, при такой ничтожной плотности будет весить... примерно 60 тонн! Вот мы и «взвесили пустоту».

И снова загадки...

Но вот в чём загвоздка. Дело в том, что количество энергии вакуума можно посчитать другим путём, теоретически, по обычным формулам квантовой физики из учебника... И вот тут у нас начинается, как говорил капитан Врунгель, «непоправимый скандал»: по формулам это значение оказывается совершенно другим – порядка 10 в 113-й степени джоулей на 1 кубический метр. То есть значение, которое предсказывает теория, и значение, которое наблюдается на практике (в природе), отличаются в...

триллион триллионов триллионов триллионов триллионов триллионов триллионов триллионов триллионов триллионов раз!

Это число, у которого впереди единица, а за ней – сто двадцать нулей. Ничего себе ошибочка! Вот это погрешность! Проблема эта называется «проблемой космологической постоянной», и это одна из самых болезненных нерешённых проблем современной физики. Настоящая жгучая тайна! И какие открытия нам и вообще мировой науке обещает решение этой загадки – трудно даже вообразить. Не желаете ли заняться?

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост

Читайте также:

Как возникла квантовая физика и для чего она нужна?

Сколько весит пустота? Рассказывает журнал «Лучик» Физика, Космос, Астрофизика, Научпоп, Образование, Наука, Детская литература, Детский журнал, Длиннопост
Показать полностью 14
Серия Занимательная физика

Как устроить взрыв в кухонной раковине?

Начнём с теории! Громкость звука (или, как говорят физики, уровень звукового давления) измеряется в децибелах. Напряженная тишина в классе во время контрольной – это 40 децибел. Топот и вопли в школьном коридоре на переменке – 90 децибел...

Кстати, самым громким в мире голосом обладает учительница начальных классов из Ирландии Анна-Лиза Флэнаган (на фото). На всемирном конкурсе она сумела крикнуть с громкостью 121.7 децибел. Самое забавное, что для постановки рекорда она прокричала в измерительный микрофон слово «тихо». Разумеется, по-английски: «Quiet!».

Как устроить взрыв в кухонной раковине? Образование, Научпоп, Учитель, Воспитание детей, Наука, Детская литература, Детский журнал, Урок, Длиннопост

Таким образом, Анна-Лиза в одиночку перекричала большой симфонический оркестр, максимальная громкость которого составляет 120 децибел. Громче – только рёв авиадвигателя – 130 децибел... А дальше?

Можно ли вообще получить звук громкостью в 250 децибел? Или в 1000 децибел? Оказывается, нет!

Звуковую волну в принципе нельзя «разогнать» до сколь угодно большой силы (амплитуды), потому в какой-то момент она исчезает, точнее, превращается в совершенно другую волну – а именно волну ударную (многие называют её «взрывной волной»).

Громкость звуковой волны зависит от скорости движения молекул воздуха, и как только эта скорость превысит скорость звука, мы получим уже не звуковую, а ударную волну.

Превратить звуковую волну в ударную у нас с вами вряд ли выйдет (для этого нужно ОЧЕНЬ много энергии, да и опасно это). А вот для того, чтобы увидеть своими глазами обратный процесс – как ударная волна при взрыве вырождается в звуковую, – можно провести очень простой и красивый физический опыт. Его легко сделать, например, в ванной или на кухне.

Направьте на дно ванны или раковины узкую, но сильную струю воды — и увидите, что сперва вода растекается идеально гладким слоем, образующим правильный круг, а затем от этого круга начинает расходиться рябь из больших и маленьких волн. В чём дело?

Как устроить взрыв в кухонной раковине? Образование, Научпоп, Учитель, Воспитание детей, Наука, Детская литература, Детский журнал, Урок, Длиннопост

Пока скорость воды высокая, образуется гладкая поверхность — в нашем опыте это и будет аналогом ударной волны. Но скорость воды падает, и, начиная с определенной границы, по воде начинают расходиться волны — в нашем опыте это будет аналогом звуковой волны (ударная волна вырождается в звуковую).

Обратите внимание: граница между гладким и волнистым участком очень ровная и чёткая, потому и называется она (при движении молекул воздуха) «звуковым барьером». Можно (условно) сказать, что внутри круга вода течёт со «сверхзвуковой» скоростью, а вне круга – с «дозвуковой».

Как устроить взрыв в кухонной раковине? Образование, Научпоп, Учитель, Воспитание детей, Наука, Детская литература, Детский журнал, Урок, Длиннопост
Как устроить взрыв в кухонной раковине? Образование, Научпоп, Учитель, Воспитание детей, Наука, Детская литература, Детский журнал, Урок, Длиннопост
Показать полностью 4

Квантовая физика на пальцах. Рассказывает журнал «Лучик»

Многим кажется, что квантовая физика это какая-то заумь. А между тем слове «квантовый» нет ровным счётом ничего страшного.

Все процессы, явления и величины в окружающем нас мире можно разделить на две группы: непрерывные (по-научному континуальные) и прерывные (по-научному дискретные или квантованные).

Представьте себе стол, на который можно положить книгу. Вы можете положить книгу в любое место на столе. Справа, слева, посередине... Куда хотите – туда и положите. В этом случае физики говорят, что положение книги на столе изменяется непрерывно.

А теперь представьте книжные полки. Вы можете поставить книгу на первую полку, на вторую, на третью или на четвёртую – однако не можете поставить книгу «где-то между третьей и четвёртой». В этом случае положение книги изменяется прерывно, дискретно, квантовано (все эти слова обозначают одно и то же).

Окружающий мир полон непрерывных и квантованных величин. Вот горка на детской площадке. Дети скатываются с неё вниз – и их местоположение изменяется плавно, непрерывно. Теперь представьте себе, что эта горка вдруг (взмах волшебной палочки!) превратилась в лестницу. Скатиться с неё на попе уже не выйдет. Придётся идти ногами – сперва один шаг, потом второй, потом третий. Величина (высота) у нас изменялась непрерывно – а стала изменяться шагами, то есть дискретно, квантованно.

Квантовая физика на пальцах. Рассказывает журнал «Лучик» Научпоп, Физика, Квантовая физика, Детская литература, Образование, Воспитание, Развитие детей, Урок, Родители и дети, Учитель, Воспитание детей, Учеба, Школьники, Преподаватель, Длиннопост

Давайте проверим!

1. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «отдохну где-нибудь по дороге».

2. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «поеду каким-нибудь автобусом».Какая из этих двух ситуаций («систем») может считаться непрерывной, а какая – квантованной?

Ответ: в первом случае Иван Иванович идёт пешком и может остановиться отдохнуть в абсолютно любой точке. Значит, данная система – непрерывная.Во втором – Иван Иванович может сесть в подошедший на остановку автобус. Может пропустить и подождать следующего автобуса. Но вот сесть «где-то между» автобусами у него не получится. Значит, данная система – квантованная!

Во всём виновата астрономия

О существовании непрерывных (континуальных) и прерывных (квантованных, разрывных, дискретных) величин прекрасно знали ещё древние греки. В своей книге «Псаммит» («Исчисление песчинок») Архимед даже сделал первую попытку установить математическую связь между непрерывными и квантованными величинами.

Тем не менее, никакой квантовой физики в те времена не существовало. Её не существовало вплоть до самого начала 20 века. Такие великие физики, как Галилей, Декарт, Ньютон, Фарадей, Юнг или Максвелл слыхом не слыхивали ни про какую квантовую физику и прекрасно без неё обходились.

Вы можете спросить: зачем же тогда учёные придумали квантовую физику? Что такое особенное в физике приключилось? Представьте себе, приключилось. Только совсем не в физике, а в астрономии!

Загадочный спутник

В 1844 году немецкий астроном Фридрих Бессель наблюдал самую яркую звезду нашего ночного неба – Сириус. К тому времени астрономы уже знали, что звёзды в нашем небе не являются неподвижными – они движутся, только очень-очень медленно. При этом каждая звезда – это важно! – движется по прямой линии. Так вот, при наблюдениях Сириуса оказалось, что он движется совсем не по прямой. Звезду как бы «шатало» то в одну сторону, то в другую. Путь Сириуса в небе был похож на извилистую линию, которую математики называют «синусоида».

Квантовая физика на пальцах. Рассказывает журнал «Лучик» Научпоп, Физика, Квантовая физика, Детская литература, Образование, Воспитание, Развитие детей, Урок, Родители и дети, Учитель, Воспитание детей, Учеба, Школьники, Преподаватель, Длиннопост

Звезда Сириус и её спутник - Сириус Б

Было понятно, что сама по себе звезда так двигаться не может. Чтобы превратить движение по прямой линии в движение по синусоиде, нужна некая «возмущающая сила». Поэтому Бессель предположил, что вокруг Сириуса вращается тяжёлый спутник – это было самое естественное и разумное объяснение.

Однако расчёты показывали, что масса этого спутника должна быть приблизительно как у нашего с вами Солнца. Тогда почему же мы не видим этот спутник с Земли? Сириус расположен от солнечной системы недалеко – каких-то два с половиной парсека, и объект размером с Солнце должен быть виден очень хорошо...

Трудная получалась задачка. Одни учёные говорили, что этот спутник представляет собой холодную, остывшую звезду – поэтому она абсолютно чёрная и невидима с нашей планеты. Другие говорили, что этот спутник не чёрный, а прозрачный, – потому мы его и не видим. Астрономы всего мира смотрели на Сириус в телескопы и пытались «поймать» загадочный невидимый спутник, а он как будто издевался над ними. Было от чего удивиться, сами понимаете...

Квантовая физика на пальцах. Рассказывает журнал «Лучик» Научпоп, Физика, Квантовая физика, Детская литература, Образование, Воспитание, Развитие детей, Урок, Родители и дети, Учитель, Воспитание детей, Учеба, Школьники, Преподаватель, Длиннопост

В такой телескоп люди впервые увидели спутник Сириуса

И надежды астрономов блестяще оправдались – в первую же ночь неуловимый спутник Сириуса, предсказанный Бесселем, был обнаружен.

Однако, получив данные наблюдений Кларка, астрономы радовались совсем недолго. Ведь, согласно расчётам, масса спутника должна быть приблизительно такая же, как у нашего Солнца (в 333 000 раз больше массы Земли). Но вместо огромного чёрного (или прозрачного) небесного светила астрономы увидели... крохотную белую звёздочку!

Эта звёздочка была очень горячей (25 000 градусов, сравните с 5 500 градусами нашего Солнышка) и одновременно крохотной (по космическим меркам), размерами не больше Земли (впоследствии такие звёзды назвали «белыми карликами»). Получалось, что у этой звёздочки совершенно невообразимая плотность. Из какого же она тогда состоит вещества?!

На Земле мы знаем материалы с высокой плотностью – скажем, это свинец (кубик со стороной в сантиметр, сделанный из этого металла, весит 11.3 грамма) или золото (19.3 грамма на кубический сантиметр). Плотность вещества спутника Сириуса (его назвали «Сириус Б») составляет миллион (!!!) граммов на кубический сантиметр – оно в 52 тысячи раз тяжелее золота! Возьмём, например, обычный спичечный коробок. Его объём – 28 кубических сантиметров. Значит, спичечный коробок, наполненный веществом спутника Сириуса, будет весить... 28 тонн! Попробуйте представить – на одной чашке весов спичечный коробок, а на второй – танк!

Была ещё одна проблема. В физике есть закон, который называется законом Шарля. Он утверждает, что в одном и том же объёме давление вещества тем выше, чем выше температура этого вещества. Вспомните, как срывает давлением горячего пара крышку с закипевшего чайника – и сразу поймёте, о чём речь. Так вот, температура вещества спутника Сириуса этот самый закон Шарля нарушала самым бессовестным образом! Давление было невообразимым, а температура – относительно низкой.

В итоге получались «неправильные» физические законы и вообще «неправильная» физика. Как у Винни-Пуха – «неправильные пчёлы и неправильный мёд».

Голова кругом...

Чтобы «спасти» физику, в начале 20 века учёным пришлось признать, что в мире существует сразу ДВЕ физики – одна «классическая», известная уже две тысячи лет. А вторая – необычная, квантовая. Учёные предположили, что на обычном, «макроскопическом» уровне нашего мира работают законы классической физики. А вот на самом маленьком, «микроскопическом» уровне вещество и энергия подчиняются совершенно другим законам – квантовым.

Представьте себе нашу планету Земля. Вокруг неё сейчас вращается больше 15 000 самых разных искусственных объектов, каждый по своей орбите. Причём эту орбиту при желании можно поменять (скорректировать) – скажем, периодически корректируется орбита у Международной космической станции (МКС). Это макроскопический уровень, здесь работают законы классической физики (например, законы Ньютона).

Квантовая физика на пальцах. Рассказывает журнал «Лучик» Научпоп, Физика, Квантовая физика, Детская литература, Образование, Воспитание, Развитие детей, Урок, Родители и дети, Учитель, Воспитание детей, Учеба, Школьники, Преподаватель, Длиннопост

А теперь перенесёмся на микроскопический уровень. Представьте себе ядро атома. Вокруг него, подобно спутникам, вращаются электроны – однако их не может быть сколь угодно много (скажем, у атома гелия – не больше двух). И орбиты у электронов будут уже не произвольные, а квантованные, «ступенчатые». Такие орбиты физики ещё называют «разрешёнными энергетическими уровнями». Электрон не может «плавно» перейти с одного разрешённого уровня на другой, он может только мгновенно «перепрыгнуть» с уровня на уровень. Только что был «там», и мгновенно оказался «тут». Он не может оказаться где-то между «там» и «тут». Он меняет местоположение мгновенно.

Удивительно? Удивительно! Но это ещё не всё. Дело в том, что, по законам квантовой физики, два одинаковых электрона не могут занимать один и тот же энергетический уровень. Никогда. Учёные называют это явление «запрет Паули» (почему этот «запрет» действует, они пока объяснить не могут). Больше всего этот «запрет» напоминает шахматную доску, – если на клетке доски стоит пешка, другую пешку на эту клетку уже не поставить. В точности то же самое происходит с электронами!

Решение задачи

Каким же образом – спросите вы – квантовая физика позволяет объяснять такие необычные явления, как нарушение закона Шарля внутри Сириуса Б? А вот каким.

Представьте себе городской парк, в котором есть танцевальная площадка. На улице гуляет много людей, они заходят на танцплощадку потанцевать. Пусть количество людей на улице обозначает давление, а количество людей на дискотеке – температуру. На танцплощадку может зайти огромное количество народу, – чем больше людей гуляет в парке, тем больше людей танцует на танцплощадке, то есть чем выше давление, тем выше температура. Так работают законы классической физики – в том числе закон Шарля. Такое вещество учёные называют «идеальным газом».

Квантовая физика на пальцах. Рассказывает журнал «Лучик» Научпоп, Физика, Квантовая физика, Детская литература, Образование, Воспитание, Развитие детей, Урок, Родители и дети, Учитель, Воспитание детей, Учеба, Школьники, Преподаватель, Длиннопост

Люди на танцплощадке – «идеальный газ»

Однако на микроскопическом уровне законы классической физики не работают. Там начинают действовать квантовые законы, и это коренным образом меняет ситуацию.

Представим себе, что на месте танцплощадки в парке открыли кафе. В чём разница? Да в том, что в кафе, в отличие от дискотеки, «сколько угодно» людей не войдёт. Как только будут заняты все места за столиками, охрана прекратит пропускать людей внутрь. И пока кто-то из гостей не освободит столик, охрана никого не впустит! В парке гуляет всё больше и больше народу – а в кафе сколько людей было, столько и осталось. Получается, давление увеличивается, а температура «стоит на месте».

Квантовая физика на пальцах. Рассказывает журнал «Лучик» Научпоп, Физика, Квантовая физика, Детская литература, Образование, Воспитание, Развитие детей, Урок, Родители и дети, Учитель, Воспитание детей, Учеба, Школьники, Преподаватель, Длиннопост

Внутри Сириуса Б, само собой, никаких людей, танцплощадок и кафе нет. Но принцип остаётся всё тот же: электроны заполняют все разрешенные энергетические уровни (как посетители – столики в кафе), и дальше никого «пустить» уже не могут – в точности согласно запрету Паули. В итоге внутри звезды получается невообразимо огромное давление, а вот температура при этом – высокая, но для звёзд вполне себе обыкновенная. Такое вещество в физике называется «вырожденным квантовым газом».

Продолжим?..

Аномально высокая плотность белых карликов – далеко не единственное явление в физике, требующее использования квантовых законов. Но пока давайте запомним главное:

1. В нашем с вами мире (Вселенной) на макроскопическом (т. е. «большом») уровне действуют законы классической физики. Они описывают свойства обычных жидкостей и газов, движения звёзд и планет и многое другое. Именно эту физику вы изучаете (или будете изучать) в школе.

2. Однако на микроскопическом (то есть невероятно маленьком, в миллионы раз меньше самых мелких бактерий) уровне действуют совершенно другие законы – законы квантовой физики. Законы эти описываются очень сложными математическими формулами, и в школе их не изучают.

Однако только квантовая физика позволяет относительно внятно объяснить строение таких удивительных космических объектов, как белые карлики (вроде Сириуса Б), нейтронные звёзды, чёрные дыры и так далее.

Это была статья из журнала «Лучик». В нём мы рассказываем:

  • Зачем человеку совесть?

  • Что такое тавтология и экстраполяция?

  • Как видят животные и растения?

  • Как Рим стал империей и отчего распался?

  • Отчего случаются войны?

  • Как кроманьонцы одолели неандертальцев?

Познакомиться с журналом можно по ссылке.

Квантовая физика на пальцах. Рассказывает журнал «Лучик» Научпоп, Физика, Квантовая физика, Детская литература, Образование, Воспитание, Развитие детей, Урок, Родители и дети, Учитель, Воспитание детей, Учеба, Школьники, Преподаватель, Длиннопост
Показать полностью 7

Что такое радиация? Рассказывает журнал «Лучик»

Разговор о радиации следует начинать с понятия «стабильность». Это слово происходит от латинского «стабилис», и означает «постоянство», «устойчивость». Всё существующее в нашей Вселенной состоит из элементарных частиц, причём эти частицы могут быть стабильными и нестабильными. Стабильные частицы существуют «всегда», они (почти) вечны и могут жить бесконечно долго. Но таких частиц немного, всего семь: это протон, антипротон, электрон, позитрон, фотон, нейтрино и антинейтрино. А что же остальные элементарные частицы (их, кстати говоря, открыто более 300)?

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

А остальные – нестабильны, то есть живут очень недолго. Вот, например, нейтрон. Эта частица в свободном состоянии нестабильна – то есть существует в среднем около 15 минут. А что происходит с нею дальше? А дальше нейтрон распадается на протон, электрон и антинейтрино!

Тут, кстати, обратите внимание: мы говорим об атомной физике. А у атомной (ядерной, квантовой) физики законы совершенно другие, не такие, к каким мы привыкли в «обыкновенном» мире. Мы можем, например, разбить керамическую копилку с монетками – но можем и склеить осколки этой копилки и сложить монетки обратно. Можем разломать игрушечную машину на запчасти, но можем и собрать её из тех же запчастей снова. В атомной физике всё не так!

Учёные застенчиво говорят «распадается», но правильнее говорить превращается. Потому что, если «распадается», то можно подумать, что нейтрон изначально состоит из протона, электрона и антинейтрино. Или что «собрав» вместе протон, электрон и антинейтрино (как детали конструктора), мы сможем получить нейтрон. НЕТ!

Нейтрон – это нейтрон. Он не состоит из протона, электрона и антинейтрино. Их нет в нём! Но в какой-то момент нейтрон вдруг (просто так, сам по себе, без какого-то «толчка снаружи») превращается (именно по-настоящему превращается, как в сказке!) в разлетающиеся протон, электрон и антинейтрино...

Ну представьте себе – купили вы в магазине мяч. А он через 15 минут превратился – сам по себе! – в набор фломастеров, роликовые коньки и щенка ризеншнауцера. Неплохо?

В мире элементарных частиц такое происходит каждый день и каждую секунду. Потому что 15 минут жизни свободного нейтрона – это очень много, это нестабильная частица-долгожитель. Остальные живут совсем маленькое время – скажем, частица, которая называется «мюон» (или «мю-мезон»), живёт около 2 миллионных долей секунды. А, например, «пион» (он же «пи-мезон») живёт ещё в 100 раз меньше мюона – то есть 2 стомиллионные доли секунды (0.02 микросекунды)! А что происходит с пионом дальше? А дальше он распадается, то есть превращается в какие-то другие частицы. Например, в мюон и мюонное нейтрино – хотя бывают и другие варианты.

В общем, в атомной физике, в микромире, «стабильность» – штука довольно редкая. В отличие от нашего «большого» макромира, в котором утюг – это всегда утюг, а слон – это всегда слон, в микромире всё постоянно изменяется, всё превращается во всё – утюги в пироги, а слоны в мышей и наоборот. И нестабильность (то есть «переменчивость») в природе встречается гораздо чаще стабильности («устойчивости»). Как говорят профессора-физики студентам, «удивительно не то, что во Вселенной существуют нестабильные частицы. Гораздо удивительнее то, что в ней вообще существуют частицы стабильные!».

Однако перейдём (как в компьютерной игре) на новый уровень. Из элементарных частиц, как из кубиков в лего или в майнкрафте, можно создавать атомы разных простых веществ. Например, сложили протон и электрон – вот вам атом водорода. Сложили два протона, два нейтрона и два электрона – и вот вам атом гелия, того самого, которым надувают летучие воздушные шары на праздник.

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

Строение атома гелия. Два протона и два нейтрона (образующие ядро) и два электрона

Так же образуются кислород, которым мы дышим, азот, который так любят растения (в виде удобрений), драгоценные золото и серебро, а также все-все-все прочие вещества.

«Но погодите! – скажете вы. – Если те частицы, из которых собираются атомы, могут быть стабильными и нестабильными, тогда и сами атомы тоже могут быть стабильными и нестабильными?»

Совершенно верно! Атомы вещества – и, главное, сами вещества! – тоже могут быть нестабильными, да ещё как!

Вот, скажем, углерод – тот самый уголь, на котором мы жарим шашлык. Казалось бы, уголёк – он и в Африке уголёк, но нет! Оказывается, у него есть целых 15 разновидностей, «вариантов». Учёные называют такие варианты «изотопами» и обозначают цифрой сбоку. Самый распространённый в природе углерод – это «углерод-12», или С 12, и этот углерод стабильный. Он может существовать миллионы и миллиарды лет.

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

Но есть и «другие углероды», другие изотопы. Например, углерод-14. В отличие от обычного углерода, он нестабилен – сам по себе он медленно распадается, то есть превращается в азот! Если мы возьмём 1 килограмм углерода-14 и просто положим на полочку, то через 5700 лет (приблизительно) углерода останется только полкило! А вторая половина – превратится в газ азот и улетит...

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

Изотопы углерода. Слева две стабильные разновидности. Справа нестабильная!

А вот железо. Из которого мы делаем гвозди и мотоциклы. Оно тоже бывает нестабильным! В природе существует целых 34 (!) изотопа железа. Из которых стабильными являются только четыре! Привычное нам железо, из которого делают гвозди, и которое содержится в гемоглобине, придающем нашей крови красный цвет, – это изотоп, который называется «железо-56». Он может существовать очень долго. А, например, нестабильный изотоп «железо-55» из медицинских рентгеновских установок довольно быстро (половина примерно за 3 года) превращается в другой металл – марганец. Более тяжёлое вещество превращается в более лёгкое.

Само собой, одно вещество превратиться в другое «просто так» не может. Всё-таки закон сохранения вещества-энергии никто не отменял – «ничто не появляется из ничего и не исчезает в никуда». А это значит, что для превращения нестабильное вещество должно каким-то образом терять массу (и энергию). То есть должно испускать какое-то излучение!

Именно это излучение мы и называем «радиация», а нестабильные разновидности веществ часто называют «радиоактивные изотопы».

Вообще, слово «радиация» (которое в переводе с латинского и означает «излучение») – это бытовой термин. Радиация может быть очень разной «по составу». Скажем, уже знакомый нам углерод-14 испускает бета-излучение, то есть поток электронов (просто электрон физики довольно часто называют «бета-частицей»). А вот железо-55 – это источник рентгеновского излучения, то есть фотонов с высокой энергией, именно поэтому этот изотоп применяется в медицине.

А вот другое вещество – уран. В отличие от углерода, железа или других «лёгких» элементов у этого металла вообще нет ни одного стабильного изотопа! Все 36 природных «разновидностей» урана распадаются (превращаются) – одни быстрее (минуты и секунды), другие медленнее (сутки, годы и даже миллионы и миллиарды лет). Кусок природного урана испускает три вида излучения – гамма-излучение (фотоны с очень высокой энергией), бета-излучение (свободные электроны) и альфа-излучение. Частица альфа-излучения – это ядро гелия, собранные вместе 2 протона и 2 нейтрона.

Насколько опасна радиация?
Наверное, после прочитанного вы уже догадываетесь о том, что радиоактивные изотопы есть абсолютно у всех веществ в природе. Например, мы знаем из разных телепередач про здоровый образ жизни, что бананы богаты микроэлементом калием, и поэтому очень полезны. Но калий – это всегда смесь разных изотопов. И стабильных калия-39 и калия-41, и нестабильного (то есть радиоактивного!) калия-40. Поэтому каждый съеденный вами банан радиоактивен, хотите вы этого или нет. Однако доза радиации, которую вы при этом получаете, совершенно ничтожна. Чтобы «умереть от банановой радиации», вам придётся очень быстро съесть... примерно 50 миллионов бананов! Трудновато будет...

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

Радиоактивное излучение в природе есть всегда и везде – это нормально. Радиацию излучаем вы, я, деревья, дома, вода, воздух, солёные огурчики, экран компьютера или телевизора. И ничего страшного в этом нет. Но вот когда радиации становится очень много – вот тогда беда и уже ничего смешного. Разогнанная до высокой скорости частичка радиации (альфа-частица, гамма-квант, электрон, нейтрон), попадая в организм, «врезается» в молекулы и разрушает их. Особенно опасны в этом отношении альфа-частицы, самые массивные... Одна частица – это, конечно, пустяки, никто не заметит. Но если она не одна?

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

Вон она полетела, альфа-частица, узнали её? Всё то же ядро гелия – два протона и два нейтрона...

Скажите, можно ли из ружья разрушить прочную каменную стену? «Ха-ха-ха»? Однако давайте представим, что таких пуль не десятки, не сотни и не тысячи, а триллионы. Или даже квадриллионы! Одна пуля делает в каменной стене небольшую царапинку, выщербинку, почти незаметную глазом. Но если бы таких пуль было невероятно много – они бы стёрли каменную стену в порошок. Напрягите воображение – и поймёте, как это может быть.

Точно так же действует и радиация в больших дозах. Невидимые глазу частицы разрушают наши клетки, безжалостно разрывают на куски молекулы белков и нуклеиновых кислот (ДНК и РНК). Навсегда ломается механизм наследственности, клетки прекращают нормально размножаться, органы постепенно перестают работать. Раковые опухоли, бесплодие, мутации, внутренние кровотечения, тяжёлые ожоги – чем больше полученная организмом доза радиации, тем страшнее опасность. Именно поэтому радиацию часто называют «невидимым убийцей».

Можно ли остановить радиацию?
Ещё раз напоминаем – «радиация» это понятие очень расплывчатое. Радиация – это смесь альфа-излучения (то есть ядер гелия), бета-излучения (то есть электронов), нейтронного излучения (нейтронов) и гамма-излучения (то есть фотонов). Скажем, альфа-частицы сами по себе крайне опасны, но обладают очень небольшой проникающей способностью – поток альфа-частиц можно спокойно тормознуть защитными перчатками или даже листом плотной бумаги. Так что «невозможно остановить», о котором пишет Валерий – не про альфа-частицы точно. Альфа-излучение может стать смертельным для человека, если нечаянно наглотаться или надышаться радиоактивной пыли – вместе с водой, едой или воздухом. Но обычный защитный костюм и противогаз (или респиратор) эту опасность вполне устраняют.

Бета-излучение – то есть свободные электроны – является более «пробивным». Однако и с ним вполне способен справиться защитный слой из стекла или алюминия. Главное – не проглотить источник бета-излучения и не допустить его попадания на незащищённую кожу.

Ещё более опасно нейтронное излучение – однако от него хорошо помогает защититься слой воды.

Самым сильным проникающим действием обладает гамма-излучение – чтобы защититься от него, нужен слой из тяжелых металлов (стали, свинца и т. д.), земли или бетона. Тут уже сложнее: сами понимаете, мы можем построить для людей подземное убежище от радиации с многослойными стенами – но вот сшить из свинца или бетона «костюм для прогулок» уже проблематично...

(На заглавном фото статьи человек держит в руках (в перчатках!) кусок обогащённого урана, используемого в качестве топлива для атомных электростанций. Для этого годятся только изотопы урана 235, но в природном уране их очень мало. Чтобы использовать уран в качестве топлива, нужно довести долю урана 235 в нём до 3–5%, то есть "обогатить". Это делают на специальных "заводах", оборудованных специальными установками – высокоскоростными аэродинамическими центрифугами. Больше половины таких заводов, существующих в мире, находятся у нас в России.)

Но всё-таки на Земле радиацию можно ослабить и победить. Не верите – спросите у людей, которые десятилетиями работают на атомных электростанциях.

Почему до сих пор никто не полетел на Марс
Другое дело – космос. Построить космический корабль с толстыми стенками из воды, бетона и свинца – а сколько же такой корабль будет весить и как такой запускать? А тонкие металлические стенки от космической радиации защищают очень плохо. Космическая радиация, то есть невидимые потоки излучения от Солнца и звёзд, пока является непреодолимым препятствием для организации полёта человека на Марс.

Мы (по крайней мере, в теории) уже сейчас вполне можем построить космический корабль для полёта к Марсу, можем придумать систему снабжения космонавтов воздухом, едой и водой, но вот защитить людей от космического излучения пока не получается. Расчёты безжалостно показывают – за время путешествия к Марсу, нахождения на Марсе и обратного полёта к Земле космонавты получат дозу радиации, несовместимую с жизнью. Так что проблема есть – и решать её придётся учёным и инженерам будущего... Интересно, справятся ли они?

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

Напоследок – самое интересное
Как мы с вами уже поняли, в нашей Вселенной существуют как стабильные, так и нестабильные частицы; как стабильные, так и нестабильные (они же – радиоактивные) вещества. И вот тут учёные, проведя тщательные подсчёты, выяснили удивительнейшую вещь.

Оказывается, баланс между «стабильностью» и «нестабильностью» во Вселенной невероятно тонкий, буквально как попытка пройти по лезвию ножа. Если бы определённые параметры (как говорят физики, «фундаментальные постоянные») отличались от тех, которые есть, хотя бы на один-два процентика, нашей Вселенной... не было бы!

В ней или царила бы «полная нестабильность», когда всевещества неизбежно распадаются – и не возникло бы никаких планет, никаких сложных молекул типа аминокислот или белков, не возникло бы жизни. Или, наоборот, случилась бы «полная стабильность», в которой невозможны ядерные реакции, в которой не зажглись бы звёзды, не сформировались бы галактики...

Что такое радиация? Рассказывает журнал «Лучик» Наука, Научпоп, Детская литература, Образование, Воспитание детей, Радиация, Длиннопост

Говорите, непонятно, как во Вселенной случайно возникла жизнь? Современные учёные говорят, что им всё больше непонятно, как случайно получилась наша Вселенная...

Показать полностью 7
Отличная работа, все прочитано!