497

Этот день в химии (30.05)

В этот день в 1893 г. был открыт криптон.
Криптон (Кr) был обнаружен Уильямом Рамзай и Моррисом Траверсом. Его название происходит от греческого «криптос», что означает скрытый. Криптон является одним из самых редких газов в атмосфере Земли, на его долю приходится всего 1 часть на миллион по объему.

Этот день в химии (30.05) Химия, Лига химиков, Наука, Открытие, Познавательно

Дубликаты не найдены

+19
По картинке подумал что в этот день изобрели светящийся презерватив
раскрыть ветку 3
0

Специально зашёл в комменты посмотреть, не написал-ли кто про презервативы.)

-4
Забавно... А я думаю что то мне это напоминает)
ещё комментарии
+32

А  "криптонит" это производная от криптона, может изотоп какой? )

Иллюстрация к комментарию
раскрыть ветку 14
+31

Криптонит - пришедшая в негодность критовалюта.

раскрыть ветку 8
+20

Криптонит - это глагол.

"что я сегодня съел и меня весь день криптонит"

раскрыть ветку 1
+11
Иллюстрация к комментарию
+8

А супермена настолько заебала крипта, что от одного ее вида ему плохо

раскрыть ветку 3
0
пришедший в негодность рэпер.
+4
Есть ксилит. Возможно криптонит это такое же соединение как ксилит, только с криптоном вместо водорода
Иллюстрация к комментарию
раскрыть ветку 1
0

🤷

Хм.

+3
Было бы забавно:) А ещё вибраниум. Однако, нет.
раскрыть ветку 2
+20
Вот потому что он есть в атмосфере , поэтому и суперменов у нас нету.
+3

И адамантий

+5
Иллюстрация к комментарию
+4

Блин, ну ченить интересное про него написал бы еще.

раскрыть ветку 6
+6

Двигатели спутников Илона Маска работают именно на криптоне

Иллюстрация к комментарию
раскрыть ветку 4
+4

А чем там криптон окисляют? Инертный газ же. Или там не окисление?

раскрыть ветку 3
+1
Да реально... вот из вики выдержка
Производство сверхмощных эксимерных лазеров (Kr-F).

Криптон используется для заполнения ламп накаливания, увеличивая срок службы нити накала

Как теплоизолятор и шумоизолятор в стеклопакетах.[

еще и в ракетостроении
0

Цвет свечения больно хорош, но где ж его столько нарыть, чтобы наладить производство ламп...

0

А ещё он при определённых условиях окисляется фтором до дифторида. Последнее соединение является крайне суровым окислителем и устойчиво только при -40 градусах и ниже. В безводной среде разумеется. И в безвоздушной, желательно в атмосфере гелия конечно.

-3

Gandon


(P.S. простите...)

Иллюстрация к комментарию
-3
Идите на йух! Криптон это планета!,!
раскрыть ветку 1
0
Три человека не смотрели документальный фильм "человек из стали" 🤦♂️
-10
Ещё одного забыли - Gandon
Иллюстрация к комментарию
раскрыть ветку 3
+1
Иллюстрация к комментарию
раскрыть ветку 2
-1
Ок, ладно =)
-3

А жене нормально зашло )))

ещё комментарии
-1
Красив, можно мне в фары такой)
раскрыть ветку 1
0

А чем тебе ксенон не нравится?
Кстати, похоже, иногда он используется в HID-лампах, видел неоднократно машины с более тёплым оттенком, чем классические ксеноновые фары.

-2
Почему их в презиках фотографировали?
-2

Это светящиеся презервативы ?

Похожие посты
43

Люминесцентная лампа в кармане!

Газовый разряд в парах ртути! В ампулку введена металлическая ртуть, которая в холодной ампулке имеет вид компактного шарика, или оседает в виде налёта на стенках ампулки. Светящимся телом ампулки является столб дугового электрического разряда. Электрический разряд в парах ртути создаёт видимое излучение голубого или фиолетового цвета, а также, мощное ультрафиолетовое излучение. Для создания газового разряда мы использовали мощную катушку Теслы.

Люминесцентная лампа в кармане! Химия, Физика, Наука, Коллекционирование, Таблица Менделеева, Длиннопост
Люминесцентная лампа в кармане! Химия, Физика, Наука, Коллекционирование, Таблица Менделеева, Длиннопост
519

Крик души молодых ученых из Башкортостана

Последние события случившиеся в Институте нефтехимии и катализа РАН г. Уфа вынудили написать это обращение.

Институт  нефтехимии и катализа РАН является одним из 13 институтов, входящих в состав Уфимского федерального исследовательского центра РАН (далее УФИЦ РАН).

Наш институт является одним из лидеров в России и мировой науке по направлениям "Органическая химия" и "Катализ". Несмотря на его молодой возраст (создан в 1992 г.), он достиг больших высот и является флагманом науки в России. Научные показатели, по которым сейчас оценивается качество работы научных учреждений, держатся на высочайшем уровне, что  позволило нам стать единственным в республике институтом первой категории (всего в республике насчитывается более 15 институтов).

В нашем институте трудятся чуть более 80 научных сотрудников, из которых больше половины молодые ученые кандидаты и доктора наук в возрасте до 35 лет, обучаются аспиранты.

В институте в настоящее время выполняется более 60 крупных грантов РФФИ и РНФ,  проводятся передовые исследования по созданию современных лекарств для лечения социально значимых заболеваний, новых химических технологий и катализаторов для химической и нефтехимической промышленности.

Следует отметить, что в создании , организации и развитии нашего института большую роль сыграл выдающийся ученый мирового уровня,  дважды лауреат Государственной премии по науке и технике СССР и России, заслуженный деятель науки Республики Башкортостан, член-корр. РАН Джемилев Усеин Меметович.

В 2017 году наш институт возглавил молодой перспективный ученый, доктор химических наук, профессор Дьяконов Владимир Анатольевич, пользующийся большим авторитетом и уважением в коллективе института. Под его руководством научные показатели значительно выросли, институт получил передовое научное оборудование, что позволяет нам выполнить майские указы президента в срок по нац. проекту "Наука".

Однако после назначения ВРИО Председателя Уфимского федерального исследовательского центра Мустафина Ахата Газизьяновича в течении последних 2 лет началось постоянное “дерганье” руководства нашего института, что приводит к дестабилизации его деятельности и сильно подрывает его работу. Возникают непонятные проверки прокуратуры, постоянные вызовы в суды.

В это, непростое для нашей страны время связанное с пандемией, был прямой указ Президента РФ не уволнять сотрудников организации и беречь кадры.

Вместо того, чтобы поддержать талантливого молодого директора, успешно выполняющего госзадание и являющийся руководителем крупных грантов Российских фондов, он был незаконно уволен со своего поста, без обоснований, в то время, когда находился на больничном.

На смену ему назначен человек с сомнительной репутацией, по образованию биолог, который к профилю института вообще не имеет никакого отношения. При этом, нам необходимо выполнить госзадание и многочисленные проекты грантов.

Такое необоснованное поведение руководства УФИЦ РАН срывает выполнение и достижение поставленных перед коллективом задач. Кроме того, у института который зарабатывает финансовые средства собственными силами постоянно пытаются изъять деньги на погашение непонятных в УФИЦ РАН долгов (что, скорее всего, и является основной причиной увольнения директора нашего института).

Ранее коллектив института уже неоднократно обращался в вышестоящие инстанции с просьбой повлиять на сложившуюся ситуацию, однако, к сожалению, не смог ничего добиться.

Мы, молодые сотрудники Института нефтехимии и катализа УФИЦ РАН возмущены до глубины души, сложившейся ситуацией, наши интересы связаны только с наукой. Мы хотим усердно трудиться на благо нашей страны и республики. Помогите нам пожалуйста!


Уважаемые читатели, мы записали видеообращение нашим руководителям от безысходности и просим Вас максимально распространить это видео, надеясь, что нас кто-нибудь услышит!!!

Показать полностью 1
390

Карбонильные комплексы

Как испарить тугоплавкий металл без использования высокотемпературных печей?

Как очистить железо до особо чистого состояния?

Как можно соединить вольфрам с органикой?

Как из обычного никеля может получиться яд, токсичность которого в несколько раз выше паров ртути?

Ответ заключается в необычном соединении молекул угарного газа с атомами переходных металлов, под названием карбонильный комплекс.

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

В конце XIX века английскими химиками было установлено, что монооксид углерода кардинальным образом меняет свойства переходных металлов, связываясь с ними при высоком давлении в комплексное соединение - карбонил.

В данном случае, металл не окисляется, как происходит при образовании солей, а остаётся нейтральным атомом, который образует с молекулой CO (лигандом) координационную связь по механизму обратного донирования (т. е. сначала  атом металла приобретает эффективный положительный заряд, а затем происходит обратный перенос электронной плотности с лиганда на металл).

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Благодаря этому карбонилы металлов обладают совершенно уникальными свойствами, которые не характерны ни для чистых металлов, ни для их солей. При нормальных условиях карбонилы переходных металлов объединяет свойство с лёгкостью улетучиваться.

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Это могут быть и жидкости (пентакарбонил железа) и твёрдые кристаллы, склонные к сублимации (гексакарбонил хрома). Карбонилы металлов, как правило плохо растворяются в воде и хорошо растворимы в органических растворителях, таких как диэтиловый эфир, ацетон и бензол). На данный момент из всех переходных металлов чистыми карбонилами не обладают лишь титан, цирконий, гафний, ниобий и тантал, а карбонилы палладия, платины, меди, серебра и золота могут существовать лишь в низкотемпературной инертной среде.

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Среди всех карбонилов наиболее мягкие условия для синтеза присущи тетракарбонилу никеля: соединение можно получить при атмосферном давлении, пропуская угарный газ в среде без доступа воздуха через мелкодисперсный никель при температуре 80°С. Карбонилы других металлов требуют более жёстких условий или сложных химических реакций.

Хранят карбонилы также в закупоренном виде; во-первых, даже при комнатной температуре на воздухе многие соединения разлагаются, а во-вторых, карбонилы металлов являются сильнейшими токсинами неорганического происхождения. Из-за своей летучести и хорошей растворимости в жирах карбонилы способны попадать в организм даже через кожу, поэтому при работе с ними требуется соблюдать предельную осторожность. Опасность для организма представляет как образующиеся частицы тяжёлых металлов, так и высвобождаемый угарный газ, который при попадании в кровь карбонилирует гемоглобин в карбоксигемоглобин, неспособный связывать кислород, что приводит к патологическим изменениям в легких и повреждению других органов.

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Для сравнения, предельно допустимая концентрация паров тетракарбонила никеля в рабочей зоне составляет 0,0005 мг/м³, что в 10 раз меньше концентрации паров ртути и в 20 раз меньше концентрации паров таллия в аналогичных условиях.

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Но несмотря на такую опасность карбонилы не имеют себе аналогов во многих отраслях.

Так, выделение металла при разложении карбонила это способ получить сверхчистый нанопродукт, который в дальнейшем может быть использован в других химических реакциях, при катализе или в качестве тонкого металлического покрытия. Нередко в качестве катализаторов используют и сами карбонилы (например при синтезе карбоновых кислот). Высвобождаемый угарный газ также может быть использован в карбонилировании органических соединений.

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Из-за неустойчивости связи M-CO, карбонилы могут вступать в реакции замещения лигандов, что открывает безграничные возможности в области металлоорганических соединений. Однако замещать CO могут не только лиганды, но и неорганические анионы, что позволяет получать уже комплексные соли. Следует ещё добавить, что карбонилы весьма чувствительны к свету и под действием фотолиза способный образовывать новые структуры.

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Иными словами, эти соединения являются исходным реагентом во многих областях химии и могут быть использованы в самых разных технологиях. Подробнее о карбонилах каждого металла и их применении будет рассказано в следующих постах...

Карбонильные комплексы Химия, Лига химиков, Металл, Познавательно, Длиннопост, Карбонилы

Все материалы также публикуются на странице ВК: vk.com/mircenall


С этого месяца участвую в экспериментальной программе модерации.

Поддержать выход авторских постов можно здесь: money.yandex.ru/to/4100115166646094

Показать полностью 8
1243

Платина в гифках

Платина - металл с высокой коррозионной стойкостью в агрессивных средах. Завёрнутый в алюминиевую фольгу и помещённый в соляную кислоту слиток остаётся таким же блестящим

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Также платина устойчива к высоким температурам. Как видно, при нагревании окислился металлический зажим, но не платиновая капля.

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Нагретая платина запускает процесс окисления аммиака кислородом воздуха (проявляет свойство катализатора) и продолжает светиться в колбе.

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Аналогичным образом платина катализирует окисление метанола

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Также платина способна катализировать разложение перекиси водорода на воду и кислород

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Платина реагирует с царской водкой (смесью азотной и соляной кислоты) с образованием гексахлороплатината(IV) водорода

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Из гексахлороплатината(IV) водорода можно обратно восстановить металлическую платину путём добавления к раствору формиата натрия

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Расплавленная платина на одном из предприятий (Т пл. 1768°C)

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Вытягивание платинового слитка при помощи специального молота

Платина в гифках Гифка, Химия, Эксперимент, Длиннопост, Наука, Платина, Металл

Предыдущие посты серии:

Литий. Бор. Углерод. Фтор. Натрий. Магний. Алюминий. Кремний. Фосфор. Сера. Хлор. Калий. Кальций. Титан. Хром. Марганец. Железо. Кобальт. Никель. Медь. Цинк. Галлий. Бром. Рубидий. Стронций. Серебро. Олово. Иод. Цезий. Барий. Вольфрам. Золото. Ртуть. Свинец. Висмут.

Показать полностью 6
90

Тонкослойная хроматография для не-специалистов

Вероятно, все из нас видели (хотя бы на фотографии) тест на беременность. Надеюсь, никому не приходилось встречаться с тест-полосками на наркотики_или проваливать допинг-тесты. И, скорее всего, все читали или смотрели экранизацию “Двенадцати стульев”, где Ипполит Матвеевич Воробьянинов, желая получить «радикальный черный цвет» волос, остался с шевелюрой всех цветов радуги, которую пришлось в итоге сбрить.
Удивительно, но процессы, которые лежат в основе всех примеров – одни и те же. На этих же процессах основан один из очень распространенных методов разделения и определения веществ – так называемая тонкослойная хроматография. Термин тонкослойная» всего лишь означает, что она проводится на слое_толщиной в миллиметр (по сравнению с объемной хроматографией, где толщина вещества-основы может составлять до сантиметра), а вот о том, что же такое «хроматография», стоит рассказать подробнее. В 1903 году русский ученый Михаил Цвет представил на суд ученых новый способ разделения веществ, из которых состоит хлорофилл – зеленый краситель в листьях – и назвал его «цветописью» или хроматографией. Забавное совпадение: человек_по фамилии Цвет работает с красителями и называет новый метод почти в свою честь. Основан этот метод был на отличиях в силах взаимодействия разных молекул с веществом-основой. В качестве последнего в опытах Цвета выступал мел, но сейчас чаще всего используют силикагель (маленькие шарики, которые можно найти в пакетиках с обувью при покупке) или оксид алюминия. Цвет засыпал мелкий порошок мела в вертикальную стеклянную трубку, утрамбовал его, осторожно залил водой (так, чтобы весь мел намок, но не «поплыл») и сверху залил немного раствора хлорофилла. Далее он добавлял воду, а ее избыток вытекал снизу. Постепенно зеленая полоска продвигалась вниз и разделялась на три – светло-зеленую, темно-зеленую и желтоватую. Когда каждая из полосок оказывалась внизу трубки, экспериментатор собирал вытекающую жидкость в отдельный стакан. Оказалось, что хлорофилл состоит из трех разных веществ –их потом назвали хлорофилл А, хлорофилл Б и лютеин. Именно из-за насыщенности цветов метод получит такое название. Почти сразу ученые поняли, что таким образом можно разделять и другие вещества. Сначала опыты ставились на смесях красителей, чтобы было проще определять, когда следует собирать вытекающую жидкость, потом научились работать и с бесцветными веществами, подсвечивая трубку ультрафиолетом, или добавляя реагенты, которые окрашивали соединения. Далее оказалось, что вместо воды можно использовать другие жидкости, и тогда список разделяемых веществ значительно увеличился. С дальнейшим развитием техники научились разделять газы, здесь в качестве жидкости используются азот или благородные газы, а длина трубки может достигать целых 150 м, поэтому ее нужно сворачивают в кольцо. Этот метод стал незаменимым помощником химиков-органиков для очистки получаемого вещества, потому что особенностью органического синтеза является огромное количество разных примесей, и выделение продукта та еще задача; биохимиков, так как один из видов хроматографии – почти единственный способ разделения белков; и химиков-криминалистов для определения состава чернил и доказательства подлинности документа или, например, определения состава наркотических смесей
Вернемся именно к тонкослойной хроматографии – ее можно провести очень быстро (до получаса – обычное время такого анализа, по сравнению с несколькими часами обычной хроматографии), прямо на месте (из оборудования – пластинка с силикагелем, стаканчик с жидкостью и пипетка, а не огромные установки, как для разделения газов) и без химического образования – нужно лишь капнуть образец на край пластинки и аккуратно поставить ее в стакан. За нас все сделают капиллярные силы – растворитель сам будет подниматься вверх. В конце нужно либо опустить пластинку в раствор-проявитель, либо, если вещества с самого начала были цветными, просто посмотреть на нее. Обычно на пластинку ставят две точки – образец (смесь веществ, в которой надо определить наличие чего-либо) и чистое вещество, которое мы ищем. Если на хроматограмме (так называется итоговая картина) образца окажется пятнышко на том же месте, где и на хроматограмме чистого вещества – значит, оно есть в смеси. Все очень просто и доступно даже ребенку. Кстати о детях – если в качестве пластинки использовать прямоугольный или круглый кусочек рыхлой бумаги (в идеале – фильтровальной), то можно разделить пигменты в черном фломастере. Оказывается, черный цвет – это смесь многих цветов, а не единый пигмент. Этот опыт хотя и очень простой, но и очень красивый. При возможности настоятельно рекомендую попробовать! В случае же Кисы Воробьянинова в качестве пластинки выступили его волосы (разные вещества в краске для волос по-разному осели на волосах), и при смывании произошло их разделение. Нерешенным вопросом остались тесты на беременность, допинг и наркотики. Тут тоже все просто – на эти полоски нанесены вещества, которые проявляют окраску только при наличии наркотиков, допинга или гормона ХКЧ (его количество у беременных гораздо больше) в моче. Аналогично, кстати, работают тест-полоски на сифилис, вирус иммунодефицита человека и даже на наличие в образце крови (это очень важно для криминалистов). И, естественно, тест-полоски на коронавирус, если такие появятся в широком доступе, будут основаны именно на продвижении вещества по полоске за счет капиллярных сил.
Вот и получается, что событие, которое было описано в 1928 году, детские эксперименты и современные экспресс-тесты основаны на одном физико-химическом процессе.

Показать полностью
57

Как я Lego ультрафиолетом мыл

Детали годовалые и 26 летние до мойки.

Как я Lego ультрафиолетом мыл LEGO, Химия, Эксперимент, Ультрафиолет, Лига химиков, Чистота, Длиннопост

Деталь отмывалась одна.

Как я Lego ультрафиолетом мыл LEGO, Химия, Эксперимент, Ультрафиолет, Лига химиков, Чистота, Длиннопост

Результат.

Как я Lego ультрафиолетом мыл LEGO, Химия, Эксперимент, Ультрафиолет, Лига химиков, Чистота, Длиннопост
Как я Lego ультрафиолетом мыл LEGO, Химия, Эксперимент, Ультрафиолет, Лига химиков, Чистота, Длиннопост
Как я Lego ультрафиолетом мыл LEGO, Химия, Эксперимент, Ультрафиолет, Лига химиков, Чистота, Длиннопост

Теперя факты)
Перекись 3% аптечная 50мл
Лампа уф люминисцентная без рассеивателя 8вт
Экспозиция 14 часов

1) кубик стал чистым. Перекись приобрела слабый коричневый оттенок.
2) кубик стал скользким как новый
3) кубик хорошо отмылся на тех сторонах куда попадало прямое уф излучение/была циркуляция раствора. (на изнанке грязь осталась)

Вывод: 26 летние кубики покрыты плёнкой грязи. Мойка старого кубика любого цвета сделает его блестящим. При мойке нужно обеспечить перемешивание деталей.

Надеюсь лига химиков нас не оставит)
Возможно @Mircenall, любезно согласится провести ликбез по органической химии.

Лампа

Как я Lego ультрафиолетом мыл LEGO, Химия, Эксперимент, Ультрафиолет, Лига химиков, Чистота, Длиннопост

П.С. Сообщество, если есть ванна ультрозвуковая и кубики старые, попробуйте их отмыть разными способами. Спасибо.

Всем добра и личного леголэнда)

Фотка реактора моя, да, совпадение 81%, это не повод меха рвать.

Показать полностью 5
2696

Магний - ослепительный товарищ

Магний - ослепительный товарищ Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Магний, Длиннопост
Магний - ослепительный товарищ Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Магний, Длиннопост
Магний - ослепительный товарищ Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Магний, Длиннопост
Магний - ослепительный товарищ Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Магний, Длиннопост

Всё это и прочее на странице ВК:

https://vk.com/mircenall


Посты первого года:

Титан. Алюминий. Ртуть. Осмий. Вольфрам. Медь. Цезий. Фтор. Хром. Свинец. Висмут. Углерод. Водород. Серебро. Палладий. Платина. Франций. Золото. Бериллий. Мышьяк. Кремний.

Посты второго года:

Радон. Литий. Рутений. Тантал. Молибден. Рений. Иридий. Технеций. Родий. Церий. Таллий.

С этого месяца участвую в экспериментальной программе модерации.

Поддержать дальнейший выход авторских постов можно здесь: qiwi.com/n/MIRCENALL

Показать полностью 3
199

Австрий

В Периодической таблице существует немало химических элементов, названных в честь местностей и государств. Например, германий (в честь Германии), рутений (в честь России), скандий (в честь Скандинавии) и т.п.

Любопытно то, что в этот список пыталась не раз попасть и Австрия,  но постоянно терпела неудачу...

Австрий Химия, Лига химиков, Австрия, История, Химические элементы, Ученые, Длиннопост

Сейчас это небольшая страна в Центральной Европе, но в начале XIX века Kaisertum Österreich простиралась от Милана до Львова, так что многие учёные, трудившиеся на благо родины, желали увековечить её в лице элемента "Austrium". Почему же этого сделать всё-таки не вышло?

Австрий Химия, Лига химиков, Австрия, История, Химические элементы, Ученые, Длиннопост

Первым термин "австрий" употребил венгерский химик Антал Рупрехт в 1792 году.

Так он назвал металлические образцы, которые обнаружил на дне тигля, в котором прокалил смесь магнезии и угольного порошка. Он был приверженцем теории, что "земли" (так называли любые нерастворимые в воде сыпучие породы) не фундаментальные элементы, а оксиды неизвестных металлов и желал доказать это экспериментально.

Однако, как оказалось магнезия была загрязнена соединениями железа и Рупрехт получил фактически частицы неизвестного железного сплава, из которого нельзя было что-либо выделить.

Австрий Химия, Лига химиков, Австрия, История, Химические элементы, Ученые, Длиннопост

Но в 1808 году английский химик Хэмфри Дэви провёл-таки успешный эксперимент — путём электролиза расплава магнезии и оксида ртути, он выделил амальгаму неизвестного металла и дал ему имя Magnesium. Так стало ясно, что "земля" известная, как "белая магнезия" является оксидом этого металла. Чистый магний получил лишь в 1831 году французский химик Антуан Бюсси и за элементом оставили название, предложенное Дэви.

Второй раз австрий появляется в трудах профессора Карлова университета в Праге, немецкого химика Эдуарда Линнеманна в 1886 году. В процессе работы с образцами редкого минерала ортита он обнаружил необычные спектральные линии с длиной волны 416.5 и 403 нм. Линнеман не смог определить к какому из известных на тот момент элементу они могут относится и предположил, что открыл новый элемент, назвав его австрием.

Австрий Химия, Лига химиков, Австрия, История, Химические элементы, Ученые, Длиннопост

К сожалению в этот же год профессор скончался и с результатами исследований другие учёные ознакомились уже после его смерти. Однако французский химик Поль Эмиль Лекок де Буабодран предположил, что эти спектры могут принадлежать открытому им галлию. Данную гипотезу также подтвердил австрийский химик Ричард Прибрам - действительно, линии соответствовали этому металлу.

И в последний, третий раз, австрий упоминает в 1889 году в своей работе чешский химик Богуслав Браунер. Так он назвал неизвестный тяжёлый металл, следы которого им были обнаружены в теллуре. Кроме того, он допускал, что сам теллур не является индивидуальным соединением, и его атомную массу "увеличивают" подобные примеси.

Австрий Химия, Лига химиков, Австрия, История, Химические элементы, Ученые, Длиннопост

Позже гипотеза Браунера о гетерогенности теллура была признана ошибочной, а после открытия супругами Кюри в образцах настурана элемента полония, было установлено, что именно его следы Браунер заметил в теллуре. К сожалению он не мог настаивать на первенстве, по тому как лишь сообщил о неизвестной примеси, а не классифицировал и представил доказательства открытия нового металла.

С тех пор австрий не появлялся в научной литературе. Впрочем не стоит забывать, что и по сей день Периодическая таблица пополняется новыми элементами, так что и австрий может-таки дождаться когда-нибудь своего часа.

Австрий Химия, Лига химиков, Австрия, История, Химические элементы, Ученые, Длиннопост

Подобные и прочие посты на странице ВК:

https://vk.com/mircenall

Показать полностью 5
2633

Ученые обнаружили фермент, разлагающий пластиковые бутылки на 90%

Ученые обнаружили фермент, разлагающий пластиковые бутылки на 90% Пластик, Переработка мусора, Новости, Наука, Открытие

Ученые из Университета Тулузы синтезировали фермент, который расщепляет 90 процентов полиэтилентерефталата — пластика, который используется при изготовлении бутылок. Новое исследование опубликовано в журнале Nature. 

Сейчас только 30% ПЭТ-пластика перерабатывается для повторного использования. При этом существующие методы дают низкое качество нового материала — он теряет прочность при переработке, поэтому имеет только ограниченное применение. При этом ПЭТ является одним из наиболее распространенных видов — на него приходится около 70 из 360 тыс. тонн пластика, производимого в мире ежегодно.

В ходе исследования ученые проверили 100 тысяч различных ферментов, которые теоретически могли разлагать ПЭТ. Оказалось, что во много раз эффективнее прочих это делает фермент под названием кутиназа, который впервые был обнаружен японскими учеными в 2012 году и получается из компоста листьев.
В ходе работы с помощью белковой инженерии была дополнительно улучшена активность фермента и его способность к разрушению ПЭТ. Оптимизованная кутиназа разложила 90% тонны ПЭТ-пластика в течение 10 часов. Изготовленные из переработанной массы бутылки по качеству не отличались от оригинальной партии.

Стоимость фермента, необходимого для переработки тонны пластика, составила лишь 4% от цены самого первичного пластика.

Ученые обнаружили фермент, разлагающий пластиковые бутылки на 90% Пластик, Переработка мусора, Новости, Наука, Открытие

https://meduza.io/feature/2020/04/09/uchenye-obnaruzhili-fer...

Показать полностью 1
592

Красная ртуть

В такой важный для многих научных трудов день, хотелось бы рассказать о самой невероятной разработке последнего пятидесятилетия — веществе RM-20/20, известным также, как "красная ртуть".

Красная ртуть Лига химиков, Ртуть, Красная ртуть, Химия, 1 апреля, Длиннопост, Юмор, Гифка

Вкратце "красную ртуть" можно описать, как многофункциональный катализатор химических и термоядерных реакций, чрезвычайно токсичное, взрывоопасное и радиоактивное вещество, которое представляет из себя металлическую жидкость красного цвета с плотностью 20 г/см³ и температурой замерзания −150 °C.

Красная ртуть Лига химиков, Ртуть, Красная ртуть, Химия, 1 апреля, Длиннопост, Юмор, Гифка

Впервые синтез RM-20/20 был проведен советскими учёными в 1970-х годах, однако большая часть информации засекречена по сей день.

Получают вещество путём смешения небольшого количества ядерных материалов с обычной ртутью. Затем смесь вводят в ядерный реактор и в ускорителе частиц образуется вещество с повышенным содержанием нейтронов в ядре. Благодаря сверхтяжёлым изотопам металл и приобретает свои уникальные физические свойства.

Красная ртуть Лига химиков, Ртуть, Красная ртуть, Химия, 1 апреля, Длиннопост, Юмор, Гифка

В частности, обладая столь высокой плотностью "красная ртуть" может являться незаменимым растворителем в термоядерном синтезе, обеспечивая эффективное разделение изотопов лития. Также RM-20/20 способен устранить длительный и трудоёмкий процесс обогащения урана до оружейной чистоты и в том числе снизить критическую массу урана-235. Все эти свойства просто незаменимы в сфере обороны.

Отдельный раздел — использование RM-20/20 в детонаторе термоядерной бомбы.

При взрыве "красная ртуть" выделяет колоссальное количество энергии. Это создаёт условия, при которых воспламеняется тяжелый водород, что позволяет сконструировать миниатюрный снаряд размером с авторучку, но по мощности эквивалентный термоядерной бомбе.

Также ведётся разработка аналогичного применения "красной ртути" в гаусс-пушках и сверхмощных лазерах.

Красная ртуть Лига химиков, Ртуть, Красная ртуть, Химия, 1 апреля, Длиннопост, Юмор, Гифка

Нельзя не упомянуть о сверхпроводимости металла и его перспективном использовании в радиотехнике. В частности RM-20/20 может быть использован для создания высокотехнологичных локаторов определяющих приемник сигнала, ведь даже обычная металлическая трубка, заполненная "красной ртутью" является своеобразной антенной, которая принимает и усиливает сигналы с любых радиочастот.

Уникальной разработкой советских учёных несколько десятилетий пытались завладеть террористы и спецслужбы других стран, в частности ЦРУ и Моссад, однако благодаря безупречной работе контрразведчиков вместо RM-20/20 в руки им попадались исключительно муляжи. Однако позже на этом начали наживаться мошенники; под видом уникального вещества за баснословные суммы могли продавать обычную подкрашенную ртуть, амальгамы цветных, драгоценных и даже радиоактивных металлов, порошки киновари и растворы иодида ртути, а также пироантимонат ртути (Hg2Sb2O7) — соль ртути и пиросурьмяной кислоты красного-бурого цвета с плотностью ок. 10 г/см³. Несмотря на действительно высокую токсичность пироантимонат ртути не наделён такими уникальными свойствами, как RM-20/20.

Красная ртуть Лига химиков, Ртуть, Красная ртуть, Химия, 1 апреля, Длиннопост, Юмор, Гифка

В связи с этим уже в 2000-х годах появилось распространённое мнение, что "красной ртути" вовсе не существует и все работы по её получению якобы вымысел. Возможно, что данная гипотеза была создана намеренно, дабы снизить интерес общества к разработке, уменьшив тем самым вероятность утечки образцов за границу и попадания к злоумышленникам.

Это может являться вполне адекватным решением, поскольку многие учёные могут подтвердить, что RM-20/20 - вещество, опережающее время и до нужного времени оно должно находиться в надёжных руках

Красная ртуть Лига химиков, Ртуть, Красная ртуть, Химия, 1 апреля, Длиннопост, Юмор, Гифка
Красная ртуть Лига химиков, Ртуть, Красная ртуть, Химия, 1 апреля, Длиннопост, Юмор, Гифка
Показать полностью 5
1190

10 самых крупных научных открытий прошедшего десятилетия

Учитывая быстрые изменения в технологиях и науке, можно легко забыть, что еще несколько лет назад мы многого не знали. В последнее десятилетие произошли серьезные прорывы в физике, биологии и астрономии. Какие из этих открытий окажутся наиболее важными, вероятно, можно будет судить позже, но некоторые из последствий открытий завершившегося десятилетия начинают сказываться уже сейчас. Вот подборка для самых крупных научных достижений десятилетия и удивительных открытий.


2010: первая синтетическая «жизнь»

10 самых крупных научных открытий прошедшего десятилетия Наука, Техника, Топ, Достижение, Открытие, Прорыв, Изобретения, Цивилизация, Видео, Длиннопост

Ученые размыли грань между естественным и искусственным в 2010 году, создав первый в мире организм с синтетическим геномом. Исследователи из Института Дж. Крейга Вентера (J. Craig Venter Institute) собрали геном бактерии Mycoplasma mycoides из более чем миллиона пар оснований ДНК. Затем они вставили этот искусственный геном, созданный человеком, в другую бактерию, Mycoplasma capricolum, которая была очищена от ДНК. Механизм M. capricolum вскоре начал приводить инструкции этого синтетического генома в действие, запустив воспроизводство точно так же, как и M. mycoides.


Начиная с этого прорыва, ученые продолжили делать успехи в синтетической биологии. В 2016 году ученые создали самый маленький синтетический микроб из всего 473 генов. В 2017 году они объявили о создании пяти синтетических дрожжевых хромосом. План ученых состоит в том, чтобы заменить все 16 хромосом в дрожжах синтетическими хромосомами, которые можно настроить для выполнения определенных задач, таких как массовое производство антибиотиков или даже создание выращенного в лаборатории мяса.


2011: профилактическое лечение ВИЧ

10 самых крупных научных открытий прошедшего десятилетия Наука, Техника, Топ, Достижение, Открытие, Прорыв, Изобретения, Цивилизация, Видео, Длиннопост

Сегодня многие люди с высоким риском заражения вирусом иммунодефицита человека (ВИЧ), вызывающим СПИД, ежедневно принимают таблетки для снижения риска заболевания. В 2012 году Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (U.S. Food and Drug Administration) утвердило для этой цели лекарство под названием Truvada. Но подготовило почву для этого серьезного изменения в профилактике ВИЧ большое исследование, которое было завершено в 2011 году.


Это исследование, которое журнал Science назвал «прорывом года», впервые с 1994 года продемонстрировало новый способ предотвращения передачи ВИЧ от одного человека другому. (В 1994 году исследователи сообщили, что они нашли фармацевтический вариант, помогающий предотвратить передачу ВИЧ от беременной женщины ее плоду). Исследование началось в 2005 году, и результаты 2011 года были промежуточными. Исследователи обнаружили снижение передачи ВИЧ на 96% в этих данных. Окончательные данные, охватывающие все 10-летнее исследование, опубликованные в Медицинском журнале Новой Англии (New England Journal of Medicine) в 2016 году, показали снижение передачи ВИЧ на 93%.


2012: бозон Хиггса

10 самых крупных научных открытий прошедшего десятилетия Наука, Техника, Топ, Достижение, Открытие, Прорыв, Изобретения, Цивилизация, Видео, Длиннопост

В июле 2012 года ученые, работающие на крупнейшем в мире ускорителе частиц, объявили, что они добились грандиозного открытия. Эксперименты на Большом адронном коллайдере (LHC), наконец, обнаружили свидетельство существования последней неоткрытой частицы, предсказанной Стандартной моделью физики.


Бозон Хиггса был, наконец, найден. Это частица, связанная с полем Хиггса. Ее энергетическое поле лежит в основе того, почему частицы имеют массу. Частицы набирают массу, проникая через это трехмерное поле, создавая крошечные возмущения в нем. (Чем сильнее их взаимодействие с полем, тем больше масса у них.) Когда поле испытывает значительный всплек энергии в определенном месте, оно испускает бозон Хиггса. В 2013 году физики подтвердили, что их наблюдения 2012 года действительно были той самой неуловимой частицей, которую иногда называют «частицей Бога» из-за ее роли в придании всем другим частицам массы.


Открытие Хиггса поставило перед физиками новые вопросы. Частица была немного легче, чем предсказывали некоторые ее взаимодействия с другими элементарными частицами, что означает, что либо кто-то обманул математику, либо существует более одного типа бозона Хиггса - возможно, включая более тяжелый Хиггс, который пока не был обнаружен. Физики сейчас используют LHC для поиска этих возможных тяжелых бозонов Хиггса.


2013: Voyager 1 выходит в межзвездное пространство

После почти 35 лет полетов над планетами и лунами зонд НАСА Voyager 1 вошел в историю в 2013 году, когда ученые объявили, что космический аппарат официально покинул Солнечную систему (если говорить точнее, то только гелиосферу, за которой начинается межзвездное пространство) в августе 2012 года.


Зонд был запущен с Земли в 1977 году и провел следующее десятилетие, исследуя Юпитер, Сатурн, Уран, Нептун и их спутники. В 2013 году данные, отправленные с зонда, показали изменения в плотности электронов вокруг Voyager 1 - главный признак того, что космический аппарат вышел за пределы Солнечной системы. Voyager 1 будет продолжать отправлять информацию обратно на Землю о межзвездном пространстве примерно до 2025 года. После этого он настроен на длительный «отпуск» в глубоком космосе, с единственной возможностью того, что когда-нибудь какая-то инопланетная форма жизни заметит небольшой зонд и его послание, представляющее собой капсулу времени, в которой хранятся изображения людей, карты нашей солнечной системы и другие подсказки о существовании цивилизации на Земле.


2014: гравитационные волны

10 самых крупных научных открытий прошедшего десятилетия Наука, Техника, Топ, Достижение, Открытие, Прорыв, Изобретения, Цивилизация, Видео, Длиннопост

До 2014 года ученые имели только косвенные доказательства Большого взрыва, теории, которая описывает ошеломляющее расширение космоса, произошедшее 13,8 миллиардов лет назад и породившее нашу вселенную. Но в 2014 году ученые впервые обнаружили прямые доказательства этого космического расширения, которое некоторые называли «дымящим ружьем» после начала Вселенной.


Это свидетельство пришло в виде гравитационных волн, буквальных пульсаций в пространстве-времени, оставшихся с первой доли секунды после Большого взрыва. Эти волны вызвали изменения в поляризации космического микроволнового фона, который является излучением, сохранившемся от ранней Вселенной. Изменения поляризации называются B-модами. Именно эти B-моды были обнаружены учеными с помощью фоновой съемки космического Внегалактического поляризационного телескопа (Background Imaging of Cosmic Extragalactic Polarization 2, BICEP2) в Антарктике.


С тех пор гравитационные волны продолжают раскрывать загадки Вселенной, такие как динамика столкновений черных дыр и столкновений между нейтронными звездами.


Гравитационные волны могут даже помочь окончательно определить, насколько быстро расширяется Вселенная.


2015: первое редактирование CRISPR человеческих эмбрионов

10 самых крупных научных открытий прошедшего десятилетия Наука, Техника, Топ, Достижение, Открытие, Прорыв, Изобретения, Цивилизация, Видео, Длиннопост

Возможно, самая большая биомедицинская история десятилетия - появление технологии редактирования генов CRISPR. Эта технология возникает из естественных защитных механизмов некоторых бактерий; это серия повторяющихся последовательностей генов, связанных с ферментом Cas9, который действует как пара молекулярных ножниц.


Последовательности генов могут быть отредактированы, помещая нужный фрагмент в определенный сегмент ДНК и направляя фермент Cas9, для дальнейших манипуляций.


Используя эту систему, ученые могут легко стирать и вставлять кусочки ДНК в живые организмы, что имеет очевидные последствия для лечения генетических заболеваний и, возможно, приводит к возможности появления потомства на заказ. Первый шаг на этом пути был сделан в 2015 году, когда ученые из Университета Сунь Ятсена в Китае объявили, что они сделали первые в мире генетические модификации человеческих эмбрионов с использованием CRISPR. Эмбрионы не были жизнеспособными, и процедура была только частично успешной - но эксперимент был первым, что обозначило этическую проблему, которую научное сообщество обсуждает по сей день.


2016: Экзопланета обнаружена в обитаемой зоне

Ближайший сосед Земли - экзопланета, обнаруженная в 2016 году, находится не только на расстоянии 4,2 световых года - она обладает потенциалом для жизни.


Это не означает, что планета, получившая название Проксима b, безусловно, пригодна для обитания, но она находится в обитаемой зоне своей звезды, то есть она вращается вокруг своей звезды на расстоянии, которое позволит жидкой воде существовать на поверхности планеты.


Планета вращается в Проксиме Центавра; колебания в движениях этой звезды, когда планета проходила мимо, намекали на существование Проксима b.


С момента открытия ученые наблюдали сверхвсплески высокой радиации от Проксима Центавра, которые облучали экзопланету, резко снижая шансы на выживание на Проксиме b. Тем не менее, они также обнаружили, что может быть больше планет, вращающихся вокруг Проксимы b.


2017: Самые старые окаменелости Homo Sapiens отодвинувшие вид назад на 100 000 лет

Как долго Homo Sapiens бродит по планете? Открытие, объявленное в 2017 году, отодвинуло время назад на 300 000 лет.


Это на 100 000 лет больше, чем считалось ранее. Исследователи обнаружили кости в возрасте 300 000 лет в пещере в Марокко, где, по крайней мере, пять человек могли укрыться во время охоты. Место обнаружения - в северной части Африки, а не в восточной части Африки, где были обнаружены прежние самые старые окаменелости Homo Sapiens, - намекает на то, что наш вид, возможно, не эволюционировал сначала в восточной части Африки, а затем распространился в другие места. Вместо этого Homo Sapiens мог равномерно развиваться по всему континенту.


2018: первые дети с CRISPR


Спустя всего три года после первого редактирования нежизнеспособных человеческих эмбрионов с помощью CRISPR, была пересечена следующая черта в редактировании генов. На этот раз китайский ученый по имени Чанькуй Хе объявил, что он отредактировал геномы двух эмбрионов, которые затем были имплантированы с помощью ЭКО (экстракорпоральное оплодотворение) в утробу матери, после чего родились девочки-близнецы, которые стали первыми в мире младенцами CRISPR.


Его редактирование задействовало ген CCR5, который теоретически должен сделать детей менее уязвимыми к заражению ВИЧ. Многие ученые были потрясены тем, что Хе предпринимает такие шаги в редактировании генов в этом контексте, особенно учитывая доступные и менее технологически интенсивные методы предотвращения ВИЧ (такие как профилактическое антиретровирусное лечение). Позже, из данных, опубликованных исследователями, возникло предположение, что была фактически вызвана ранее неизвестная мутация у девочек.


Потенциальные побочные эффекты для девочек до сих пор неизвестны, как и судьба ученого, который занимался редактированием. В январе 2019 года газета The New York Times сообщила, что ему, вероятно, будут предъявлены уголовные обвинения в Китае, хотя неясно, по каким законам он может быть обвинен.


2019: первое изображение черной дыры

Черные дыры всегда были астрономическим хитом: мы знаем, что они есть, но поскольку свет не может выйти за пределы их горизонтов событий, они при этом как бы невидимы.


До прошлого года: впервые ученые запечатлели изображение черной дыры. Объектом на этом портрете была черная дыра в центре галактики Мессье 87, которая столь же обширна, как и вся наша солнечная система. Картина выглядит как светящийся пончик, окружающий бездну черноты; это пыль и газ, вращающиеся вокруг точки невозврата черной дыры.


Это открытие принесло исследователям премию Прорыв 2020 года, одну из самых престижных научных премий. Сейчас они работают, чтобы захватывать не только изображения, но и фильмы с черными дырами.

Показать полностью 4 2
1822

Таллий - безжалостный убийца

Таллий - безжалостный убийца Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Таллий, Длиннопост
Таллий - безжалостный убийца Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Таллий, Длиннопост
Таллий - безжалостный убийца Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Таллий, Длиннопост
Таллий - безжалостный убийца Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Таллий, Длиннопост

Всё это и прочее на странице ВК:

https://vk.com/mircenall

Посты первого года:

Титан. Алюминий. Ртуть. Осмий. Вольфрам. Медь. Цезий. Фтор. Хром. Свинец. Висмут. Углерод. Водород. Серебро. Палладий. Платина. Франций. Золото. Бериллий. Мышьяк. Кремний.

Посты второго года:

Радон. Литий. Рутений. Тантал. Молибден. Рений. Иридий. Технеций. Родий. Церий

Показать полностью 3
506

Генриетта Левитт: опережая своё время

Генриетта Суон Левитт родилась в 1868 году. Её астрономические исследования привели к прорыву в нашем понимании Вселенной. Работая в Гарвардской обсерватории, Левитт начала изучать переменные звёзды и открыла важную закономерность, по сей день помогающую астрономам измерять расстояние до звёзд, что в конечном итоге привело к открытию других галактик и расширения Вселенной.

115

Кристаллы N-гидроксисукцинимида

N-гидроксисукцинимид (NHS) - вещество, которое чаще всего используется в органической химии в реакциях с карбоновыми кислотами для синтеза активированных NHS-эфиров, способных вступать в реакцию с аминами. Также они находят применение в биохимии - участвуют в синтезе пептидов и используются для мечения белков (NHS-эфир флуоресцеина) и других биомолекул.

Кристаллы N-гидроксисукцинимида Химия, Лига химиков, Органическая химия, Кристаллы, Микросъёмка

NHS является производным пирролидина. Несмотря на то, что ранее представленный BnPINO имеет в своём составе похожую структуру, принадлежат они к разным классам

Моя страница ВК

112

Кристаллы гексафторацетилацетоната меди

Гексафторацетилацетонат меди(II) (сокращённо Cu(hfacac)2) является комплексом, который катализирует образование илидных структур и разложение диазосоединений.

Кристаллы гексафторацетилацетоната меди Медь, Химия, Лига химиков, Кристаллы

Также может служить промежуточным веществом для образования более сложных органических комплексов. Вещество плохо растворяется в воде, но делает это хорошо в толуоле, ацетоне и этаноле.

Благодарю снова @Niknikco за предоставленные для фотосъемки образцы

https://vk.com/mircenall

Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: