31

Видос на ночь — Голубая луна.

Ты хотел пойти спать?

Постой, постой...

Глянь ка лучше сюда, посмотри на это чудо. Это — Голубая Луна.

Голубая Луна — вымышленный спутник газового гиганта, практически полностью покрытый водой и имеющий очень плотную атмосферу, теоретически позволяющую летать существам размером с земного кита. Голубая Луна спутник газового гиганта типа Юпитер. Она достаточно холодная, чтобы иметь в атмосфере дождевые облака. И планета, и спутник расположены в системе двойной звезды.

Видос на ночь — Голубая луна. Космос, Внеземная жизнь, Луна, Компьютерное моделирование, Видео, Длиннопост

Голубая Луна по размеру  сравнима с Землей, но имеет атмосферное давление втрое выше, чем земное.


Характерной особенностью этой луны является отсутствие полярных ледяных шапок: плотная атмосфера и покрывающий поверхность океан уменьшают колебания температуры. Из космоса можно наблюдать зеленоватую дымку на поверхности, создаваемую огромным числом плавающих в воде и летающих в воздухе полотнищ мхов и водорослей.


Более плотная, нежели чем на Земле, атмосфера позволяет держаться в воздухе  массивным существам. Например, представьте себе «небесного кита», огромного  организма, чьи предки  покинули океан, чтобы освоить воздушные просторы. Избыток кислорода в атмосфере, приводит к повышению силы мышц и эти существа с размахом крыльев, достигающим 10 метров, всю свою жизнь проводят в воздухе, питаясь уже упомянутыми выше мхами и водорослями. Стоит отметить, что в данном случае переход от плавающих организмов к летающим произошел очень резко, в один эволюционный скачок.


Высокое содержание кислорода в атмосфере (до 30 %) приводит к частым спонтанным самовозгораниям во время гроз. Уровень углекислого газа из за этого повышен, примерно в 30 раз по сравнению с земным, что в свою очередь способствует повышению температуры воздуха и насыщению его водяными парами. Как и земная Луна, Голубая Луна находится в орбитальном резонансе и всегда повернута одной стороной к своей планете.


Период обращения Голубой Луны вокруг газового гиганта, составляет 10 суток, из которых лунный день длится 5 суток, и столько же — лунная ночь. Долгие дни и ночи приводят к возникновению сильных воздушных потоков, которые, в дополнение к плотной атмосфере и повышенному содержанию кислорода, способны помочь воздушным формам жизни поддерживать свой непрерывный полёт.


Ты прочитал и хочешь уже пойти спать? Постой, постой...


Вот, посмотри видео с описанием мира и тварей населяющих Голубую Луну! :D

||

||

||

\/

Дубликаты не найдены

+8
Вон оно чё Михалыч... Голубая луна всему виной ..
раскрыть ветку 3
+1

я ждал этот комментарий ) Теперь можно идти спать. Гештальт закрыт.

раскрыть ветку 2
0

Кто про что вспоминает. У одного исполнителя неплохая композиция по поводу станции наблюдения за такой луной есть. https://youtu.be/ynzPWtXOtOA

раскрыть ветку 1
+3
Иллюстрация к комментарию
раскрыть ветку 3
0

Неплохой человек кстати поговаривают. Троль тоже хороший. Лихо тралит пранкеров его достающих.

раскрыть ветку 2
+4

В каком-то фильме он следака играл. Говорит подозреваемому: "Ты всё подпишешь мне...пидор"

раскрыть ветку 1
+1
просто напишу, что вспомнился клип In The End, где китоподобное существо "плавало" вокруг LP.
+1

а есть еще такие же передачи?

я помню один примерно такой же, там помниться два летающих аппарата планету исследовали и все больше подобных видео не встречал

раскрыть ветку 2
-1

Только что запостил чтоб потом в прокрастинации не погрязнуть вот, пожалуйста  https://pikabu.ru/story/vidos_na_den_aureliya_6364965

раскрыть ветку 1
+1

благодарствую

+1
У меня очень много вопросов к видео.
Атмосфера, плотная, как газ — что за бред? Как 3 атмосферы позволяют китам летать? Почему у них нет аэродинамики? Оттуда у газового гиганта кольца при таком спутнике?
Почему бы не популяризировать науку вместо сказок?
раскрыть ветку 4
-2
Атмосфера, плотная, как газ — что за бред?

Корявый перевод просто.

И что тебя удивляет в плотной атмосфере? На Венере разреженная атмосфера?


Как 3 атмосферы позволяют китам летать?

Точнее было бы сказать, что они не летают, а плавают и парят в плотном газе. И скорее всего у них будет что-то пузыря для регулирования плавучести, как у рыб. По поводу 3х атмосфер, а как 50 атмосфер позволяют рыбам плавать?

Почему у них нет аэродинамики?

Речь о животных, а не истребителях пятого поколения. Быстрый полет им не нужен, т.к. основа их рациона атмосферный планктон который они собирают пассивно.

Оттуда у газового гиганта кольца при таком спутнике?

А что не так? Титан между прочим второй крупнейший спутник в солнечной системе после Ганимеда (который больше Меркурия, если что), кольца Сатурна никуда не делись. Да и спутник может быть на очень высокой орбите и к кольцам не иметь никакого отношения.

Почему бы не популяризировать науку вместо сказок?

Почему бы  не занудствовать, а просто получать удовольствие?

Научная фантастика это тоже сказки, но сказки имеющие под собой основы в виде теорий и смелых далеко идущих вперед идей. Да и как выясняется все что вчера казалось сказкой сегодня уже реальность.

раскрыть ветку 1
-2

К научной фантастике у меня как раз вопросов нет. Когда это преподносится как красиво упакованная история с элементами придуманной науки, все хорошо. Но здесь же как-то все на уровне школьных фантазий.


И что тебя удивляет в плотной атмосфере? На Венере разреженная атмосфера?

Я где-то писал, что плотной атмосферы не бывает? Бредовая фраза "плотная, как газ". Атмосфера всегда газ, но всегда разной плотности. В обывательском понимании газ совсем не плотный. Впрочем, это действительно может быть косяк перевода - в оригинале не смотрел.


По поводу 3х атмосфер, а как 50 атмосфер позволяют рыбам плавать?

Рыбы плавают не за счет внешнего давления, а за счет уравновешивания Архимедовой силы притяжением. С китами та же история. В видео рассказывается предположение, что киты рождены в воде и лишь потом вышли в атмосферу, не потеряв в весе. Но очевидно, что давление воды в океане многократно превышает давление атмосферы (здравствуй, физика!), так что киты должны быть достаточно тяжелыми, чтобы не вылетать из воды, как пробки. И тут я повторю свой вопрос: как при таком весе всего 3 атмосферы позволяют им "плавать" в газе, который по сравнению с океаном сильно разрежен?


Речь о животных, а не истребителях пятого поколения. Быстрый полет им не нужен, т.к. основа их рациона атмосферный планктон который они собирают пассивно.

Видео рассказывает нам о доминирующих хищниках, охотящихся на китов. Почему в ходе эволюции выжили наименее приспособленные к быстрому побегу от опасности?


А что не так? Титан между прочим второй крупнейший спутник в солнечной системе, кольца Сатурна никуда не делись.

Титан по массе в 45 раз меньше Земли. Гравитация системы "планета - спутник" разная. Материя с большей вероятностью распределится в точках Лагранжа, чем соберется в стабильные кольца.


Почему бы не занудствовать, а просто получать удовольствие?

Вот уж не думал, что в этом сообществе не одобряются подобные вопросы.

-1
Посмотрел состав земного воздуха. Азот 78, кислород 21, углекислый газ 0 03. В три раза больше углекислого газа!!! Это же целых 0.09 %!!! Ужас))
раскрыть ветку 1
-3

Ты три с тридцатью путаешь? Думаю не стоит тебя в экипаж межзвездной экспедиции включать.

Ладно, ладно уговорил... Но только в качестве вкусной приманки, для местной фауны. :D

0
Вот тут уж точно в комментариях не хватает Илона с косяком
0

Вот таким должен был стать no man's sky.

раскрыть ветку 1
+1
Да нет же! Там должно быть еще больше кислотных пейзажей и добычи ресурсов! На кой чорт там киты?
0

что бы мне всю ночь это снилось? демон!!!

Иллюстрация к комментарию
0
Начал читать - текст напомнил передачу по natgeo, и точно, она была ниже
раскрыть ветку 1
-2

Да, передача старая, но интересная. Постов не было поэтому я решил выложить, чтобы посмотрели те кто не видел. А текст с вики, но я его литературно обработал. На вики какой-то надмозг перевод английского текста запилил читать было невозможно.

0
Какая дичь! Ng скатывается...
-1

Даже не досмотрела, настолько затянуто и скучно. Вообще я люблю такие фантазии с научной основой, но тут это так подано, что зевать хочется. О самой планете и её характеристиках почти ничего не сказано, зато о вымышленных животных больше чем надо. Я уж не говорю о графике, эти охотники на летучих китов корявее некуда. Да  пёс бы с ними, если б про условия на планете поподробнее рассказали бы, но нет. Всё интересное и более менее научное мельком, зато фантазии буйным цветом.

-1

На этой луне есть жидкая вода, следовательно, она находится в обитаемой зоне относительно звезды. Внимание, вопрос! Откуда в этой зоне взялся газовый гигант? Газовые гиганты образуются на больших расстояниях от светила, а зона обитаемости и ближе - это каменные планеты.

раскрыть ветку 3
0

миграция из-за торможения в газопылевом диске или грав. взаимодействие с другими газовыми гигантами в системе. Так появляются "горячие Юпитеры" на расстояниях всего несколько звездных радиусов от звезды(понятно же что в этом месте планета не могла сформироваться, она "скатилась" туда).

В принципе нет ничего такое необычного, если газовый гигант стал мигрировать внутрь системы, но что-то заставило его, вместе со своими спутниками, застрять в зоне "златовласки".

0

Газовые гиганты образуются вблизи звезды.

-2

Ничего ты не знаешь Джон Сноу. Есть гиганты и вблизи звезд. И это не теория, а практический факт подтвержденный телескопом Кеплер. Ну и для лун гигантов в принципе не обязательно быть в зоне обитаемости для наличия жизни. По сути спутниковая система газовых гигантов являет собой отдельную экосистему со своей зоной обитаемости вне радиационных поясов. И даже если гигант будет находиться далеко от светила энергию для поддержания жизни можно брать от вулканической деятельности, что несомненно будет присутствовать от приливных сил. Собственно первым кандидатом на обнаружение внеземной жизни является не Марс, а спутник Юпитера Европа, подо льдом которой плещется огромный, теплый океан. А разогревается он от того, что Юпитер своей гравитацией сжимает свои спутники как пластилиновые шарики. Ио так и вообще чемпион по количеству вулканов.

Похожие посты
846

Колонизация солнечной системы

Часть 4. Трава у дома

Колонизация солнечной системы Колонизация, Луна, Марс, Межпланетные перелеты, Космос, Длиннопост

Рассмотрим инфраструктуру колоний на Луне и Марсе.

Очевидно, первые полеты на другие планеты будут похожи на высадку американцев на Луну - прилетели, поработали, улетели. Но со временем появятся постоянные базы для десятка человек, а потом и полноценные колонии на тысячи.

Начало постройки базы будет выглядеть как-то так:
- прилетает спутник ДЗЗ, который строит подробнейшие карты с рельефом, по которым определяются лучшие места для посадки;
- прилетает пилотируемая миссия, подтверждается точка развёртывания базы, ставятся навигационные маяки в точки посадки (параллельно можно разворачивать лунный/марсианский «Глонасс»);
- в обозначенные точки прилетает куча беспилотных ракет, выгружают тонны оборудования, роботизированных модулей, манипуляторов и экскаваторов;
- выполняются все подготовительные работы, которые могут быть выполнены удаленно и автономно;
- в уже подготовленную временную станцию направляются отряды колонистов, которые должны будут обустроить основу для долговременной станции.

Собственно, что нужно для обеспечения колонии?
- космодром;
- жилые модули;
- электростанция;
- производство;
- биосферные модули;
- транспорт.


Космодром

Колонизация солнечной системы Колонизация, Луна, Марс, Межпланетные перелеты, Космос, Длиннопост

Космодром - основная часть инфраструктуры любой действующей колонии.

Так как что на Луне, что на Марсе отсутсвует органика, то будет необходимо регулярно снабжать колонистов едой, пластиком и резиной.

Для посадочной площадки требуется довольно прочное основание и защита прилегающих территорий от пыли, поднимаемой двигателями. И если защититься от пыли можно растянув довольно легкую термостойкую пленку, то для поверхности площадки потребуются металические листы и небольшой слой связанного грунта (аналогично бетону) под ними.

С учётом того, что в целях безопасности посадочную площадку необходимо делать на удалении от обитаемых модулей, возникает вопрос доставки людей из герметичного корабля до герметичного помещения. И тут либо аналог «кишки» в аэропорту, лило скафандры и электробусы.

В любом случае, процесс разгрузки грузового корабля потребует тяжелой автотранспортной техники.

В 100 тонн можно уложить стальную площадку диаметром 50 м и толщиной 6 мм. Достаточно мало, но если превратить реголит с помощью «эпоксидки» в аналог бетона, то и 6 мм сверху такого основания будет вполне достаточно.


Жилые модули

Колонизация солнечной системы Колонизация, Луна, Марс, Межпланетные перелеты, Космос, Длиннопост

Самая важная вещь для модуля - это герметичность и возможность выдерживать перепад давления в 1 атмосферу (на Марсе давлением местной атмосферы можно пренебречь).

Другой важный аспект - защита от радиации. Самый простой способ защитится от вредного космического излучения на планетах с твёрдой поверхностью - расположить людей за парой метров грунта. Делать панорамное смотровое окно в крыше над кроватью будет не самой хорошей идеей, если, конечно, оно не толщиной в метр. При этом маленькие боковые окна-трубы, которые идут сквозь защиту - вполне пригодны для создания психологического комфорта.

В целом, для этих целей (избыточное давление и необходимость держать массу земли) идеально подходит шарообразная форма купола, причём распределённый вес земли сверху, будет уравновешивать внутреннее давление. Это обеспечит минимальную массу конструкции и, как следствие, более дешёвую доставку модулей на Луну.

Для возведения такого модуля необходимы:
- луноход-трактор для углубления и выравнивания площадки, насыпи грунта на поверхность модуля (рыть в глубь слишком сложно, а если строить на поверхности, то все равно придётся рыть яму, чтобы добыть грунт для насыпи сверху);
- стальные арочный каркас-основа и панели, которые соединяются сваркой;
- роботы-манипуляторы, типа «Kuka» для автоматической сборки всей конструкции.

Технологический аналог таких модулей - большие нефтяные резервуары типа РВС-20000, на Земле делают без особых проблем.

Масса полусферического купола (каркас и обшивка) радиусом 10 м составит около 25 тонн, а с учётом внутренних помещений и системы жизнеобеспечения можно спокойно уложиться в 100 тонн. Стоит отметить, что объём такого строения около 4200 м3. Для человека на Земле вполне комфортно жить в 50 м3. Таким образом, купол, запускаемый одной ракетой с Земли, обеспечит жильем примерно 50 человек в комфорте или 125 по нормативам общежития, и при этом в центральной части останется большое общее пространство.


Электростанция

Колонизация солнечной системы Колонизация, Луна, Марс, Межпланетные перелеты, Космос, Длиннопост

На любой внеземной базе все оборудование будет электрическим. Отсюда возникает потребность в большом количестве мегаватт.

Может показаться, что будущие колонии будут утыканы солнечными панелями. Но это не так. Если на Марсе небольшие вспомогательные «поляны» панелей оправданы, то на Луне исключены. Основа энергетики - газовые ядерные реакторы.

Причины следующие:
- на Марсе слишком низкая энергия солнечного излучения и для 1 кВт потребуется 10 кг панелей. Есть смена суток, что повлечёт для среднего потребления 1 кВт - 20 кг панелей и 30 кг аккумуляторов, что даст 50 кг/кВт.
- на Луне очень длинная ночь, которая потребует огромного количества аккумуляторов, так как все системы должны работать круглосуточно.

Ядерный реактор может иметь удельную массу менее 30 кг/кВт (если верить данным по «Нуклону» и, что более важно, работать ночью.

Поэтому, вместо бескрайних «полей» солнечных - небольшой холмик с «полянкой» ярко-красного свечения радиаторов реактора.


Производство

Колонизация солнечной системы Колонизация, Луна, Марс, Межпланетные перелеты, Космос, Длиннопост

Основа существования любой колонии - это воздух и вода.

На Луне вода содержится в районах полюсов в виде льда, а также в очень малой доле в реголите. На Марсе в районах полюсов в виде льда, а также под поверхностью, в том числе, в жидком виде.

В случае с Марсом, если повезёт, можно пробурить скважину. А так,потребуются экспедицию на элетрогрузовике с цистерной в кратеры, поближе к полюсам, где будут добывать лёд, и доставлять обратно на станцию.

Кислород для воздуха можно получать либо из воды, либо из оксидов методом электролиза. Если организована добыча металлов, то кислород может быть побочным продуктом.

Стоит отметить, что на Марсе можно получать азот для воздуха путём обогащения местной атмосферы.

Если есть вода и кислород, то можно рассмотреть возможность добычи местных полезных ископаемых.

На Луне в большом количестве представлены:
- Кремний;
- Кальций;
- Магний;
- Железо;
- Алюминий;
- Титан (не во всех районах).
Остальное представлено в малых количествах.
На Марсе плюс-минус тоже самое.

С учётом того, что на Луне есть вода и нет особых проблем с электричеством, можно достаточно просто наладить производство (металлургическое) основных конструкционных материалов, а также стекла.

Имея железо, титан, алюминий и выполнив доставку 3D-принтеров на Луну, можно изготавливать довольно сложные изделия из металла.

Тут возникает проблема: можно спокойно делать предметы из металла и керамики, но привычную пластмассу или резину можно получить только с Земли.

Целесообразно организовать производство изделий, типа электродвигателей или аналогичной сложности, которые практически полностью состоят из металла.

Помещение завода - все тот же металлический купол, аналогичный жилым.


Биосферные модули

Колонизация солнечной системы Колонизация, Луна, Марс, Межпланетные перелеты, Космос, Длиннопост

Если вода в колонии имеет замкнутый цикл, то вот с едой возникают проблемы. Человеку нужно в среднем 2.5 кг еды в день. Разовая поставка в 100 тонн, обеспечит пищей 100 человек на год.

Современные теплицы позволяют иметь урожайность до 50 кг/м2 в год. Модуль диаметром 20 м, даст около 25 тонн овощей в год при двухъярусном варианте, а также будет утилизировать углекислый газ.

Выращивать животных спасла не имеет, так как они потребляют слишком много корма, который тяжело получить в замкнутых условиях. Проще привезти мясо с Земли.

Естественно, что биосферный модуль не сможет обеспечить полную автономность, но даст возможность несколько упростить снабжение и самое важное - обеспечить психологический комфорт людям.


Транспорт

Колонизация солнечной системы Колонизация, Луна, Марс, Межпланетные перелеты, Космос, Длиннопост

Что на Луне, что на Марсе вариантов транспорта всего 2 (не считая велосипеда):
- электропоезд;
- электромобиль.

Развитие железнодорожной сети вполне оправдано - производство подвижного состава и рельс возможно непосредственно в колонии.


Что имеем в итоге?

Внешне - радиальная сеть холмов, соединенные между собой переходами. В центре большие с производственными и биосферными модулями, по периметру жилые меньшего размера. На удалении, с одной стороны посадочные площадки, с другой ядерная электростанция. Все это связано дорогами. Колонии связаны между собой сетью железных дорог и грунтовок.

Внутри - многоэтажные интерьеры из стекла и металла, квартиры по периметру полусферы с маленькими иллюминаторами, в центре просторное общее помещение (спортивные залы, столовые, зоны отдыха). Переход из одного купола в другой, а также до производственных модулей - по длинным коридорам.


PS: Следующий пост цикла будет про экономику и стоимость таких проектов.

Показать полностью 6
608

Колонизация солнечной системы

Часть 3. Точки опоры

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

В этой части рассмотрим рациональный способ колонизации солнечной системы и логистику. Стоит отметить, что речь идёт не о разовой высадке, а про постоянно действующие полуавтономные базы, между которыми выполняются регулярные рейсы.

Подразумевается уровень технологий близкий к текущему, а это наличие аппаратов на ионных двигателях с ядерными энергетическими установками, полностью многоразовых космических кораблей, выводящих около 100 тонн на НОО и обратно.

На мой взгляд, способ освоения космоса может быть только один: создание опорных орбитальных станций, с их помощью осуществление стабильных перемещений с поверхности планет на низкую орбиту и далее между опорными станциями планет.

Очередность освоения банальна: опорные орбитальные станции на орбитах Земли и Луны - освоение Луны - орбитальная станция Марса - Марсианская база.

Чтобы человеку лететь дальше, нужен скачок технологий в части двигателей (обеспечивающий запас по скорости ближе к 100 км/с), без него постоянные пилотируемые полёты дальше пояса астероидов маловероятны - слишком большая длительность. Поэтому Каллисто и Титан - это уже очень далекая перспектива, а Церера на грани достижения аппаратами ближайшего будущего.

«Новый дивный Мир»
Первое что нужно для создания колоний - это опорные орбитальные станции.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Фотография станция «Мир»

В обозримом будущем неизбежно появление орбитальных станций, по сравнению с которыми «Мир» и МКС будут смотреться небольшими cubsat’ами.

Создание колонии, подразумевает перемещение большого количества грузов с поверхности Земли на поверхность другой планеты (спутника) и постоянное перемещение людей между ними.

Посадка и взлёт на поверхность могут быть выполнены только при помощи химических двигателей, при этом межпланетные перелеты или доставку грузов (где время не играет большого значения) выгоднее выполнять на ионных. Тут выявляется первая задача такой станции: необходимость пересадки пассажиров, накопление и загрузка контейнеров.

В целом, если речь идёт о массовых полетах, то экономически целесообразно делать разные корабли:
- для выполнения посадки на Землю (Марс) с возможность выдерживать высокие тепловые нагрузки при посадке;
- для выполнения посадок/взлёта на Луну, которые будут иметь в шесть раз меньше двигателей чем для взлёта с земли, небольшие топливные баки и без тепловой защиты;
- для выполнения пассажирских перевозок между станциями с радиационной защитой вместо тяжёлых элементов для посадки на поверхность, а также с минимальным количеством двигателей;
- для грузовых перевозок в виде медленного ионного ядерного буксира с возможностью установки множества стандартных контейнеров (хотя для космоса это скорее цилиндры).

Например, взлёт с Луны и выход на ее низкую орбиту, требует в 6 раз меньше тяги и в 7 раз меньше топлива. Соотвественно, при одинаковой выводимой массе полезной нагрузки Лунный аппарат можно сделать более чем в 6 раз дешевле.

Для перелётов между Землей и Луной не нужны мощные двигатели, которые обеспечивают взлёт с поверхности, а достаточно одного маломощного (но тут нужна оптимизация с точки зрения вероятности отказа). Топливные баки можно делать меньше примерно в 4 раза. Это все снижает массу, что позволит без особых потерь делать массивную радиационную защиту.

Туристический чартер будущего (не надо воспринимать всерьёз)

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

До тех пор, пока в колонии не начнёт функционировать производство компонентов топлива - необходимо осуществлять дозаправку ракет. Взлёт с земли не позволяет иметь на борту достаточного количества топлива для полетов даже к Луне (имеется ввиду применение и возвращение аппаратов многоразового использования). Таким образом, для любых полетов с НОО (если они не в один конец) потребуется наличие топлива на орбите. Например, чтобы заправить до полного «Starship» требуется выполнить 12 запусков и осуществить 11 стыковок с процедурой перелива топлива. Очевидно, удобнее и выгоднее выполнить заправку один раз, пристыковавшись к орбитальной станции. И быстрое обеспечение топливом - это второе основное предназначение орбитальных станций.

Появление кораблей, которые не рассчитаны на сход с орбиты (буксиры с ядерными энергоустановками), повлечёт за собой необходимость выполнения сборочных, ремонтных операций и технического обслуживания прямо в космосе. Учитывая, что вывод более 100 тонн с Земли достаточно тяжелая задача, поэтому, чтобы собрать грузовой корабль с реактором мегаватт на 30, его придётся выводить на орбиту по частям и уже на ней выполнять крупноузловую сборку. Это третья функция орбитальной станции.

Фактически на орбите Земли и любого другого «шара», где развивается колония, необходим грузовой и пассажирский порт. Соотвественно, появляется необходимость наличия постоянного рабочего персонала, для которого требуется создать комфортные условия. Тут уже неизбежно появление «центробежной» гравитации.

В итоге, на орбитах Луны, Марса (а затем и на других обозначенных планетах) получим что-то вроде МКС, с длинными фермами причалов, ядерным реактором, полями панелей радиаторов, шарообразными баками с топливом, надувными ангарами и вращающимся тором жилых модулей. По всему этому великолепию будут постоянно передвигаться «лифты» и люди в скафандрах.

Картинки, удовлетворяющей меня с инженерной точки зрения, не нашёл, поэтому прикреплю наиболее адекватную с просторов интернета.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Выгоднее иметь одну международную станцию. Чем больше - тем безопаснее при выходе из строя отдельного модуля. Чем чаще на неё летают - тем дешевле снабжение и ротация людей. Станция будет расти, пока не упрется в предел по площади панелей системы охлаждения и прочность конструкции, необходимой для выполнения коррекции орбиты.

Стоит отметить: для оптимизации запусков к Луне и Марсу наклонение орбиты станции должно быть около 25 градусов, что заставляет задуматься о роли России в этом прекрасном будущем.


Полёт с Земли на Луну будет выглядеть примерно так:
- добираешься до космопорта;
- садишься на ракету;
- взлетаешь и летишь к орбитальной станции;
- отдыхаешь с зале ожидания с видом на Землю пару часов;
- пересаживаешься на корабль с метан-кислородными двигателями до Луны;
- отлетаешь от Земной станции, летишь в космосе (по времени как трансокеанский перелёт) и выходишь на Лунной станции;
- там пересаживаешься на посадочный шаттл с водородо-кислородными двигателем, и долетаешь до Лунного космопорта;
- садишься на экспресс-луноход и едешь до нужной базы.

У нас некоторые на поезде до Чёрного моря дольше ездят.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Картинка из интернета.

Процесс доставки на Марс посылки будет примерно следующим:
- на марсианском алиэкспрессе делается заказ;
- заказ приходит в сортировочный центр космопорта;
- его вместе с другими заказами упаковывают в стандартный космический грузовой контейнер (например, цилиндр 8x12 м) и выводят к орбитальной станции;
- там автоматические манипуляторы под присмотром оператора разместят контейнер на буксире с ионными двигателями, добавит ещё штук 11 таких контейнеров (с запасными реакторами, разными консервами, компьютерной техникой, скафандрами и прочими вещами);
- далее этот космический контейнеровоз начинает свой полёт на Марс;
- на марсианской станции его разгружают и по одному контейнеру спускают с орбиты на посадочных модулях;
- далее груз сортируют и доставляют заказ уже в жилой модуль.


Про инфраструктуру колонии в следующем посте.

Показать полностью 4
63

Лунные исследования СССР. Часть 2

Лунные исследования СССР. Часть 1

Если первые запуски автоматических станций первого и второго поколения к Луне представляли собой робкие шаги по получению первых знаний о Луне, то появление в СССР носителя тяжелого класса "Протон-К" позволило осуществлять более продуктивные миссии. На этом этапе они были направлены по большей части на научное и техническое сопровождение разрабатываемого на тот момент пилотируемого полета к Луне в атмосфере гонки с США.

Первым аппаратом, который должен был совершить полет к спутнику Земли,  был представитель семейства "Зонд" (7К-Л1). Стоит упомянуть, что изначально так именовались совершенно иные станции, направляемые к Марсу, но из-за технических причин или поставленных задач не достигшие планеты.

7К-Л1 являлся существенно облегченной версией космического корабля 7К-ЛОК, запускаемой на "Протон-К" по облетной траектории вокруг Луны, из-за ограничений носителя. На борту "Зонд" размещались биологические образцы, проводились эксперименты по дальней связи, изучению радиационного фона на борту. По причине ненадежности как самого корабля, так и носителя, ограничения миссий на фоне успешных миссий "Аполлон", пилотируемые полеты не совершались. На основе 7К-Л1 был создан 7К-Л1С, выводимый на орбиту Луны носителем Н-1 из-за неготовности базового корабля 7К-ЛОК.

Лунные исследования СССР. Часть 2 Космос, Луна, Амс, СССР, Длиннопост

7К-ЛОК, который стал базой для корабля 7К-ОК "Союз", создавался для пилотируемого полета к Луне. В дальнейшем списке он приведен для общей картины.

Лунные исследования СССР. Часть 2 Космос, Луна, Амс, СССР, Длиннопост

В НПО имени Лавочкина был успешно спроектирован аппарат третьего поколения лунных станций Е-8. Он представлял собой платформу, выводимую на орбиту вокруг Луны, и совершающую мягкую посадку. На платформе размещался планетоход "Луноход". Аппарат должен был проводить физико-химические исследования лунной поверхности, провести телевизионную съемку. В планах в его задачи входили функции разведки возможных мест для посадки космонавтов, радиомаяка и транспорта.

Лунные исследования СССР. Часть 2 Космос, Луна, Амс, СССР, Длиннопост

На базе успешной платформы Е-8 было создано две модификации. Первой на свет появилась Е-8-5.  На фоне отставания в подготовке пилотируемой программы в СССР приняли решение опередить США в доставке лунного грунта. На посадочной платформе вместо самоходного аппарата разместили возвратную ракету, манипулятор для забора грунта, научное оборудование, телевизионную систему . Основная система управления была перенесена в тороидальный отсек на самой платформе. Модель Е-8-5М не имела телевизионного оборудования, а манипулятор заменили рельсовой направляющей, позволяющей брать керны с глубины до двух метров.

Лунные исследования СССР. Часть 2 Космос, Луна, Амс, СССР, Длиннопост
Лунные исследования СССР. Часть 2 Космос, Луна, Амс, СССР, Длиннопост

В основе Е-8ЛС было положено много узлов аппарата "Луноход", в частности, герметичный отсек с размещенной на ней солнечной батареей. Основной задачей станции было изучение поверхности Луны с орбиты, с применением новой телевизионной системы, гамма-спектрометра, магнитометра, радиовысотометра.

Лунные исследования СССР. Часть 2 Космос, Луна, Амс, СССР, Длиннопост

1967 год.


27 сентября. Станция 7К-Л1. Безымянная. Неудача.

Из-за блокирования линии подачи топлива не запустился один из стартовых двигателей ракеты-носителя.


22 ноября. Станция 7К-Л1. Безымянная. Неудача.

Отказ двигателя второй ступени ракеты-носителя.


1968 год.


2 Марта. Станция 7К-Л1. «Зонд-4». Частичный успех.

Станция выполнила полет на расстояние лунной орбиты. При возвращении в атмосферу спускаемый аппарат сбился с курса из-за неисправной системы астроориентации. Станция самоуничтожилась.


22 апреля. Станция 7К-Л1. Безымянная. Неудача.

Из-за ошибочного включения аварийной системы во время работы второй ступени ракеты-носителя сработала САС.


14 сентября. Станция 7К-Л1. «Зонд-5». Успех.

Станция совершила облет Луны, выполнила научную программу и вернулась на Землю.


10 ноября. Станция 7К-Л1. «Зонд-6». Частичный успех.

Станция совершила облет Луны, выполнила научную программу. При возвращении произошла разгерметизация спускаемого аппарата, что погубило биологические образцы. При спуске в атмосфере ошибка высотометра привела к отделению парашюта на высоте 5300 метров и падению станции.


1969 год.


20 января. Станция 7К-Л1. Безымянная. Неудача.

Из-за отказов двигателей второй и третьей ступеней ракеты-носителя станция не вышла на промежуточную орбиту.


19 февраля. Станция Е-8. Безымянная. Неудача.

При прохождении этапа максимального динамического давления произошло разрушение головного обтекателя ракеты-носителя.


21 февраля. Станция 7К-Л1С. Безымянная. Неудача.

Из-за возгорания в первой ступени произошло крушение ракеты-носителя.


14 июня. Станция Е-8-5. Безымянная. Неудача.

Из-за отказа Блока Д станция не вышла на опорную орбиту.


13 июля. Станция Е-8-5. «Луна-15». Неудача.

По невыясненным причинам сигнал станции прервался при выполнении посадки на лунную поверхность.


31 июля. Станция 7К-Л1С. Безымянная. Неудача.

Из-за возгорания в первой ступени произошло крушение ракеты-носителя на стартовый стол.


7 августа. Станция 7К-Л1. «Зонд-7». Успех.

Станция совершила облет Луны, выполнила научную программу и вернулась на Землю.


23 сентября. Станция Е-8-5. «Космос-300». Неудача.

Из-за отказа Блока Д станция осталась на опорной орбите.


22 октября. Станция Е-8-5. «Комос-305». Неудача.

Из-за отказа Блока Д станция осталась на опорной орбите.


1970 год.


6 февраля. Станция Е-8-5. Безымянная. Неудача.

Ошибочная команда от датчика давления отключила двигатель второй ступени-носителя во время выведения.


12 сентября. Станция Е-8-5. «Луна-16». Успех.

Станция успешно вернула образцы лунного грунта на Землю и выполняла научную работу на поверхности Луны.


20 октября. Станция 7К-Л1. «Зонд-8». Успех.

Станция совершила облет Луны, выполнила научную программу и вернулась на Землю.


10 ноября. Станция Е-8. «Луна-17». Успех.

Станция совершила посадку на лунную поверхность и доставила планетоход «Луноход-1»


1971 год.


2 сентября. Станция Е-8-5. «Луна-18». Неудача.

Из-за чрезмерного расхода топлива на ранних этапах, связь со станцией прервалась на заключительной части посадки.


28 сентября. Станция Е-8ЛС. «Луна-19». Успех.

Станция вышла на окололунную орбиту и выполнила поставленную научную программу.


1972 год.


14 февраля. Станция Е-8-5. «Луна-20». Успех.

Станция успешно вернула образцы лунного грунта на Землю и выполняла научную работу на поверхности Луны.


23 ноября. Станция 7К-ЛОК. Безымянная. Неудача.

Взрыв первой ступени ракеты-носителя.


1973 год.


8 января. Станция Е-8. «Луна-21». Успех.

Станция совершила посадку на лунную поверхность и доставила планетоход «Луноход-2»


1974 год.


2 июня. Станция Е-8ЛС. «Луна-22». Успех.

Станция вышла на окололунную орбиту и выполнила поставленную научную программу.


28 октября. Станция Е-8-5М. «Луна-23». Неудача.

Станция совершила жесткую посадку на лунную поверхность, что привело к отказу некоторых систем, грунтозаборного устройства и взлетной ракеты.


1975 год.


16 октября. Станция Е-8-5М. Безымянная. Неудача.

Из-за отказа Блока Д станция не вышла на опорную орбиту.


1976 год.


Станция Е-8-5М. «Луна-24». Успех.

Станция успешно вернула образцы лунного грунта на Землю и выполняла научную работу на поверхности Луны.


Это был последний аппарат, посланный к Луне СССР.

Показать полностью 4
309

Человека - в космос

Ответ на вопрос, что делать человечеству на других планетах.

Человека - в космос Космос, Человечество, Луна, Марс, Полёты в космос, Длиннопост

Предлагаю рассмотреть вопрос колонизации соседних планет и спутников с точки зрения мотивации, не касаясь финансовой стороны вопроса. В моем понимании, денежный вопрос вторичен, зависит от существующих технологий и степени необходимости осваивать космические просторы.

Рассмотрю 2 сценария для каждого из которых присутствуют свои интересы на солнечную систему:
- первый для текущего политического положения, где все страны практически конкурируют между собой;
- второй для объединённого в одну глобальную страну мира (утопическая, а может и антиутопическая перспектива, но возможная).


«Каждый сам за себя»
В данной концепции основной движущей силой является конкуренция стран: военная, экономическая и политическая.

Человека - в космос Космос, Человечество, Луна, Марс, Полёты в космос, Длиннопост

Основным фактором развития космоса а ХХ века было военное и политическое соперничество США и СССР.
Гагарин полетел (далее грубое обобщение) вместо фоторазведовательной аппаратуры на ракете, которая предназначалась в своей базе для доставки ядерных боеголовок старым союзникам. Армстронг гулял по Луне, лишь для того, чтобы у США тоже был свой «первый человек».
Станция «Мир» и «Space Shuttle» - последствия все той же военно-политической конкуренции.

Сейчас XXI век, глобальные игроки сменились. Теперь «первый человек» требуется уже Китаю, деньги и технологии есть, осталось подождать. И для этой цели вполне подойдёт создание небольшой лунной базы или полёт к Марсу. Сразу город на Луне не построят, но запустят цепную реакцию, где США (и тем кто потянет) придётся отвечать. Каждый полёт, каждый новый модуль - это совершенствование технологий освоения космоса, что позволит, сделав «небольшой шаг для человека», через некоторое время «протоптать тропинку», а потом и «проложить автобан» на другие планеты.

Другой аспект - экономический. Фактически, Луну и Марс можно рассматривать как Америку, когда ее начало осваивать Европейцы. Принцип будет простой: кто первый территорию занял - тому она и будет принадлежать. Нужна она или нет, покажет время, а соорудив серию баз по периметру - можно половину видимой стороны Луны сделать своей. Но это произойдёт, естественно, после создания необходимых технологий.


«Один за всех»
Главная мотивация объединённого человечества (предполагаем, что это позитивный сценарий, а не тотальное угнетение) - выполнение глобальных задач и научное развитие (второе, конечно, маловероятно)

Человека - в космос Космос, Человечество, Луна, Марс, Полёты в космос, Длиннопост

Когда мир объединён и целью правящего класса является прибыль - то эксплуатировать остаётся только своих граждан. Чтобы прибыли было много и постоянно, а граждане не сильно возмущались, нужно ставить глобальные задачи, в выполнении которых задействованы огромные массы людей. Но что еще более важно, эти глобальные задачи должны нравятся людям. Идеальный пример - колонизация Марса: строим металлургические заводы, химические, конвейеры по производству ракет и космических кораблей, вводим налог на освоение космоса для спасения человечества и устраиваем лотерею для полетов на Марс - и все счастливы. Все работают для великой цели, а прибыль с ракет идёт.

Научное развитие - самый лучший вариант. Познаем другие планеты, ищем внеземную жизнь, вместо Эвереста покоряем Олимп. Авианосные соединения, ядерное оружие и прочие средства уничтожения иностранных партнеров в рамках единого мира строить уже не надо, и ресурсы можно перенаправить на космическую сферу. Ну и очевидное для науки - заселяем другие планеты, чтобы если прилетит метеорит/комета или иной «конец света», то сохранить человечество как вид.


Варианты, при которых человечество начнёт осваивать космос, есть и для них понятна мотивация. Так что вполне вероятно, следующее поколение уже будет иметь постоянные базы вне Земли.


В посте использованы кадры из к/ф «Планета бурь».


PS:
@Uberkreatur написал пост Космическая экспансия человечества
В нем разобраны кратко экономика и мотивация для космической экспансии. Кому тема космической экспансии интересна - советую прочитать.

Показать полностью 2
139

Лунные исследования СССР. Часть 1

После запуска первых спутников Земли, внимание ОКБ-1 и Академии Наук СССР обратилось к исследованию дальнего космоса, Луны, Венеры и Марса. В данном посте кратко указаны первые шаги, направленные на полеты к Луне АМС, и их результаты.


Для закрепления лидерства СССР, конструкторское бюро Королева разработало аппараты серии Е-1.  Относительно простые станции, чем то схожие со "Спутником", выводимые  на траекторию столкновения с Луной ракетой-носителем 8К72 ("Луна", "Восток-К"). Данный носитель представлял собой модификацию Р-7, снабженную третьей ступенью, Блоком Е. Станции предназначались для исследования околоземного и окололунного космического пространства. Модификация 1А оснащалась улучшенными научными приборами.

Лунные исследования СССР. Часть 1 Космос, Луна, Амс, История, СССР, Длиннопост

Станция серии Е-1/1А

После достижения поверхности Луны, ОКБ-1 создали станции серии Е-2, предназначенные для пролета вокруг Луны, фотографирования ее обратной стороны и получения научных данных.

Модель Е-2А оснащалась телекоммуникационной системой, созданной М.Е.Рязанским (НИИ-885). Модель Е-3 оснащалась улучшенными теле- и радиосистемами.

Лунные исследования СССР. Часть 1 Космос, Луна, Амс, История, СССР, Длиннопост

Станция серии Е-2А/Е-3.

1958 год.


23 сентября. Станция Е-1. Безымянная. Неудача

Из-за резонансных колебаний в двигателях первой ступени произошло разрушение «пакета» ракеты-носителя.


11 октября. Станция Е-1. Безымянная. Неудача.

Из-за резонансных колебаний в двигателях первой ступени произошел взрыв ракеты-носителя.


4 декабря. Станция Е-1. Безымянная. Неудача.

Отказ двигателя второй ступени ракеты-носителя.


1959 год.


2 января. Станция Е-1. «Луна-1». Частичный успех.

Из-за ошибки в управлении станция пролетела мимо Луны. Получены научные данные из околоземного, окололунного и межпланетного космического пространства.


16 июня. Станция Е-1А. Безымянная. Неудача.

Отказ гироскопа инерциальной навигационной системы управления во время работы второй ступени ракеты-носителя.


12 сентября. Станция Е-1А. «Луна-2». Успех.

Жесткая посадка на поверхность Луны. Получены научные данные из околоземного и окололунного космического пространства.


4 октября. Станция Е-2А. «Луна-3». Успех.

Получены фотографии обратной стороны Луны и научные данные из околоземного и окололунного космического пространства.


1960 год.


15 апреля. Станция Е-3. Безымянная. Неудача.

Из-за не полностью заправленного бака керосина третьей ступени станция не набрала нужной скорости, достигнув расстояния в 200 000 км.


19 апреля. Станция Е-3. Безымянная. Неудача.

Из-за неполной тяги двигателя блока первой ступени во время старта произошло разрушение «пакета» ракеты-носителя.


Разработанная в дальнейшем серия Е-6 отличалась уже намного более сложной модульной структурой и предназначалась для совершения мягкой посадки на поверхность Луны, фотографирования ее и сбора научной информации. Выводилась на траекторию попадания в Луну четырехступенчатой ракетой-носителем "Молния" (8К78), оснащалась корректирующе-тормозной двигательной установкой.

Лунные исследования СССР. Часть 1 Космос, Луна, Амс, История, СССР, Длиннопост

Станция серии Е-6

1963 год.


4 января. Станция Е-6. Безымянная. Неудача.

Отказ трансформатора четвертой ступени ракеты-носителя, четвертая ступень повторно не включилась, станция осталась на опорной орбите.


3 февраля. Станция Е-6. Безымянная. Неудача.

Из-за неправильной настройки системы управления не включилась третья ступень ракеты-носителя.


2 апреля. Станция Е-6. «Луна-4». Неудача.

Из-за отказа навигационной системы не удалось совершить планируемую коррекцию, и станция прошла мимо Луны.


1964 год.


21 марта. Станция Е-6. Безымянная. Неудача.

Отказ двигателя третьей ступени ракеты-носителя.


20 апреля. Станция Е-6. Безымянная. Неудача.

Отказ системы управления четвертой ступени ракеты-носителя.


1965 год.


12 марта. Станция Е-6. «Космос-60». Неудача.

Из-за сбоя трансформатора блока питания не подана команда на включение двигателя четвертой ступени ракеты-носителя.


10 апреля. Станция Е-6. Безымянная. Неудача.

Отказ двигателя третьей ступени ракеты-носителя.


9 мая. Станция Е-6. «Луна-5». Неудача.

Из-за сбоев навигационной системы и ошибочной команды, станция упала на поверхность Луны.


8 июня. Станция Е-6. «Луна-6». Неудача.

Из-за ошибочной команды во время промежуточной коррекции станция пролетела мимо Луны.


4 октября. Станция Е-6. «Луна-7». Неудача.

Оптический датчик положения Земли был установлен под неверным углом, из-за чего не удалось запустить тормозной двигатель. Станция упала на поверхность Луны.


3 декабря. Станция Е-6. «Луна-8». Неудача.

Станция потеряла управление во время торможения, что привело к преждевременному отключению тормозного двигателя. Станция упала на поверхность Луны.

В апреле 1965-го года, из-за перегруженности ОКБ-1 программой пилотируемых полетов и череды неудач, вся документация и производство АМС было передано в НПО имени Лавочкина, генеральному конструктору Бабакину. Где приступили к изучению новой тематики, анализу проблем, налаживанию производства модифицированных станций.

Е-6М отличалась измененными посадочными амортизаторами и новой навигационной системой.

Для опережения американцев в создании лунной орбитальной станции, Бабакин предложил использовать задел Е-6М, заменив посадочный аппарат на герметичный отсек, наполненный целевой аппаратурой.

Первой такой станцией стал аппарат Е-6С, стабилизируемый вращением. Следующим шагом была серия Е-6ЛФ, оснащенная, кроме научной аппаратуры, системами фотосьемки, для получения снимков лунной  поверхности. После обнаружения значительного влияния массконов на орбиту лунных станций, было принято решение о создании Е-:ЛС. Оснащенных тем же спектром приборов, но с улучшенными системами навигации (для картирования лунных массконов) и связи (для тестирования в рамках подготовки к пилотируемому полету)

Лунные исследования СССР. Часть 1 Космос, Луна, Амс, История, СССР, Длиннопост

Е-6С (без маршевой ступени).

Лунные исследования СССР. Часть 1 Космос, Луна, Амс, История, СССР, Длиннопост

Станция серии Е-6ЛФ/Е-6ЛС.

1966 год.


31 января. Станция Е-6М. «Луна-9». Успех.

Станция совершила мягкую посадку на поверхность Луны и выполнила научную программу.


1 марта. Станция Е-6С. «Космос-111». Неудача.

Двигатель четвертой ступени повторно не включился. Станция осталась на околоземной орбите.


31 марта. Станция Е-6С. «Луна-10». Успех.

Станция вышла на окололунную орбиту и выполнила научную программу.


24 августа. Станция Е-6ЛФ. «Луна-11». Частичный успех.

Станция вышла на окололунную орбиту, но из-за проблем в двигателе ориентации не удалось провести фотографирование поверхности Луны и часть научных экспериментов.


22 октября. Станция Е-6ЛФ. «Луна-12». Успех.

Станция вышла на окололунную орбиту и выполнила научную программу.


21 декабря. Станция Е-6М. «Луна-13». Успех.

Станция совершила мягкую посадку на поверхность Луны и выполнила научную программу.


1967 год.


7 февраля. Станция Е-6ЛС. «Космос-159». Частичный успех.

Из-за преждевременного отключения четвертой ступени станция не смогла выйти на расчетную околоземную орбиту. Но смогла выполнить часть поставленных научных и технических задач


16 мая. Станция Е-6ЛС. Безымянная. Неудача.

Отказ третьей ступени.


7 апреля. Станция Е-6ЛС. «Луна -14». Успех.

Станция вышла на окололунную орбиту и выполнила научную программу.


В конце этого года прошли первые запуски аппаратов серии "Зонд" на носителе "Протон-К". Но об этой новой вехе советских исследований будет написано отдельно.

Показать полностью 3
138

NASA заключило контракт с компанией ICON на разработку и производство технологий 3D-печати жилищ на поверхности Луны

В рамках программы Artemis NASA разработало проект по созданию 3D-печатных элементов, которые позволят построить на спутнике Земли дешевое жилье для постоянного пребывания. Процесс строительства посадочных площадок, жилищ и дорог на Луне, вероятно, будет выглядеть иначе, чем на Земле. Роботы для земельных работ, например, должны быть легкими, но способными копать грунт в условиях пониженной гравитации. Крупномасштабная строительная система могла бы быть автономной и способной функционировать без помощи астронавтов.

NASA заключило контракт с компанией ICON на разработку и производство технологий 3D-печати жилищ на поверхности Луны NASA, Icon, 3D печать, Луна, Космонавтика, Космос, SpaceX, Starship, Технологии, США, Строительство, Длиннопост

Чтобы создать такую систему NASA решило использовать технологии 3D-печати. Для этого агентство заключило контракт с компанией ICON, согласно которому совместное подразделение займется исследованиями и разработкой космической строительной системы. ICON была выбрана не случайно: компания уже имеет опыт создания 3D-печатных домов на Земле и участвовала в проекте NASA 3D Printed Habitat Challenge, где продемонстрировала оригинальную технологию строительства, которую можно адаптировать для условий за пределами нашей планеты.

NASA заключило контракт с компанией ICON на разработку и производство технологий 3D-печати жилищ на поверхности Луны NASA, Icon, 3D печать, Луна, Космонавтика, Космос, SpaceX, Starship, Технологии, США, Строительство, Длиннопост

ICON будет работать с Центром космических полетов имени Маршалла NASA в Хантсвилле в рамках проекта Moon to Mars Planetary Autonomous Construction Technologies (MMPACT). Для тестов компания будет использовать искусственный лунный грунт и опробует на нем различные технологии печати и обработки. В рамках проекта MMPACT NASA сотрудничает с промышленными предприятиями, правительством и академическими институтами.

NASA заключило контракт с компанией ICON на разработку и производство технологий 3D-печати жилищ на поверхности Луны NASA, Icon, 3D печать, Луна, Космонавтика, Космос, SpaceX, Starship, Технологии, США, Строительство, Длиннопост

В случае успеха тестов агентство обещает выделить ICON дополнительное финансирование и провести реальные испытания технологии на лунной поверхности.

NASA заключило контракт с компанией ICON на разработку и производство технологий 3D-печати жилищ на поверхности Луны NASA, Icon, 3D печать, Луна, Космонавтика, Космос, SpaceX, Starship, Технологии, США, Строительство, Длиннопост

Источник: https://www.popmech.ru/science/news-628253-nasa-ispolzuet-3d...

Показать полностью 3
35

Bryce: кто и когда полетит к Марсу в 20-е годы. Прогноз

Вячеслав Ермолин — 5 октября 2020 года


На портале Bryce опубликован прогноз (инфографика) о космической деятельности на ближайшие 10 лет. Прогноз по трем категориям: пилотируемые программы на орбите Земли (модули ОС, пилотируемые и грузовые миссии), полеты к Луне (беспилотные и пилотируемые), полеты к Марсу (беспилотные).

По данным Bryce cделал отдельно инфографику по каждому направлению.

Первая — пилотируемые миссии на орбиту Земли.

Вторая — пилотируемые, грузовые и научные миссии к Луне.

Третья — научные и исследовательские миссии к Марсу:

Bryce: кто и когда полетит к Марсу в 20-е годы. Прогноз Космос, Космонавтика, Марс, Луна, Прогноз, Длиннопост

Одиночные миссии с посадкой на поверхность Марса, работа марсоходов. Исследование Марса с орбиты. Возвращение грунта с Марса на Землю (американцы) и грунта со спутника Марса (японцы). У России нет собственной миссии, только совместно с Европой. Индия планирует отправку еще одной АМС к Марсу. Планы Китая ограничиваются стартом первой АМС в 20-м году.


Марсианская программа, по известным планам, выглядит как продолжение прошлых десятилетий — неспешное исследование Марса с орбиты и на поверхности автоматическими станциями и марсоходами. С небольшим расширением участников.


Для сравнения можно оценить интенсивность полетов у Земли. Пилотируемые и грузовые миссии. Строительство новой станции (китайской) и расширение существующей (МКС).

Bryce: кто и когда полетит к Марсу в 20-е годы. Прогноз Космос, Космонавтика, Марс, Луна, Прогноз, Длиннопост

Лунная программа: пилотируемые, грузовые и исследовательские миссии к Луне с высадкой на поверхность. Строительство лунной орбитальной станции. Начало строительства лунной базы.

Bryce: кто и когда полетит к Марсу в 20-е годы. Прогноз Космос, Космонавтика, Марс, Луна, Прогноз, Длиннопост

Выводы:

■ 20-е годы не будут «десятилетием Марса». Это звание за Луной.

■ Все миссии являются научно-исследовательскими, в рамках относительно небольших бюджетов национальных космических организаций.

■ Русская марсианская программа ограничена участием в проекте ЭкзоМарс — программы прошлого десятилетия, в силу обстоятельств отложенной на будущее время.

■ Китайская марсианская программа делает первые шаги. Результаты первой китайской миссии к Марсу позволят разработать будущую программу исследования Марса.

■ Расширяется число участников, все «космические страны», в количестве шести, тем или иным образом будут представлены в марсианских миссиях.


Замечание:

1. Оценка Bryce опирается на известные планы государств, финансирующих программы исследования Марса. Это консервативная оценка. В реальности может быть как уменьшение планируемых миссий, так и появление новых проектов.


2. Вопросы престижа и развития возможностей могут подтолкнуть руководство России к финансированию дополнительной миссии к Марсу. Если будут деньги и амбиции.


3. Вне прогноза остаются планы частных компаний, в первую очередь SpaceX, по исследованию или даже «колонизации» Марса. Высокая неопределенность в подобных проектах не позволяет оценить реальность этих планов и сроки реализации. От частником можно ожидать отправки мелких аппаратов (за государственные деньги).


Ссылка на первую часть — пилотируемые полеты

Ссылка на вторую часть — полеты к Луне

Ссылка на отчеты Bryce

Высокое разрешение — Земля, Луна, Марс


Оригинальная инфографика Bryce.

Bryce: кто и когда полетит к Марсу в 20-е годы. Прогноз Космос, Космонавтика, Марс, Луна, Прогноз, Длиннопост
Показать полностью 3
437

Жизнь на Венере!

Новость номер один сегодня — сообщение об обнаружении жизни на Венере. Уже много десятилетий астрономы предполагали, что облака в верхних слоях атмосферы этой планеты могут содержать микроорганизмы. И вот наконец-то, астрономы смогли зарегистрировать, следы жизнедеятельности микробов, живущих в средах, лишенных кислорода.


Вместе с астрономом Пулковской обсерватории попытаемся разобраться, что же все-таки обнаружено, в чем сенсация этой новости и кто может обитать на Венере.

Официальный пресс-релиз этой новости состоялся в 14.09.2020 18:00 (МСК). Однако некоторые недобросовестные СМИ стали сливать эту информацию значительно раньше, наплевав на все правила публикации релиза. Ну а так, как уже можно об этом говорить, то приведем краткое содержание этой новости.


Группа астрономов из университета Кардиффа в Великобритании обнаружила в спектре облаков Венеры редкую молекулу: фосфин. На Земле этот газ образуется только или в ходе производственных процессов, или в результате жизнедеятельности микробов, живущих в средах, лишенных кислорода. Регистрация фосфина может указывать на присутствие внеземной жизни. Обнаружить эти молекулы удалось при помощи телескопа Джеймса Клерка Максвелла (JCMT) в Восточно-Азиатской обсерватории на Гавайских островах. Для подтверждения этого открытия пришлось задействовать 45 антенн Большой Атакамской миллиметровой и субмиллиметровой антенной решетки (ALMA) в Чили, более чувствительного телескопа, который Европейская Южная обсерватория (ESO) эксплуатирует на партнерских началах. Оба астрономических инструмента наблюдали Венеру на длине волны около 1 мм.


Исследователи из Великобритании, Соединенных Штатов и Японии провели оценку концентрации фосфина и пришли к выводу, что такое количество молекул не могло образоваться в результате небиологических процессов на планете, например в результате воздействия солнечного света или вулканических извержений. Наши современные представления о химии фосфина в атмосферах каменистых планет исключают возможность его небиологического образования на Венере.

Жизнь на Венере! Наука, Космос, Астрономия, Венера, Жизнь, Видео, Длиннопост, Внеземная жизнь

На картинке ниже — изображение спектра, полученного на телескопе JCMT (серый) и на телескопе ALMA (белый).


Плавая в верхних слоях атмосферы Венеры в составе облаков, молекулы фосфина поглощают миллиметровые волны определенной длины, излучаемые на более низких высотах. Наблюдая планету в миллиметровом диапазоне длин волн, астрономы могут выявить эту линию поглощения фосфина в виде депрессии в спектре.

Жизнь на Венере! Наука, Космос, Астрономия, Венера, Жизнь, Видео, Длиннопост, Внеземная жизнь
Показать полностью 2
283

Ученые нашли возможные признаки жизни на Венере

На Венере, второй от Солнца планете, обнаружено вещество фосфин, которое многими учеными называется возможным указателем на существование живых организмов. Как сообщает издание Astrobiology.com, сообщить об этом открытии планирует в ближайшее время Королевское астрономическое общество Британии.

Сообщается, что некоторым журналистам под эмбарго был разослан соответствующий пресс-релиз. По данным источников, осведомленных о сути открытия, фосфин был обнаружен в атмосфере планеты, и его открытие говорит как минимум о наличии в ней сложных химических процессов, не известных ранее. Присутствие этой молекулы было выявлено при помощи радиообсерватории ALMA в горах Чили и инфракрасного телескопа Джеймса Кларка Максвелла на Гавайях. В открытии принимали участие астрономы из Университета Манчестера, Университета Кардиффа и Массачусетского технологического института.

Ученые нашли возможные признаки жизни на Венере Венера, Космонавтика, Космос, Микробы, Астрономия, Внеземная жизнь, Технологии, Великобритания, США

Фосфин — это бесцветный очень ядовитый газ. На Земле его производят анаэробные, то есть не требующие наличия кислорода, микроорганизмы. В 2019 году поиск фосфина в атмосферах экзопланет (планет у других звезд) был предложен в качестве маркера возможной жизни на них. Из-за высокой температуры и давления у поверхности, а также химического состава атмосферы, Венера большинством ученых считается непригодной для существования жизни. Фосфин был обнаружен в тех слоях атмосферы Венеры, где ранее некоторыми учеными допускалось существование микроорганизмов. При этом его объемы не могут объясняться абиотическими механизмами, в которых не участвуют живые организмы. Исследование должно быть опубликовано в журнале Nature Astronomy.

Ученые нашли возможные признаки жизни на Венере Венера, Космонавтика, Космос, Микробы, Астрономия, Внеземная жизнь, Технологии, Великобритания, США

Источник: https://www.gazeta.ru/science/news/2020/09/14/n_14937410.sht...

Показать полностью 1
782

В атмосфере Венеры найдены следы бактериальной жизни (но это не точно)

В атмосфере Венеры найдены следы бактериальной жизни (но это не точно) Космос, Видео, Длиннопост, Венера, Внеземная жизнь, Бактерии

Утечка из статьи на earthsky ( ныне 404). На утку не похоже.


Кешированная версия статьи :


https://webcache.googleusercontent.com/search?q=cache%3AdUWrpm80WHsJ%3Ahttps%3A%2F%2Fearthsky.org%2F%3Fp%3D343883+&cd=1&hl=en&ct=clnk&gl=uk&ref=dtf.ru


Кроме того, на оф. канале MIT до недавнего времени было видео с комментариями авторов открытия, но теперь и к нему ограничили доступ. Однако, на другом канале сохранился фрагмент оригинала :


https://www.youtube.com/watch?v=BBDyp06qp1U&feature=emb_...


Кому лень читать\смотреть, тезисы вкратце:


- источники — MIT, университеты Кардиффа и Манчестера
- открытие подтверждено тремя телескопами независимо
- по современным представлениям фосфин производится либо бактериями, либо в лабораториях
- вроде как в недрах газовых гигантов он тоже есть, но на каменистых планетах это однозначный биомаркер ( о чем неоднократно говорилось ранее)
- фосфин производят только анаэробные бактерии, а на Венере кислорода нет
- фосфин обнаружен именно в высоких слоях атмосферы где давление\температура близки к земным — то есть там, где и мы рассчитывали бы его найти
- были учтены все возможные источники фосфина ( вулканы, минералы и т.д. ), но их суммарный вклад не составил бы и 1\10000 того количества, которое было найдено ( таким образом версия с тем что советские «Венеры» могли занести бактерии, видимо, также отпадает )
- опять же, по современным представлением пару миллиардов лет назад, до парникового эффекта, Венера была вполне пригодна для обитания и могла иметь поверхностные водяные океаны - соответственно, атмосферные бактерии могут быть единственной уцелевшей жизнью с тех времен

Надеюсь, ничего переврал, поправьте если что.


Руководитель исслед. группы тоже не человек с улицы:


https://www.cardiff.ac.uk/people/view/913804-greaves-jane


Если, может быть, вдруг, маловероятно, но ЕСЛИ информация подтвердится и не будут найдены альтернативные источники фосфина — это станет одним из важнейших открытий в истории человечества. Если странные микробные формы жизни обитают даже на соседней планете, значит Вселенная кишит жизнью. И мы точно не одни.


Согласно информации из статьи официальный анонс должен состояться завтра, 14 сентября. Ждем.



Кстати, это тот самый газ :

В атмосфере Венеры найдены следы бактериальной жизни (но это не точно) Космос, Видео, Длиннопост, Венера, Внеземная жизнь, Бактерии
Показать полностью 1
1083

Небесная механика наглядно

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Давайте представим, что нам нужно запустить футбольный мяч на орбиту Земли. Никакие ракеты не нужны! Хватит горы, высотой 100 километров и недюжинной силы. Но насколько сильно нужно пнуть мяч, чтобы он никогда больше не вернулся на Землю? Как отправить мяч в путешествие к звёздам, имея только грубую силу и знание небесной механики?


Сегодня в программе:


Бесконечные возможности одной формулы

Как взять энергию у Юпитера

Откуда у планет берутся кольца

Как математика помогла открыть Нептун


Благо, мы живём в век компьютерных технологий. Нам не нужно забираться на высокую гору и пинать мяч со всей силы, всё можно смоделировать! Давайте приступим.


Одна формула


Та самая, известная с уроков физики и астрономии:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Показывает, насколько сильно будут взаимодействовать тела, в зависимости от их масс, расстояния между ними и гравитационной постоянной G.


Я написал программу, в которой можно расставлять шарики, взаимодействующие друг с другом силами гравитации, при этом у каждого шарика есть своя масса, скорость и координаты. Для наглядности шарики оставляют за собой след.


Давайте поставим большой и массивный голубой шар(Землю) и маленький красный мячик недалеко от него. Запускаем симуляцию:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Он упал!


Для выхода на орбиту нужна скорость, чтобы шарик падал и все время промахивался мимо Земли. Но КАКАЯ скорость? И снова школьные знания приходят на помощь:


Минимальная скорость, необходимая для выхода на орбиту Земли называется первой космической скоростью.


Для Земли она равна 7.91 км/с. А для симуляции её можно легко вычислить:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Разгоняем мячик и смотрим результат

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Полёт нормальный!


Шарик описывает окружность с Землёй в центре. Что будет, если придать ему чуть больше скорости? Сейчас проверим:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Теперь форма орбиты эллиптическая, можно выделить 2 очень важные точки — апогей и перигей.


Апогей — это точка, в которой мячик максимально удалён от Земли.


Перигей — наоборот, самая близкая к Земле точка.


При увеличении начальной скорости перигей не меняется, а вот апогей становится всё дальше, и в конце концов имеет бесконечное расстояние до Земли. Тут мы вплотную приблизились к понятию второй космической скорости. Это скорость, которую надо придать шарику, чтобы он преодолел гравитацию Земли и улетел бороздить просторы вселенной. Для земли она равна 11.2 км/с.


Интересный фокус: если мы умножим первую космическую скорость на √2, то получим вторую космическую.


Умножили. Запустили. Получили:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Он улетел безвозвратно! Кстати, теперь он имеет параболическую орбиту. А если запустить шарик ещё сильнее, получим гиперболу. Интересно получается, везде нас преследует математика.


При этом формула остаётся всё той же. Окружность превращается в эллипс, эллипс в параболу, а парабола в гиперболу из-за вытягивания орбиты(увеличения эксцентриситета).


Как взять энергию у Юпитера?


Давайте расширим нашу модель, добавим Солнце, заставим Землю крутиться вокруг него.

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Представим, что мячу нужно придать такую скорость, чтобы он улетел за пределы Солнечной системы — третью космическую скорость. В реальном мире она равна 16.7 км/с. К сожалению, эта скорость слишком большая, боюсь, нам не хватит сил…


Постойте! А что, если забрать немного скорости у какого-нибудь массивного тела, например, Юпитера. Мы можем подлететь к чему-то очень массивному и совершить гравитационный манёвр. При пролёте мимо Юпитера силы гравитации взаимно притягивают мячик и газовый гигант, но масса мячика настолько мала, что почти никак не влияет на движение Юпитера, а сам Юпитер разгоняет пролетающее мимо тело до высоких скоростей.


Меньше слов — больше дела:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Момент гравитационного манёвра — шарик подлетел к Юпитеру.

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Ура! Мы получили скорость, достаточную для выхода из Солнечной системы, при этом ничего не потратили. Правда, Юпитер стал двигаться чуть медленнее, но мы этого точно не заметим.


Все космические аппараты, запущенные человеком за пределы солнечной системы («Вояджеры» 1 и 2, «Пионеры» 10 и 11, «Новые горизонты») использовали именно такой способ для ускорения.


Увеличиваем масштаб!


Я добавил трение частиц, чтобы, сталкиваясь, они передавали часть энергии друг другу. Также я ввёл силу нормальной реакции, теперь частицы уважают своё личное пространство, отталкивая от себя других.


Поставим случайную генерацию шариков и зададим им случайное направление и скорость. Пусть их будет, допустим, 100 штук.

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Полный хаос, каждая частица движется куда хочет, но всё же силы гравитации берут своё, и начинают образовываться скопления шариков:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

И через некоторое время получается большое тело, состоящее из 99 шариков и один-единственный шарик, обращающийся вокруг него:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

При другом запуске получилось следующее:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Два массивных тела, обращающихся вокруг общего центра масс. Если представить, что эти два объекта — звёзды, то мы получили двойную звезду. Интересно, что примерно половина звёзд в нашей галактике — двойные. Если бы у нашего Солнца была звезда — компаньон, то в небе мы могли бы наблюдать такую картину:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Откуда у планет берутся кольца?


Основная причина появления колец — это разрушение спутников, подлетевших слишком близко к планете, а точнее, пересёкших предел Роша. В таком случае приливные силы, вызываемые гравитацией планеты, становятся больше сил, удерживающих спутник целым, и он разрывается на много частей, оставляя после себя кольцо, которое опоясывает планету. Давайте смоделируем эту ситуацию:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Спутник чуть дальше предела Роша, он вращается вокруг планеты по стабильной круговой орбите. Но что будет, если сгенерировать его чуть-чуть ближе к планете?

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Спутник разлетелся на множество маленьких частей, которые образовали кольца вокруг планеты. Так же и в реальном мире. Тритон (спутник Нептуна) постепенно приближается к планете, и через 2 миллиарда лет будет разорван, а у Нептуна появятся кольца больше, чем у Сатурна.


Как открыли Нептун и при чём здесь математика?


Раз уж зашла речь о Нептуне, давайте поговорим о его открытии. «Планета, открытая на кончике пера» имеет массу, а значит, действует на объекты вокруг. Астрономы 19 века заметили изменения в орбите Урана, его орбита отличалась от расчётной, видимо, что-то влияло на него. Орбита Урана имела возмущения:

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Это утрированная модель показывает, как неизвестное тело за Ураном влияло на его орбиту. Астрономам оставалось только вычислить положение тайной планеты и посмотреть в телескоп. Действительно, планета Нептун оказалась именно там, где её и предсказывали!

Небесная механика наглядно Космос, Вселенная, Небесная механика, Компьютерное моделирование, Длиннопост

Заключение


Конечно, эта симуляция не обобщает все законы и явления, происходящие в космосе, например, здесь не учитывается теория относительности Эйнштейна, так как скорость частиц далека от скорости света. Но есть ещё много интересных вещей, которые можно реализовать в этой симуляции. Попробуйте сами! Понадобится только Python3 и библиотека Pygame.

https://habr.com/ru/post/494546/

Показать полностью 18
82

Внеземные цивилизации предложили искать по космическому мусору

Внеземные цивилизации предложили искать по космическому мусору Космос, Вселенная, Внеземная жизнь, Космический мусор

Искать внеземные цивилизации можно не только по радиосигналам, но и по космическому мусору, окружающему их планеты, сообщается в статье, принятой к публикации в Astrophysical Journal. Испанский астроном Гектор Сокас-Наварро (Hector Socas-Navarro) полагает, что спутники и станции должны оставлять характерный отпечаток на кривой блеска звезды во время прохождения по диску светила, причем увидеть его возможно даже современными инструментами.

В основе проектов SETI по поиску внеземной жизни лежит предположение, что технологически развитая цивилизация так или иначе должна будет со временем прийти к созданию систем радиосвязи, включая искусственные спутники. Из этого следует, что она также, вероятно, будет заниматься и освоением космоса — постройкой космических кораблей и обитаемых станций. При этом со временем на орбите может накопиться достаточно большое количество аппаратов, в том числе и вышедших из строя (космический мусор), и они станут заметны даже для современных телескопов, изучающих другие звезды в поисках экзопланет.

Окружающие гипотетически обитаемую планету устройства (рабочие и нерабочие) автор работы Гектор Сокас-Наварро назвал поясом Кларка. Ученый провел несколько симуляций, в которых он выяснил, какой след будет оставлять пояс Кларка на кривой блеска материнской звезды во время транзита. В своей работе Сокас-Наварро рассмотрел несколько планет, включая Землю, Проксиму b и TRAPPIST-1 d, e, f, g. Общая масса всех искусственных объектов на орбите вокруг небесных тел варьировалась от 1012 до 1014 килограмм; в среднем, каждый аппарат или его фрагмент имел радиус около одного метра и массу 100 килограмм.

Исследователи пришли к выводу, что лучше всего пояс Кларка (при его достаточной плотности) будет видно в системе из красного карлика и планеты на тесной орбите. Согласно симуляциям, 10-метровый телескоп, работающий в ИК-диапазоне (например, один из инструментов гавайской обсерватории Мауна-Кеа) сможет зарегистрировать искусственные объекты вокруг Проксимы b. Кроме того, подобный телескоп сможет увидеть пояс Кларка вокруг большинства планет системы TRAPPIST-1 — TRAPPIST-1d, -e и -f. С планетой, похожей на Землю, ситуация несколько сложнее: увы, если она будет вращаться вокруг солнцеподобой звезды, современные инструменты не смогут разглядеть вокруг нее следы внеземной цивилизации — учитывая современный темп развития технологий, телескопы смогут обнаружить пояс Кларка на орбите другой планеты, похожей на Землю, не ранее, чем через 200 лет.

Основная сложность, которая может возникнуть при поиске космического мусора вокруг планет, заключается в сходстве его «отпечатков» на кривой блеска с признаками существования колец. С другой стороны, Сокас-Наварро считает, что последующие наблюдения позволят астрономам отличить одно от другого. Кроме того, многое будет зависеть от типа самой планеты (например, газовый гигант это или землеподобное тело) и результатов последующих поисков экзолун и колец за пределами Солнечной системы.

Несмотря на потенциальную пользу для контакта с внеземными цивилизациями, космический мусор представляет большую угрозу для будущих пилотируемых миссий. По подсчетам Европейского космического агентства, сегодня на околоземной орбите находится 750 тысяч обломков, размер которых превышает сантиметр. Некоторые компании пытаются решить эту проблему, разрабатывая устройства для очистки околоземного пространства. Например, сингапурский стартап Astroscale в 2016 году создал прототип космической «липучки».

https://nplus1.ru/news/2018/03/07/space-alien-junk

Показать полностью
576

ИНОПЛАНЕТЯНЕ: КАКИМИ ИХ ВИДЯТ УЧЕНЫЕ

Земля предлагает единственный известный нам пример жизни. Но теория находит и другие варианты — существ, обитающих в расплавленной мантии, в ледяных морях сжиженного газа, и даже плазменных жителей открытого космоса.

По одному из определений, «жизнь — это самоподдерживающаяся химическая система, способная к дарвиновской эволюции». Собрать такую систему можно из разных деталей. Ученым известен целый ряд гипотетических альтернативных форм жизни, которые вполне способны обитать где-нибудь в недрах Земли, на спутниках далеких планет и просто в открытом космосе. Они готовы обходиться без кислорода или ДНК, без воды и даже без планеты, могут быть настолько непохожими на нас, что мы вряд ли назовем этих существ живыми. Но если они поддерживают гомеостаз, растут и размножаются, реагируют на внешние стимулы и эволюционируют, то они живы ничуть не меньше нас. По крайней мере, в теории.

Кремниевая. Живые камни

ИНОПЛАНЕТЯНЕ: КАКИМИ ИХ ВИДЯТ УЧЕНЫЕ Вселенная, Космос, Внеземная жизнь, Длиннопост

Среди химических элементов углерод выделяется поразительной способностью образовывать связи с самим собой. Его атомы складываются в кольца и цепочки, линейные и разветвленные молекулы. Органические вещества крайне разнообразны, их превращения составляют химическую основу известной нам жизни. Однако кремний, сосед углерода по периодической таблице, обладает близкими свойствами и тоже может создавать достаточно сложные соединения. Они далеко не так устойчивы и разнообразны, как органические, но вполне способны послужить основой для жизни совершенно другого, «силикатного» типа. С нашей точки зрения, она будет довольно медленной и скудной. Кремниевые организмы должны напоминать каменную породу, в которой протекает несложный и неторопливый обмен веществ. Если они используют кислород для дыхания, то в качестве побочного продукта выделяют не углекислый газ, а диоксид кремния — кварц. Но, скорее всего, такая жизнь предпочитает бескислородную среду, высокую температуру и давление, при которых соединения кремния более подвижны и стабильны. Такие условия можно найти в недрах планет, в том числе и под поверхностью Земли. К сожалению, пока неясно, как и по каким признакам можно проверить существование жизни в раскаленной магме.

Космическая. Существа из плазмы

ИНОПЛАНЕТЯНЕ: КАКИМИ ИХ ВИДЯТ УЧЕНЫЕ Вселенная, Космос, Внеземная жизнь, Длиннопост

Одна из самых дерзких гипотез о внеземной жизни была высказана несколько лет назад учеными из Института общей физики РАН. Моделируя движение плазмы, они обнаружили, что составляющие ее частицы способны спонтанно образовывать микроскопические цепочки, которые тут же скручиваются в спирали. Электрические заряды заставляют их притягиваться друг к другу и взаимодействовать. Эти взаимодействия были поразительно похожи на то, что мы обычно зовем жизнью. Спирали изменялись и копировались, так что со временем в их «популяциях» могли сохраняться и распространяться все более стабильные и «приспособленные» формы. Трудно представить, что эти короткоживущие структуры способны развиться во что-то действительно сложное и разнообразное. Однако на ионизированную плазму приходится 99,999% всей обычной материи в нашей Вселенной. Если в ней все-таки существует нечто вроде жизни, то эта «биосфера» может быть потрясающе велика. На ее фоне и обычные земные организмы, и гипотетические обитатели других планет, даже взятые вместе, окажутся редкой экзотикой, способной выживать лишь в некоторых укромных уголках космоса.

Мышьяковая. Теневая биосфера

ИНОПЛАНЕТЯНЕ: КАКИМИ ИХ ВИДЯТ УЧЕНЫЕ Вселенная, Космос, Внеземная жизнь, Длиннопост

Фосфор входит в состав нуклеиновых кислот, липидов клеточных мембран и других соединений, из которых сложена знакомая нам жизнь. Химически близкий к нему мышьяк способен мешать протеканию многих важных реакций с участием фосфора, что и делает его таким опасным ядом. В то же время отдельные организмы все-таки вовлекают мышьяк в свой метаболизм. Известны микробы, использующие его соединения для выработки энергии. И как знать, не существуют ли и клетки, в которых мышьяк играет еще более серьезную роль, частично или полностью замещая фосфор?

Десять лет назад из отложений экстремально соленого озера Моно в Калифорнии были выделены протеобактерии, содержавшие столько мышьяка, что сперва ученые заподозрили микробов в использовании необычных форм ДНК и РНК, где этот элемент заменяет фосфор. Позднее от смелой версии пришлось отказаться, но не от идеи «мышьяковой жизни» вообще. Она может населять изолированные, опасные для остальных организмов ниши. Высказывается даже гипотеза о существовании целой «теневой биосферы», составляющей важную часть жизни на Земле. Организмы, биохимия которых несовместима с нашей, могут скрываться в горячих щелочных источниках глубоко в толще литосферы. Неудивительно, что мы не пересекаемся и до сих пор не имеем подходящих инструментов для их изучения.

Безводная. Газы вместо жидкости

ИНОПЛАНЕТЯНЕ: КАКИМИ ИХ ВИДЯТ УЧЕНЫЕ Вселенная, Космос, Внеземная жизнь, Длиннопост

Как и углерод, вода обладает целым рядом уникальных свойств, которые делают ее такой подходящей средой для развития жизни. Вода — отличный, широко распространенный растворитель. Но это не значит, что в другой части Вселенной и в других условиях ее нечем заменить. В роли воды могут выступить метан, аммиак, сероводород и даже обычный углекислый газ. При высоком давлении и температуре он становится жидким и очень эффективным растворителем, который используется в промышленности для извлечения кофеина из кофе.

«Озера» жидкого СО2 скапливаются у дна земных океанов, и к жизни здесь адаптировались некоторые микробы-экстремофилы. Обширные моря углекислого газа могут существовать на суперземлях — далеких экзопланетах в несколько раз массивнее нашей, способных удержать намного более плотную и тяжелую атмосферу. Любопытно, что белки обычных земных организмов, по-видимому, сохраняют в жидком СО2 свою структуру и активность. Поэтому возможно, что далекие гипотетические существа, которым углекислый газ заменяет воду, отличаются от нас не так уж радикально.

http://www.vokrugsveta.ru/article/324670/

Показать полностью 3
655

Десять возможных форм жизни во Вселенной

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

В поисках внеземного разума ученые часто получают обвинения в «углеродном шовинизме», поскольку ожидают, что другие жизнеформы во Вселенной будут состоять из тех же биохимических строительных блоков, что и мы, соответствующим образом выстраивая свои поиски. Но жизнь вполне может быть другой — и люди об этом задумываются — поэтому давайте изучим десять возможных биологических и небиологических систем, которые расширяют определение «жизни».

1.Метаногены

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

В 2005 году Хизер Смит из Международного космического университета в Страсбурге и Крис Маккей из Исследовательского центра Эймса в NASA подготовили документ, рассматривающий возможность существования жизни на базе метана, так называемых метаногенов. Такие формы жизни могли бы потреблять водород, ацетилен и этан, выдыхая метан вместо углекислого газа.

Это могло бы сделать возможными зоны обитаемости жизни в холодных мирах вроде луны Сатурна Титан. Подобно Земле, атмосфера Титана представлена по большей части азотом, но смешанным с метаном. Титан также единственное место в нашей Солнечной системе, кроме Земли, где присутствуют большие жидкие водоемы — озера и реки из этано-метановой смеси. (Подземные водоемы также присутствуют на Титане, его сестринской луне Энцелад, а также на спутнике Юпитера Европе). Жидкость считается необходимой для молекулярных взаимодействий органической жизни и, конечно, основное внимание будет сосредоточено на воде, но этан и метан также позволяют таким взаимодействиям осуществляться.

Миссия NASA и ESA «Кассини-Гюйгенс» в 2004 году наблюдала грязный мир с температурой -179 градусов по Цельсию, где вода была твердой как камень, а метан плыл по речным долинам и бассейнам в полярные озера. В 2015 году команда инженеров-химиков и астрономов Корнелльского университета разработала теоретическую клеточную мембрану из небольших органических соединений азота, которые могли бы функционировать в жидком метане Титана. Они назвали свою теоретическую клетку «азотосомой», что в буквальном переводе означает «азотное тело», и она обладала такой же стабильностью и гибкостью, что и земная липосома. Самым интересным молекулярным соединением была акрилонитриловая азотосома. Акрилонитрил, бесцветная и ядовитая органическая молекула, используется для акриловых красок, резины и термопластмассы на Земле; также его нашли в атмосфере Титана.

Последствия этих экспериментов для поисков внеземной жизни сложно переоценить. Жизнь не только потенциально могла развиться на Титане, но ее еще и можно обнаружить по водородным, ацетиленовым и этановым следам на поверхности. Планеты и луны, в атмосферах которых преобладает метан, могут быть не только вокруг подобных Солнцу звезд, но и вокруг красных карликов в более широкой «зоне Златовласки». Если NASA запустит Titan Mare Explorer в 2016 году, уже в 2023 году мы получим подробную информацию о возможной жизни на азоте.

2.Жизнь на основе кремния

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

Жизнь на основе кремния — это, пожалуй, самая распространенная форма альтернативной биохимии, любимой популярной наукой и фантастикой — вспомните хорта из «Звездного пути». Эта идея далеко не нова, ее корни уходят еще в размышления Герберта Уэллса в 1894 году: «Какое фантастическое воображение могло бы разыграться из такого предположения: представим кремниево-алюминиевые организмы — или, может, сразу кремниево-алюминиевых людей? — которые путешествуют через атмосферу из газообразной серы, положим так, по морям из жидкого железа температурой в несколько тысяч градусов или вроде того, чуть выше температуры доменной печи».

Кремний остается популярным именно потому, что очень похож на углерод и может образовывать четыре связи, подобно углероду, что открывает возможность создания биохимической системы полностью зависимой от кремния. Это самый распространенный элемент в земной коре, если не считать кислород. На Земле есть водоросли, которые включают кремний в свой процесс роста. Кремний играет вторую после углерода роль, поскольку тот может образовывать более стабильные и разнообразные комплексные структуры, необходимые для жизни. Углеродные молекулы включают кислород и азот, которые образуют невероятно крепкие связи. Сложные молекулы на основе кремния, к сожалению, имеют тенденцию распадаться. Кроме того, углерод чрезвычайно распространен во Вселенной и существует миллиарды лет.

Едва ли жизнь на основе кремния появится в окружении, подобном земному, поскольку большая часть свободного кремния будет заперта в вулканических и магматических породах из силикатных материалов. Предполагают, что в высокотемпературном окружении все может быть по-другому, но никаких доказательств пока не нашли. Экстремальный мир вроде Титана мог бы поддерживать жизнь на основе кремния, возможно, вкупе с метаногенами, так как молекулы кремния вроде силанов и полисиланов могут имитировать органическую химию Земли. Тем не менее на поверхности Титана преобладает углерод, тогда как большая часть кремния находится глубоко под поверхностью.

Астрохимик NASA Макс Бернштейн предположил, что жизнь на основе кремния могла бы существовать на очень горячей планете, с атмосферой богатой водородом и бедной кислородом, позволяя случиться комплексной силановой химии с обратными кремниевыми связями с селеном или теллуром, но такое, по мнению Бернштейна, маловероятно. На Земле такие организмы размножались бы очень медленно, а наши биохимии никак бы не мешали друг другу. Они, впрочем, могли бы медленно поедать наши города, но «к ним можно было бы применить отбойный молоток».

3.Другие биохимические варианты

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

В принципе, было довольно много предложений касательно жизненных систем, основанных на чем-то другом, помимо углерода. Подобно углероду и кремнию, бор тоже имеет тенденцию образовывать прочные ковалентные молекулярные соединения, образуя разные структурные варианты гидрида, в которых атомы бора связаны водородными мостиками. Как и углерод, бор может связываться с азотом, образуя соединения, по химическим и физическим свойства подобным алканам, простейшим органическим соединения. Основная проблема с жизнью на основе бора связана с тем, что это довольно редкий элемент. Жизнь на основе бора будет наиболее целесообразна в среде, температура которой достаточно низка для жидкого аммиака, тогда химические реакции будут протекать более контролируемо.

Другая возможная форма жизни, которая привлекла определенное внимание, это жизнь на основе мышьяка. Вся жизнь на Земле состоит из углерода, водорода, кислорода, фосфора и серы, но в 2010 году NASA объявило, что нашло бактерию GFAJ-1, которая могла включать мышьяк вместо фосфора в клеточную структуру без всяких последствий для себя. GFAJ-1 живет в богатых мышьяков водах озера Моно в Калифорнии. Мышьяк ядовит для любого живого существа на планете, кроме нескольких микроорганизмов, которые нормально его переносят или дышат им. GFAJ-1 стала первым случаем включения организмом этого элемента в качестве биологического строительного блока. Независимые эксперты немного разбавили это заявление, когда не нашли никаких свидетельств включения мышьяка в ДНК или хотя бы каких-нибудь арсенатов. Тем не менее разгорелся интерес к возможной биохимии на основе мышьяка.

В качестве возможной альтернативы воде для строительства форм жизни выдвигался и аммиак. Ученые предположили существование биохимии на основе азотно-водородных соединений, которые используют аммиак в качестве растворителя; он мог бы использоваться для создания протеинов, нуклеиновых кислот и полипептидов. Любые формы жизни на основе аммиака должны существовать при низких температурах, при которых аммиак принимает жидкую форму. Твердый аммиак плотнее жидкого аммиака, поэтому нет никакого способа остановить его замерзание при похолодании. Для одноклеточных организмов это не составило бы проблемы, но вызвало бы хаос для многоклеточных. Тем не менее существует возможность существования одноклеточных аммиачных организмов на холодных планетах Солнечной системы, а также на газовых гигантах вроде Юпитера.

Сера, как полагают, послужила основой для начала метаболизма на Земле, и известные организмы, в метаболизм которых включена сера вместо кислорода, существуют в экстремальных условиях на Земле. Возможно, в другом мире формы жизни на основе серы могли бы получить эволюционное преимущество. Некоторые считают, что азот и фосфор могли бы также занять место углерода при довольно специфических условиях.

4.Меметическая жизнь

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

Ричард Докинз считает, что основной принцип жизни звучит так: «Вся жизнь развивается, благодаря механизмам выживания воспроизводящихся существ». Жизнь должна быть способна воспроизводиться (с некоторыми допущениями) и пребывать в среде, где будут возможны естественный отбор и эволюция. В своей книге «Эгоистичный ген» Докинз отметил, что понятия и идеи вырабатываются в мозгу и распространяются среди людей в процессе общения. Во многом это напоминает поведение и адаптацию генов, поэтому он называет их «мемами». Некоторые сравнивают песни, шутки и ритуалы человеческого общества с первыми стадиями органической жизни — свободными радикалами, плавающими в древних морях Земли. Творения разума воспроизводятся, эволюционируют и борются за выживание в царстве идей.

Подобные мемы существовали до человечества, в социальных призывах птиц и усвоенном поведении приматов. Когда человечество стало способно абстрактно мыслить, мемы получили дальнейшее развитие, управляя племенными отношениями и формируя основу для первых традиций, культуры и религии. Изобретение письма еще больше подтолкнуло развитие мемов, поскольку они смогли распространяться в пространстве и времени, передавая меметичную информацию подобно тому, как гены передают биологическую. Для некоторых это чистая аналогия, но другие считают, что мемы представляют уникальную, хотя немного рудиментарную и ограниченную форму жизни.

Некоторые пошли еще дальше. Георг ван Дрим разработал теорию «симбиосизма», которая подразумевает, что языки — это сами по себе формы жизни. Старые лингвистические теории считали язык чем-то вроде паразита, но ван Дрим полагает, что мы живем в сотрудничестве с меметическими сущностями, населяющими наш мозг. Мы живем в симбиотических отношениях с языковыми организмами: без нас они не могут существовать, а без них мы ничем не отличаемся от обезьян. Он считает, что иллюзия сознания и свободной воли вылилась из взаимодействия животных инстинктов, голода и похоти человека-носителя и лингвистического симбионта, воспроизводящегося с помощью идей и смыслов.

5.Синтетическая жизнь на основе XNA

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

Жизнь на Земле основана на двух переносящих информацию молекулах, ДНК и РНК, и долгое время ученые размышляли, можно ли создать другие похожие молекулы. Хотя любой полимер может хранить информацию, РНК и ДНК отображают наследственность, кодирование и передачу генетической информации и способны адаптироваться с течением времени в процессе эволюции. ДНК и РНК — это цепи молекул-нуклеотидов, состоящих из трех химических компонентов — фосфата, пятиуглеродной сахарной группы (дезоксирибоза в ДНК или рибоза в РНК) и одного из пяти стандартных оснований (аденин, гуанин, цитозин, тимин или урацил).

В 2012 году группа ученых из Англии, Бельгии и Дании первой в мире разработала ксенонуклеиновую кислоту (КНК, XNA), синтетические нуклеотиды, функционально и структурно напоминающие ДНК и РНК. Они были разработаны путем замены сахарных групп дезоксирибозы и рибозы различными субститутами. Такие молекулы делали и раньше, но впервые в истории они были способны воспроизводиться и эволюционировать. В ДНК и РНК репликация происходит с помощью молекул полимеразы, которые могут читать, транскибировать и обратно транскрибировать нормальные последовательности нуклеиновых кислот. Группа разработала синтетические полимеразы, которые создали шесть новых генетических систем: HNA, CeNA, LNA, ANA, FANA и TNA.

Одна из новых генетических систем, HNA, или гекситонуклеиновая кислота, была достаточно надежной, чтобы хранить нужное количество генетической информации, которая может послужить в качестве основы для биологических систем. Другая, треозонуклеиновая кислота, или TNA, оказалась потенциальным кандидатом на таинственную первичную биохимию, царившую на рассвете жизни.

Есть масса потенциальных применений этих достижений. Дальнейшие исследования могут помочь в разработке лучших моделей появления жизни на Земле и будут иметь последствия для биологических измышлений. XNA может получить терапевтическое применение, ведь можно создать нуклеиновые кислоты для лечения и связи с конкретными молекулярными целями, которые не будут портиться так быстро, как ДНК или РНК. Они даже могут лечь в основу молекулярных машин или вообще искусственной формы жизни.

Но прежде чем это станет возможно, должны быть разработаны другие энзимы, совместимые с одной из XNA. Некоторые из них уже разработали в Великобритании в конце 2014 года. Есть также возможность, что XNA может причинять вред РНК/ДНК-организмам, поэтому безопасность должна быть на первом месте.

6.Хромодинамика, слабое ядерное взаимодействие и гравитационная жизнь

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

В 1979 году ученый и нанотехнолог Роберт Фрейтас-младший предположил возможную небиологическую жизнь. Он заявил, что возможный метаболизм живых систем основан на четырех фундаментальных силах — электромагнетизме, сильном ядерном взаимодействии (или квантовой хромодинамике), слабом ядерном взаимодействии и гравитации. Электромагнитная жизнь — это стандартная биологическая жизнь, которую мы имеем на Земле.

Хромодинамическая жизнь могла бы быть основана на сильном ядерном взаимодействии, которое считается сильнейшим из фундаментальных сил, но только на чрезвычайно коротких расстояниях. Фрейтас предположил, что такая среда может быть возможна на нейтронной звезде, тяжелом вращающемся объекте 10-20 километров в диаметре с массой звезды. С невероятной плотностью, мощнейшим магнитным полем и гравитацией в 100 миллиардов раз сильнее, чем на Земле, у такой звезды было бы ядро с 3-километровой коркой кристаллического железа. Под ней было бы море с невероятно горячими нейтронами, различными ядерными частицами, протонами и ядрами атомов и возможные богатые нейтронами «макроядра». Эти макроядра в теории могли бы сформировать крупные сверхъядра, аналогичные органическим молекулам, нейтроны выступали бы эквивалентом воды в причудливой псевдобиологической системе.

Фрейтас видел формы жизни на базе слабого ядерного взаимодействия как маловероятные, поскольку слабые силы действуют лишь в субъядерном диапазоне и не особенно сильны. Как часто показывает бета-радиоактивный распад и свободный распад нейтронов, формы жизни слабого взаимодействия могли бы существовать при тщательном контроле слабых взаимодействий в своей среде. Фрейтас представил существ, состоящих из атомов с избыточными нейтронами, которые становятся радиоактивными, когда умирают. Он также предположил, что есть регионы Вселенной, где слабая ядерная сила сильнее, а, значит, шансы на появление такой жизни выше.

Гравитационные существа тоже могут существовать, поскольку гравитация является самой распространенной и эффективной фундаментальной силой во Вселенной. Такие существа могли бы получать энергию из самой гравитации, получая неограниченное питание из столкновений черных дыр, галактик, других небесных объектов; существа поменьше — из вращения планет; самые маленькие — из энергии водопадов, ветра, приливов и океанических течений, возможно, землетрясений.

7.Формы жизни из пыли и плазмы

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

Органическая жизнь на Земле основана на молекулах с соединениями углерода, и мы уже выяснили возможные соединения для альтернативных форм. Но в 2007 году международная группа ученых во главе с В. Н. Цытовичем из Института общей физики Российской академии наук документально подтвердила, что при нужных условиях частицы неорганической пыли могут собираться в спиральные структуры, которые затем будут взаимодействовать друг с другом в манере, присущей для органической химии. Это поведение также рождается в состоянии плазмы, четвертом состоянии вещества после твердого, жидкого и газообразного, когда электроны отрываются от атомов, оставляя массу заряженных частиц.

Группа Цытовича обнаружила, что когда электронные заряды отделяются и плазма поляризуется, частицы в плазме самоорганизуются в форму спиральных структур вроде штопора, электрически заряженных, и притягиваются друг к другу. Они также могут делиться, образуя копии оригинальных структур, подобно ДНК, и индуцировать заряды в своих соседях. По мнению Цытовича, «эти сложные, самоорганизующиеся плазменные структуры отвечают всем необходимым требованиям, чтобы считать их кандидатами в неорганическую живую материю. Они автономны, они воспроизводятся и они эволюционируют».

Некоторые скептики считают, что такие заявления являются больше попыткой привлечь внимание, нежели серьезными научными заявлениями. Хотя спиральные структуры в плазме могут напоминать ДНК, сходство в форме необязательно предполагает сходство в функциях. Более того, тот факт, что спирали воспроизводятся, не означает потенциал жизни; облака тоже так делают. Что еще больше удручает, большая часть исследований была проведена на компьютерных моделях.

Один из участников эксперимента также собщил, что хотя результаты действительно напоминали жизнь, в конце концов, они были «просто особой формой плазменного кристалла». И все же, если неорганические частицы в плазме могут перерасти в самовоспроизводящиеся, развивающиеся формы жизни, они могут быть наиболее распространенной формой жизни во Вселенной, благодаря вездесущей плазме и межзвездным облакам пыли по всему космосу.

8.Неорганические химические клетки

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

Профессор Ли Кронин, химик Колледжа науки и инженерии при Университете Глазго, мечтает создать живые клетки из металла. Он использует полиоксометаллаты, ряд атомов металла, связанных с кислородом и фосфором, чтобы создать похожие на клетки пузырьки, которые он называет «неорганическими химическими клетками», или iCHELLs (этот акроним можно перевести как «неохлетки»).

Группа Кронина начала с создания солей из отрицательно заряженных ионов крупных оксидов металла, связанных с небольшим положительно заряженным ионом вроде водорода или натрия. Раствор из этих солей затем впрыскивается в другой солевой раствор, полный больших положительно заряженных органических ионов, связанных с небольшими отрицательно заряженными. Две соли встречаются и обмениваются частями, так что крупные оксиды металла становятся партнерами с крупными органическими ионами, образуя что-то вроде пузыря, который непроницаем для воды. Изменяя костяк оксида металла, можно добиться того, что пузыри приобретут свойства биологических клеточных мембран, которые выборочно пропускают и выпускают химические вещества из клетки, что потенциально может позволить протеканию того же типа контролируемых химических реакций, который происходит в живых клетках.

Группа ученых также сделала пузыри в пузырях, имитируя внутренние структуры биологических клеток, и добилась прогресса в создании искусственной формы фотосинтеза, которая потенциально может быть использована для создания искусственных клеток растений. Другие синтетические биологи отмечают, что такие клетки могут никогда не стать живыми, пока не получат систему репликации и эволюции вроде ДНК. Кронин не теряет надежду на то, что дальнейшее развитие принесет свои плоды. Среди возможных применений этой технологии есть также разработка материалов для солнечных топливных устройств и, конечно, медицина.

По словам Кронина, «основная цель — это создать комплексные химические клетки с живыми свойствами, которые могут помочь нам понять развитие жизни и пойти этим же путем, чтобы привнести новые технологии на основе эволюции в материальный мир — своего рода неорганические живые технологии».

9.Зонды фон Неймана

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

Искусственная жизнь на основе машин — это довольно распространенная идея, чуть ли не банальная, поэтому давайте просто рассмотрим зонды фон Неймана, чтобы не обходить ее стороной. Впервые их придумал в середине 20 века венгерский математик и футуролог Джон фон Нейман, который считал, что для того, чтобы воспроизводить функции человеческого мозга, машина должна обладать механизмами самоуправления и самовосстановления. Так он пришел к идее создания самовоспроизводящихся машин, в основе которых работают наблюдения за возрастающей сложностью жизни в процессе воспроизводства. Он считал, что такие машины могут стать своего рода универсальным конструктором, который мог бы позволить не только создавать полные реплики себя самого, но и улучшать или изменять версии, тем самым осуществляя эволюцию и наращивая сложность со временем.

Другие футурологи вроде Фримена Дайсона и Эрика Дрекслера довольно быстро применили эти идеи к области космических исследований и создали зонд фон Неймана. Отправка самовоспроизводящегося робота в космос может быть самым эффективным способом колонизации галактики, ведь так можно захватить весь Млечный Путь меньше чем за один миллион лет, даже будучи ограниченными скоростью света.

Как объяснил Мичио Каку:

«Зонд фон Неймана — это робот, предназначенный для достижения далеких звездных систем и создания фабрик, которые будут строить копии самих себя тысячами. Мертвая луна, даже не планета, может стать идеальным пунктом назначения для зондов фон Неймана, поскольку там будет проще садиться и взлетать с этих лун, а также потому что на лунах нет эрозии. Зонды могли бы жить за счет земли, добывая железо, никель и другое сырье для строительства роботизированных фабрик. Они бы создали тысячи копий самих себя, которые затем разошлись бы в поисках других звездных систем».

За долгие годы были придуманы различные версии базовой идеи зонда фон Неймана, включая зонды освоения и разведки для тихого исследования и наблюдения внеземных цивилизаций; зондов связи, разбросанных по всему космосу, чтобы лучше улавливать радиосигналы инопланетян; рабочие зонды для строительства сверхмассивных космических структур; зонды-колонизаторы, которые будут покорять другие миры. Могут быть даже путеводные зонды, которые будут выводить юные цивилизации в космос. Увы, могут быть и зонды-берсеркеры, задачей которых будет уничтожение следов любой органики в космосе, за чем последует строительство полицейских зондов, которые будут эти атаки отражать. Учитывая то, что зонды фон Неймана могут стать своего рода космическим вирусом, нам стоит осторожно подходить к их разработке.

10.Гипотеза Геи

Десять возможных форм жизни во Вселенной Вселенная, Космос, Внеземная жизнь, Длиннопост

В 1975 году Джеймс Лавлок и Сидни Эптон совместно написали статью для New Scientist под названием «В поисках Геи». Придерживаясь традиционной точки зрения о том, что жизнь зародилась на Земле и процветала благодаря нужным материальным условиям, Лавлок и Эптон предположили, что жизнь таким образом взяла на себя активную роль в поддержании и определении условий для своего выживания. Они предположили, что вся живая материя на Земле, в воздухе, океанах и на поверхности является частью единой системы, ведущей себя подобно сверхорганизму, который способен настраивать температуру на поверхности и состав атмосферы нужным для выживания образом. Они назвали такую систему Геей, в честь греческой богини земли. Она существует, чтобы поддерживать гомеостаз, благодаря которому на земле может существовать биосфера.

Лавлок работал над гипотезой Геи с середине 60-х годов. Основная идея в том, что биосфера Земли имеет ряд природных циклов, и когда один идет наперекосяк, другие компенсируют его так, чтобы поддерживать жизненную способность. Это могло бы объяснить, почему атмосфера не состоит целиком из диоксида углерода или почему моря не слишком соленые. Хотя вулканические извержения сделали раннюю атмосферу состоящей преимущественно из диоксида углерода, появились вырабатывающие азот бактерии и растения, производящие кислород в процессе фотосинтеза. Спустя миллионы лет атмосфера изменилась в нашу пользу. Хотя реки переносят соль в океаны из пород, соленость океанов остается стабильной на 3,4%, поскольку соль просачивается через трещины в океаническом дне. Это не сознательные процессы, но результат обратной связи, которая удерживает планеты в пригодном для обитания равновесии.

Другие свидетельства включают то, что если бы не биотическая активность, метан и водород исчезли бы из атмосферы всего за несколько десятилетий. Кроме того, несмотря на увеличение температуры Солнца на 30% за последние 3,5 миллиарда лет, средняя глобальная температура пошатнулась всего на 5 градусов по Цельсию, благодаря регуляторному механизму, который удаляет диоксид углерода из атмосферы и запирает его в окаменелой органической материи.

Первоначально идеи Лавлока были встречены насмешками и обвинениями. Со временем, однако, гипотеза Геи повлияла на идеи о биосфере Земли, помогла сформировать цельное их восприятие в ученом мире. Сегодня гипотеза Геи скорее уважается, нежели принимается учеными. Она является скорее положительной культурной рамкой, в которой должны проводиться научные исследования на тему Земли как глобальной экосистемы.

Палеонтолог Питер Уорд разработал конкурентную гипотезу Медеи, названную в честь матери, которая убила своих детей, в греческой мифологии, основная идея которой сводится к тому, что жизнь по своей сути стремится к саморазрушению и самоубийству. Он указывает на то, что исторически большинство массовых вымираний были вызваны формами жизни, например, микроорганизмами или гоминидами в штанах, которые наносят тяжелые увечья атмосфере Земли.

https://hi-news.ru/science/10-vozmozhnyx-form-zhizni.html

Показать полностью 9
187

Как взорвать звезду?

Взрыв сверхновой - это одно из самых сложных физических явлений, которые учёные когда-либо пытались смоделировать. Для создания современных компьютерных моделей требуется несколько месяцев, но это того стоит, ведь подобные модели предоставляют в распоряжение исследователей некоторые удивительные подробности.

Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: