Дубликаты не найдены

0
Завораживающе
раскрыть ветку 1
-1

Это что получается, можно качать баяны с ютуба и заливать через плеер Пикабу?)

-2

Всё это обман. Солнце - это просто лампочка прилепленная к небосводу, а небосвод в свою очередь вертится вокруг Земли.

раскрыть ветку 1
+1

Ерунду пишете! Земля плоская и накрыта куполом! А солнце и все остальное голограмма на куполе!

Похожие посты
122

Активные вулканы Ио создают на спутнике серную атмосферу

Атмосфера спутника Юпитера Ио состоит в основном из диоксида серы (SO₂). До недавних пор было неизвестно, что является основным источником, восполняющим серную атмосферу Ио: активные вулканы или залежи замороженного диоксида серы, испаряемые солнечным светом.

Активные вулканы Ио создают на спутнике серную атмосферу Солнечная система, Астрономия, Наука, Видео

Наблюдения, проведенные с помощью радиотелескопа ALMA в Чили, подтвердили, что основным источником атмосферы Ио является вулканическая деятельность. На поверхности Ио находятся примерно 400 активных вулканов.

Источник

98

МКС-64

МКС-64 — шестьдесят четвёртая долговременная экспедиция на Международную космическую станцию.

Командир Сергей Рыжиков (космонавт Роскосмоса)

Бортинженер Сергей Кудь-Сверчков (космонавт Роскосмоса)

Бортинженер Кэтлин Рубинс (астронавт НАСА)

553

Водородное Солнце, 21 октября 2020 года, 11:01

Водородное Солнце, 21 октября 2020 года, 11:01 Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-хромосферный телескоп Coronado PST H-alpha 40 mm

-монтировка Meade LX85

-светофильтр Deepsky IR-cut

-астрокамера QHY5III178m.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

457

Самодельная метеостанция для мониторинга погоды

Казалось бы, причем тут исследования космоса? Но далее все по-порядку :)

Мониторинг погоды с помощью самодельного оборудования оказался довольно любопытным занятием...


Идея создания автоматизированной обсерватории с удаленным управлением упёрлась в необходимость получать текущие данные состояния погоды в точке установки астрономического оборудования, вот этого:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Четыре года назад познакомился с микроконтроллерами Arduino (AVR), они оказались очень удобными для прототипирования различных устройств, которые потом можно будет сделать на более серьезных МК. Для обучения работы с Arduino решил собрать первое устройство - метеостанцию. Состояла она из двух блоков - внешнего, который висел за окном и раз в 5 минут передавал показания, и внутреннего, который принимал показания по радиоканалу и отправлял их в сеть на удаленный сервер. На внешнем блоке даже сделал солнечную панель, как помню купил по акции шесть садовых фонариков по 39 рублей, выдернул из них солнечные панели. Собрал из них одну большую, она заряжала внутренние АКБ (обычные ААА аккумуляторы). Такого симбиоза хватало на полгода бесперебойной работы метеостанции, потом аккумуляторы все-таки приходилось заряжать нормально.

Спустя год работы метеостанции, я ее отключил и разобрал. Сделана она была из подручных материалов, вот как она выглядела спустя год работы (внешний блок):

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Самодельный блок с анемометром, датчиком освещенности на фоторезисторе и датчиком DHT22 - температуры и влажности.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Блок с МК, и аккумуляторами спустя год - резиновые заглушки сильно потрескались.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Ну а внутри этого блока находится вот что:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Корпус утеплял в 2-3 слоя, проклеивал. Не знаю помогло это или нет, но АКБ, которые там стояли, до сих пор держат заряд и работают исправно. Целый год работала Arduino и не было ни одного сбоя или зависания - ее не приходилось перезагружать. Разброс температур был от +45 на Солнце, до -32 зимой.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Анемометр можно было бы сделать из шариковой мышки, но я такую не нашел. Сделал из небольшого двигателя, убрал все лишнее и прорезал сбоку отверстие для отпопары. На штоке якоря убрал обмотку, поставил самодельный диск с прорезью. Ну и DHT22 датчик:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Одно из моих увлечений - астрономия, и в этом году я построил астрономическую будку с удалённым управлением (часть 1, часть 2, часть 3). И для автоматизации процесса съемки очень важно получать и обрабатывать погодные условия прямо здесь и прямо сейчас. Поэтому решил строить новую метеостанцию, опять на Arduino (понравилась мне она), но уже более серьезную.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сперва сделал на RJ-45 розетках возможность подключения модулей, но потом переделал на жесткую пайку. Все-таки так будет надёжнее, учитывая прошлый опыт. Соединения могут давать сбои.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все детали метеостанции напечатал на 3D принтере, получилось прям как заводское исполнение.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Метеостанция после недели тестов и отладки программного обеспечения установлена на свое место - на астрономическую обсерваторию.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сейчас она измеряет и передает на удаленный сервер показания - температуру, влажность, точку росы, освещенность, интенсивность УФ-излучения, скорость и направление ветра. Заказал еще ИК-пирометр, для датчика облачности. Измерение уровня осадков делать не стал, так как актуально только в теплое время года.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все данные можно смотреть через веб-интерфейс: просматривать текущие метеоусловия, а также статистику по предыдущим дням: https://meteo.miksoft.pro/

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

В планах - "допиливание" frontend \ backend метеостанции, сделать возможность выгрузки данных. Также сейчас метеостанция подключена и к проекту "Народный мониторинг".

Конечно, я понимаю, что для работы настоящей метеостанции должны быть выполнены большое количество условий (чтобы ее показания котировались), датчики должны быть сертифицированы, и явно быть дороже и точнее. Но сейчас, для работы удаленной астрономической обсерватории, мне этого более чем достаточно - перед запуском планировщика обсерватории я могу посмотреть текущую метеосводку. Теперь я могу быть уверенным, что в случае наступления неблагоприятных метеоусловий во время съемки (облака или осадки) - контроллер обсерватории сам припаркует телескоп и закроет крышу.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Буквально вчера получил посылку из Китая - ИК пирометр, который будет работать в паре с другим датчиком и мониторить облачность. Так что в ближайшие выходные буду добавлять новый датчик в метеостанцию.


Что дальше? Может быть стоит как-то развить этот мини-проект, сделать еще одну, но автономную, с солнечной панелью, АКБ и передачей данных по GSM?


Посты про строительство обсерватории смотрите в моем профиле.


Адрес метеостанции: https://meteo.miksoft.pro/

Мой телеграмм канал: https://t.me/nearspace (@nearspace)
Показать полностью 13
45

Самая высокая гора в Солнечной системе

Самая высокая гора в Солнечной системе Марс, Солнечная система, Космос, Горы, Ландшафт, Олимп

Олимп — потухший вулкан, расположенный на Марсе. Его высота от основания составляет 26 километров. Ширина Олимпа — 540 километров.

Интересно то, что из-за такой ширины невозможно увидеть подножье горы, находясь на её вершине, так как оно скроется за горизонтом из-за кривизны поверхности планеты.

488

Солнечная система. Газовые гиганты

Наша Солнечная система поделена на две части. Внутренние орбиты четырех планет земной группы отделены от четырех газовых гигантов поясом астероидов. Четыре большие газовые планеты, как бы защищают нас от внешнего космоса и принимают на себя удары небесных тел, прилетевших из вселенной.

Начнем с царя Солнечной системы – Юпитер.

С древних времен люди упоминали об этом гиганте. Подробные описания его движения были в Месопотамии, Китае, Греции.

Но когда 400 лет назад появились первые телескопы, люди были поражены его масштабами.

В 1610 году Галилео Галилей впервые рассмотрел планету и ее окружение более подробно и открыл четыре крупнейших спутника Ганимед, Ио, Каллисто и Европа, которые до сих пор называются «Галилеевы спутники».

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Всего, в настоящее время зафиксировано 79 естественных спутников.

Во второй половине 1600-х годов итальянский астроном Джованни Кассини внимательно рассмотрел в телескоп поверхность Юпитера и обнаружил «Большое Красное пятно» громадных размеров, в котором свободно уместится три наших Земли.

Впоследствии ученые выяснили, что это ураган, который бушует в атмосфере планеты уже более 350 лет.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Большой прорыв в изучении нашей Солнечной системы произошел, когда земляне начали посылать космические аппараты.

Первым был зонд НАСА «Пионер-10», который был запущен с Земли еще в 1972 году. Впервые рукотворный космический аппарат преодолел пояс астероидов и передал изображение Юпитера с расстояния 132 тыс. км от верхней атмосферы планеты. В 1982 году зонд вылетел за пределы нашей Солнечной системы, и сейчас продолжает свой путь в сторону звездной системы «Тельца». Цели он достигнет через 2 млн. лет!

Всего на данный момент 7 аппаратов проследовали транзитом через систему Юпитера, а два «Галилео» и «Джуно» вышли на орбиту гиганта и стали исследовать спутники Юпитера.

В частности выяснилось, что Юпитер обладает мощнейшим радиационным полем. Зонд «Галилео» получил дозу радиации, уровень которой превышает смертельный для человека в 25 раз.

А вот структура самой планеты пока на уровне гипотез, проверить которые мы пока не в состоянии.

Следующая уникальная газовая планета, это Сатурн – «Властелин колец», с его неповторимыми кольцами.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Первые упоминания о планете в легендах и мифах были у вавилонян.

Если бы не было визитной карточки Сатурна, его колец, то это был бы – простой белесый приплюснутый шар! Они состоят из ледяных осколков и пыли. Они простираются более чем на 120 тыс. км, но невероятно тонкие по толщине от 20 м до 1 км.

Космический аппарат «Кассини», для того чтобы выйти на орбиту Сатурна, прошел сквозь один из разрывов колец. Яркий блеск колец из-за наличия пыли, со временем не угасает. Ученые это объясняют тем, что ледяные осколки постоянно сталкиваются друг с другом и обновляются.

Всего зафиксировано 62 спутника Сатурна. Великолепные виды некоторых из них нам подарил зонд «Кассини» с посадочным модулем на Титан «Гюйгенсом».

Не очень большой по размеру Энцелад (около 500 км в диаметре) обладает интересной особенностью. На нем большое количество криогейзеров, которые выбрасывают фонтаны воды на большую высоту. Так действует приливное действие Сатурна.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Гейзеры Энцелада, снятые аппаратом Кассини.

На Титане существует азотная атмосфера, а на поверхности, озера из жидкого метана и ландшафты, похожие на земные, но покрыты они замерзшим азотом.

На это спутник Сатурна, был послан спускаемый аппарат «Гюйгенс», который прититанился 14 января 2005 года. Во время спуска велась съемка.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Еще один ярко выделяющийся объект в системе Сатурна - это Япет!

Характерным является контраст двух его сторон по яркости. Достоверного объяснения этому явлению пока нет.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

И последнее явление, запечатленное аппаратом «Кассини» - огромный шторм в северном полушарии газового гиганта.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Предпоследняя планета по современной классификации Солнечной системы, это Уран.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Главное отличие ее от других в том, что ее ось вращения лежит «на боку» относительно плоскости орбиты!

Планета была открыта в 1781 году английским астрономом Уильямом Гершелем. И хотя он утверждал, что наблюдал разреженные кольца у этой планете, подтвердилось это только в 1977 году.

Снимки планеты с близкого расстояния в 81,5 тыс. км передал нам, пролетающий мимо американский зонд «Вояджер-2».

Считается, что цвет сине-зеленой однообразной атмосферы задает метан, да и к тому температура атмосферы самая низкая среди планет Солнечной системы -224° С.

У Урана зафиксировано 27 невзрачных спутника.

Интересно, что само открытие планеты позволило расширить Солнечную систему в два раза. Солнечному свету, для того чтобы достичь Урана, потребуется времени в 20 раз больше чем до Земли.

Последняя официально оформленная планета – Нептун.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Нептун был открыт «на кончике пера», сначала математически, а затем и с помощью телескопа.

В 1989 году состоялось пока единственное посещение окрестностей планеты. В 3000 км от атмосферы пролетал американский космический аппарат «Вояджер-2». Он сделал достаточно большое количество снимков, на одном из которых было зафиксировано, так называемое Большое Темное пятно, однако в 1994 году космический телескоп «Хаблл», его уже не обнаружил.

Одно из объяснений: В атмосфере Нептуна бушуют самые сильные ветры среди планет Солнечной системы, и их скорости могут достигать 2100 километров в час.

Еще одна загадка Нептуна, его температура, которая в 2,5 раза выше чем у Урана, хотя Нептун находится гораздо дальше Урана.

Есть несколько гипотез: от радиоактивного излучения ядра планеты, до химических процессов, связанных с распадом метана.

У Нептуна обнаружено 14 естественных спутников, один из которых сильно превосходит остальные. Это Тритон. Он имеет сферическую форму размером около 2,7 тыс. км и состоит преимущественно изо льда.

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Температура его поверхности близка к абсолютному нулю -235 °С . Движется он по спиральной орбите и через несколько десятков млн. лет будет разрушен и у Нептуна возникнет кольцо, как у Сатурна.

По современным данным науки заканчивается Солнечная система так называемым поясом Койпера, в котором сосредоточено большое количество малых планет и астероидов, в том числе и недавняя девятая планета – Плутон.

И в конце приведу относительные размеры планет Солнечной системы:

Солнечная система. Газовые гиганты Солнечная система, Планета, Газовый гигант, Космос, Длиннопост

Источник

Показать полностью 10
358

5 самых сильных ураганов Солнечной системы

Если вы думаете, что знаете, что такое ураган и сильный ветер, то разочарую вас - смотря с чем сравнивать. Оказывается, не только на Земле случаются штормы и ураганы. Причем на некоторых планетах ветра дуют гораздо сильнее и гораздо дольше.

1. Ветра Венеры

На Венере царит крайне недружелюбная атмосфера. И дело не только в невероятной для Земли температуре - около 500 градусов Цельсия. Вся атмосфера этой планеты - один сплошной ураган. Ученые высчитали, что густая атмосфера Венеры делает оборот вокруг ее поверхности за 4 земных дня, притом что планета вращается вокруг своей оси 243 земных дня.

Скорость ветра, дующего на Венере, около 100 м в секунду (360 км в час). И такой ветер даже может изменить скорость движения планеты на две минуты в день. Да, который длится 243 земных дня.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Густая атмосфера Венеры скрывает от взгляда поверхность планеты

2. Марсианская буря

В отличие от густой атмосферы Венеры на Марсе она еще более разреженная, чем на Земле.

Здесь происходят очень большие песчаные бури. Настолько большие, что охватывают всю планету целиком. Сильный ветер дует со скоростью до 100 м в секунду.

Из-за одной из таких бурь в 2019 году "пал смертью храбрых" марсоход "Оппортьюнити". Он работал на солнечных батареях, из-за начавшейся бури доступа к солнечным лучам долгое время не было, поэтому связь с марсоходом была навсегда потеряна.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Слева - "спокойный" Марс, справа - во время бури

3. Большое красное пятно Юпитера

Юпитер - не только самая большая планета, так называемый газовый гигант, но и рекордсмен по ураганам - они здесь самые большие. Ну а самый большой ураган Юпитера, а также самый известный - Большое красное пятно (БКП).

Скорость ветра в этом урагане достигает 500 километров в час. Внутри него спокойно уместились бы две или три Земли (размер пятна непостоянен, он то уменьшается, то увеличивается).

Люди наблюдают БКП с момента открытия Юпитера. Т.е. его наблюдают уже 350 лет.

В настоящее время пятно значительно уменьшается, и кто знает, может быть скоро оно исчезнет совсем.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Почему цвет пятна кирпичный - до сих пор загадка для ученых

4. Шестиугольник Сатурна

Необычный шторм наблюдается на Сатурне. На его северном полюсе уже минимум 38 лет время виден шестиугольный вихрь. Формирование мегашторма такой необычной формы ученые объясняют сменой времен года на Сатурне - они длятся по семь с половиной земных лет.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Почти идеальный шестиугольник Сатурна

5. Большое темное пятно на Нептуне

Аналогично Большому красному пятну Юпитера на Нептуне было обнаружено Большое темное пятно.

Правда, в отличие от Юпитера, на Нептуне ураган пропал на снимках уже в 1994 году. Но именно здесь дули сильнейшие ветра Солнечной системы со скоростью 2400 километров в час.

Сейчас ученые обнаружили новое пятно на Нептуне - Северное большое темное пятно.

5 самых сильных ураганов Солнечной системы Космос, Планета, Ураган, Солнечная система, Яндекс Дзен, Длиннопост

Большое темное пятно

источник

Показать полностью 4
26

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная»

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная» Космос, Вселенная, Астрономия, Черная дыра, Фракталы, Наука, Теория, Горизонт событий, Видео, Длиннопост

Чёрные дыры притягательны не только в буквальном смысле (ещё бы при такой гравитации!), они захватывают воображение фантастов, кинематографистов и, естественно, ученых. Смесь опасности и необъяснимости этих космических объектов порождает огромное множество теорий на их счет. И если вопрос о реальности их существования в наше время уже снят (потому, что снята первая фотография чёрной дыры), то вопросов об их природе и свойствах остается очень много.


В разных теориях чёрные дыры могут оказываться связанными друг с другом через кротовые норы, порождать наши дочерние вселенные, иметь электрический заряд, вращаться или быть стационарными, парить в вакууме или быть плотно окруженными материей.


Поскольку изучение чёрных дыр это процесс, по большей части, чисто теоретический, то и сами теории можно строить практически на любой основе.


Один из самых свежих взглядов на возможную сущность чёрных дыр совсем недавно представил в своем исследовании астрофизик Пол Саттер (Paul Sutter). Его чисто теоретический, основанный на математических расчетах, подход позволяет обосновать тип сверхпроводящих чёрных дыр, которые будучи электрически заряженными, окружены определенным видом пространства, известным как "антидеситтеровское пространство".


Этот тип пространства интересен и сам по себе, потому что предполагает отрицательную геометрическую кривизну, что делает это пространство похожим на седло. Но не менее интересно, что такая совокупность исходных предположений по расчетам Саттера должна приводить к существованию внутри такой чёрной дыры фрактальной вселенной.


Логика Саттера основана на следующем построении. Заряженные чёрные дыры во многом аналогичны вращающимся чёрным дырам, существование которых однозначно доказано. Поэтому изучая заряженные дыры, математика которых даже проще, можно основываться на том, что известно о вращающихся чёрных дырах.


Ученые выяснили, что когда последние становятся относительно холодными, то вокруг них возникает "дымка" квантовых полей. Эта дымка липнет к поверхности чёрной дыры, притягиваемая неумолимой гравитацией, но выталкивается наружу наэлектризованным отталкиванием той же самой чёрной дыры. Такая дымка квантовых полей, постоянно колеблющихся на поверхности чёрной дыры, создает сверхпроводящий слой.


Всю свою последующую математическую модель Саттер на известных свойствах сверхпроводников. Обычно частицы в реальных сверхпроводниках могут колебаться, поддерживая колебания волн взад и вперед, создавая эффект, известный как колебания Джозефсона. А глубоко внутри этих чёрных дыр само пространство колеблется взад и вперед, что позволяет строить самые фантастические предположения относительно их внутренней природы.


«Исследователи обнаружили, что самые внутренние области сверхпроводящей черной дыры могут представлять собой расширяющуюся Вселенную в гротескной миниатюре, место, где пространство может растягиваться и деформироваться с разной скоростью в разных направлениях», - поясняет Саттер.


Кроме того, в зависимости от температуры чёрной дыры, некоторые из этих областей пространства могут вызвать новый цикл вибраций, которые затем создают новый участок расширяющегося пространства, который в свою очередь запускает новый цикл вибраций, которые затем создают новый участок расширения пространства, и так далее, и так далее во все меньших масштабах.


Это сформировало бы миниатюрную фрактальную вселенную, бесконечно повторяющуюся от большей до меньшей. Совершенно невозможно представить, как бы выглядело путешествие через такое пространство, но это определенно было бы необычно.


В центре этого причудливого фрактального хаотического беспорядка должна находиться сингулярность: точка с бесконечной плотностью, место, где находится всё, что составляло материю, когда-то упавшую в черную дыру.


К сожалению, даже используя свои математические методы сверхзаряженной сверхпроводимости, исследователи не могут описать, что происходит в сингулярности. Вся известная физика рушится, и для ее полного описания требуются новые теории гравитации.

Никто не знает, что может обнаружиться в центре сверхпроводящей чёрной дыры. Но, учитывая как обычный, не связанный с наукой зритель, залипает на видах фракталов, большинству путешествие к такому центру понравилось бы.


Смотрите также анонсы новых тем на нашем ютуб-канале
Показать полностью 1
616

Колонизация солнечной системы

Часть 3. Точки опоры

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

В этой части рассмотрим рациональный способ колонизации солнечной системы и логистику. Стоит отметить, что речь идёт не о разовой высадке, а про постоянно действующие полуавтономные базы, между которыми выполняются регулярные рейсы.

Подразумевается уровень технологий близкий к текущему, а это наличие аппаратов на ионных двигателях с ядерными энергетическими установками, полностью многоразовых космических кораблей, выводящих около 100 тонн на НОО и обратно.

На мой взгляд, способ освоения космоса может быть только один: создание опорных орбитальных станций, с их помощью осуществление стабильных перемещений с поверхности планет на низкую орбиту и далее между опорными станциями планет.

Очередность освоения банальна: опорные орбитальные станции на орбитах Земли и Луны - освоение Луны - орбитальная станция Марса - Марсианская база.

Чтобы человеку лететь дальше, нужен скачок технологий в части двигателей (обеспечивающий запас по скорости ближе к 100 км/с), без него постоянные пилотируемые полёты дальше пояса астероидов маловероятны - слишком большая длительность. Поэтому Каллисто и Титан - это уже очень далекая перспектива, а Церера на грани достижения аппаратами ближайшего будущего.

«Новый дивный Мир»
Первое что нужно для создания колоний - это опорные орбитальные станции.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Фотография станция «Мир»

В обозримом будущем неизбежно появление орбитальных станций, по сравнению с которыми «Мир» и МКС будут смотреться небольшими cubsat’ами.

Создание колонии, подразумевает перемещение большого количества грузов с поверхности Земли на поверхность другой планеты (спутника) и постоянное перемещение людей между ними.

Посадка и взлёт на поверхность могут быть выполнены только при помощи химических двигателей, при этом межпланетные перелеты или доставку грузов (где время не играет большого значения) выгоднее выполнять на ионных. Тут выявляется первая задача такой станции: необходимость пересадки пассажиров, накопление и загрузка контейнеров.

В целом, если речь идёт о массовых полетах, то экономически целесообразно делать разные корабли:
- для выполнения посадки на Землю (Марс) с возможность выдерживать высокие тепловые нагрузки при посадке;
- для выполнения посадок/взлёта на Луну, которые будут иметь в шесть раз меньше двигателей чем для взлёта с земли, небольшие топливные баки и без тепловой защиты;
- для выполнения пассажирских перевозок между станциями с радиационной защитой вместо тяжёлых элементов для посадки на поверхность, а также с минимальным количеством двигателей;
- для грузовых перевозок в виде медленного ионного ядерного буксира с возможностью установки множества стандартных контейнеров (хотя для космоса это скорее цилиндры).

Например, взлёт с Луны и выход на ее низкую орбиту, требует в 6 раз меньше тяги и в 7 раз меньше топлива. Соотвественно, при одинаковой выводимой массе полезной нагрузки Лунный аппарат можно сделать более чем в 6 раз дешевле.

Для перелётов между Землей и Луной не нужны мощные двигатели, которые обеспечивают взлёт с поверхности, а достаточно одного маломощного (но тут нужна оптимизация с точки зрения вероятности отказа). Топливные баки можно делать меньше примерно в 4 раза. Это все снижает массу, что позволит без особых потерь делать массивную радиационную защиту.

Туристический чартер будущего (не надо воспринимать всерьёз)

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

До тех пор, пока в колонии не начнёт функционировать производство компонентов топлива - необходимо осуществлять дозаправку ракет. Взлёт с земли не позволяет иметь на борту достаточного количества топлива для полетов даже к Луне (имеется ввиду применение и возвращение аппаратов многоразового использования). Таким образом, для любых полетов с НОО (если они не в один конец) потребуется наличие топлива на орбите. Например, чтобы заправить до полного «Starship» требуется выполнить 12 запусков и осуществить 11 стыковок с процедурой перелива топлива. Очевидно, удобнее и выгоднее выполнить заправку один раз, пристыковавшись к орбитальной станции. И быстрое обеспечение топливом - это второе основное предназначение орбитальных станций.

Появление кораблей, которые не рассчитаны на сход с орбиты (буксиры с ядерными энергоустановками), повлечёт за собой необходимость выполнения сборочных, ремонтных операций и технического обслуживания прямо в космосе. Учитывая, что вывод более 100 тонн с Земли достаточно тяжелая задача, поэтому, чтобы собрать грузовой корабль с реактором мегаватт на 30, его придётся выводить на орбиту по частям и уже на ней выполнять крупноузловую сборку. Это третья функция орбитальной станции.

Фактически на орбите Земли и любого другого «шара», где развивается колония, необходим грузовой и пассажирский порт. Соотвественно, появляется необходимость наличия постоянного рабочего персонала, для которого требуется создать комфортные условия. Тут уже неизбежно появление «центробежной» гравитации.

В итоге, на орбитах Луны, Марса (а затем и на других обозначенных планетах) получим что-то вроде МКС, с длинными фермами причалов, ядерным реактором, полями панелей радиаторов, шарообразными баками с топливом, надувными ангарами и вращающимся тором жилых модулей. По всему этому великолепию будут постоянно передвигаться «лифты» и люди в скафандрах.

Картинки, удовлетворяющей меня с инженерной точки зрения, не нашёл, поэтому прикреплю наиболее адекватную с просторов интернета.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Выгоднее иметь одну международную станцию. Чем больше - тем безопаснее при выходе из строя отдельного модуля. Чем чаще на неё летают - тем дешевле снабжение и ротация людей. Станция будет расти, пока не упрется в предел по площади панелей системы охлаждения и прочность конструкции, необходимой для выполнения коррекции орбиты.

Стоит отметить: для оптимизации запусков к Луне и Марсу наклонение орбиты станции должно быть около 25 градусов, что заставляет задуматься о роли России в этом прекрасном будущем.


Полёт с Земли на Луну будет выглядеть примерно так:
- добираешься до космопорта;
- садишься на ракету;
- взлетаешь и летишь к орбитальной станции;
- отдыхаешь с зале ожидания с видом на Землю пару часов;
- пересаживаешься на корабль с метан-кислородными двигателями до Луны;
- отлетаешь от Земной станции, летишь в космосе (по времени как трансокеанский перелёт) и выходишь на Лунной станции;
- там пересаживаешься на посадочный шаттл с водородо-кислородными двигателем, и долетаешь до Лунного космопорта;
- садишься на экспресс-луноход и едешь до нужной базы.

У нас некоторые на поезде до Чёрного моря дольше ездят.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Картинка из интернета.

Процесс доставки на Марс посылки будет примерно следующим:
- на марсианском алиэкспрессе делается заказ;
- заказ приходит в сортировочный центр космопорта;
- его вместе с другими заказами упаковывают в стандартный космический грузовой контейнер (например, цилиндр 8x12 м) и выводят к орбитальной станции;
- там автоматические манипуляторы под присмотром оператора разместят контейнер на буксире с ионными двигателями, добавит ещё штук 11 таких контейнеров (с запасными реакторами, разными консервами, компьютерной техникой, скафандрами и прочими вещами);
- далее этот космический контейнеровоз начинает свой полёт на Марс;
- на марсианской станции его разгружают и по одному контейнеру спускают с орбиты на посадочных модулях;
- далее груз сортируют и доставляют заказ уже в жилой модуль.


Про инфраструктуру колонии в следующем посте.

Показать полностью 4
101

Falcon 9 и Солнце

Falcon 9 и Солнце

Подборка из нескольких весьма зрелищных снимков со вчерашнего запуска ракеты Falcon 9, которая была запущена в очень удачное для фотосессий время суток.


Что касается формальных цифр, то носитель вывел на орбиту очередную партию из 60 спутников Starlink. Первая ступень совершила успешную посадку на баржу в океане (для нее это уже был четвертый полет в космос). Кроме того, SpaceX удалось словить одну из створок головного обтекателя (для нее это было третье использование). Вторую створку извлекли из воды.

Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Falcon 9 и Солнце Космос, Falcon 9, Солнце, Запуск, Фотосессия, Starlink, SpaceX, Подборка, Длиннопост
Показать полностью 7
41

Как проходит подготовка космического корабля к полёту в космос. «Созвездие Энергии» – выпуск 22

На расстоянии 2096 километров от Москвы, на космодроме Байконур идёт завершающая предполётная подготовка экипажа 63 и 64 экспедиций на Международную космическую станцию.

На стапеле, космически корабль, или как говорят специалисты, изделие «Союз МС-17».

Корабль как и его будущий экипаж, с помощью специалистов РКК «Энергия» и других предприятий входящих в Госкорпорацию Роскосмос, активно готовится к полёту, о том как это происходит, смотрите наш репортаж.

Еженедельная информационная программа "Созвездие Энергии" Выпуск 22 Ракетно-космической корпорации "Энергия" имени Сергея Павловича Королёва.

379

Нобелевскую премию по физике вручили за исследование чёрных дыр

Награду разделили на две части.

Нобелевскую премию по физике 2020 года разделили пополам: одну часть вручили Роджеру Пенроузу — за открытие того, что образование чёрных дыр является предсказанием общей теории относительности. Вторая половина досталась Райнхарду Генцелю и Андрее Гез — за открытие сверхмассивного компактного объекта в центре нашей галактики.

Нобелевскую премию по физике вручили за исследование чёрных дыр Общество, Нобелевская премия, Космос, Наука, Черная дыра, Tjournal, Роджер Пенроуз
Нобелевскую премию по физике вручили за исследование чёрных дыр Общество, Нобелевская премия, Космос, Наука, Черная дыра, Tjournal, Роджер Пенроуз

«Три лауреата разделили Нобелевскую премию по физике этого года за открытия, касающиеся одного из самых экзотических явлений во Вселенной — чёрной дыры», — отмечается на сайте премии. Говоря о важности работ учёных, представитель Шведской академии заявил, что премия присуждается за «раскрытие самых тёмных секретов Вселенной».

В 2019 году награду по физике вручили за «теоретические открытия в области физической космологии» и «за открытие экзопланеты, вращающейся вокруг звезды солнечного типа».

5 октября Нобелевскую премию по физиологии и медицине присудили Харви Олтеру, Майклу Хаутону и Чарльзу Райсу за открытие вируса гепатита C.

7 октября Нобелевский комитет объявит лауреатов премии по химии, 8 октября — по литературе. Премию за содействие установлению мира вручат 9 октября. 12 октября станет известно, кто получит премию по экономике. Согласно правилам, список потенциальных кандидатов на получение награды держится в секрете.

Ольга Щербинина

via

Показать полностью 1
65

Как млекопитающим регенерировать, а графену улучшить квантовые вычисления. Дайджест новостей науки за неделю

Каждый понедельник делаем подборку из самых интересных новостей науки и рассказываем о них подробнее. Смотрите видео или включайте фоном как подкаст.

В этом выпуске мы рассказываем как изменились мозги млекопитающих и птиц через 300 миллионов лет эволюции; где обнаружена вода в жидком состоянии на Марсе; что нужно для регенерации кожи млекопитающих; как личинки мух помогут от сельскохозяйственных болезней и как графен улучшил болометры для квантовых измерений?

Содержание ролика:

00:37 Эволюция мозга млекопитающих и птиц

03:16 Озера на Марсе

05:53 Регенерация кожи

07:35 Личинки мух могут бороться с сельскохозяйственными болезнями

09:19 Графен улучшил свойства болометров для квантовых измерений


(все ссылки на пруфы и исследования под роликом на ютубе)

249

Космонавты МКС поздравили землян с годовщиной начала космической эры

Ровно 63 года назад в космос был запущен первый спутник.


Космонавты Роскосмоса Иван Вагнер и Анатолий Иванишин поздравляют с борта Международной космической станции с годовщиной запуска первого спутника Земли!


Как отметил Анатолий Иванишин, именно благодаря труду наших ученых и конструкторов был успешно сделан первый шаг в освоении космического пространства.

В свою очередь Иван Вагнер обратился к ветеранам отрасли: «Отдельное спасибо ветеранам ракетно-космической промышленности нашей страны, людям, чья жизнь посвящена сложной и интересной работе — производству космической техники и ее запуску на околоземную орбиту».

via

344

Пара слов о плазме, ч. 9. Ветер в поле

Жизнь пресна, когда в ней нет конференций по физике плазмы и термоядерному синтезу.

Если ты физик-плазмист, конечно. Ни обсудить науку, ни послушать неожиданные комменты на свою работу, ни выпить вина на берегу Атлантики. А ещё не выйдет послушать доклады о плазме в космосе. Даже если ты никаким боком не относишься к астрофизике, там всегда интересно посмотреть на самые красивые картинки всей конференции.

Что-нибудь вот такого плана [1]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Если что, на этой картинке — плотность тока в токовом слое при магнитном пересоединении. Что значат все эти слова, при чём тут астрофизика, ветер и поле — сейчас расскажу.

Большую часть времени Солнце — это такой большой постоянный магнит с северным полюсом с одной стороны, южным полюсом — с другой, и мелкой лохматостью в пятнах и вспышках. Вот так это выглядит на картинке, нарисованной по данным с телескопов [2]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Или вот, схематичная картинка — без подробностей, как в учебнике физики. Большую часть времени поле такое, как в 2010 и 2017 годах [3]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Фокусы начинаются, когда вспоминаешь, что Солнце крутится. И эти картинки в школьных учебниках уже не покажут (18+, safe for work).

Солнце ежесекундно выбрасывает пару мегатонн горячей плазмы. Горячая плазма привязана к магнитному полю — частицы могут скользить вдоль него, но почти не могут сдвинуться поперёк. Там, где в магнитном поле больше энергии, чем в заряженных частицах, плазма летит туда, куда её заставляет лететь магнитное поле. Так получаются корональные петли. Вот они [4]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Но магнитное поле Солнца ослабевает с высотой, а плазма летит. В какой-то момент она отрывается, улетает и становится солнечным ветром, летящим со скоростью в несколько сотен километров в секунду. В нём давление плазмы больше давления магнитного поля, и уже поле летит туда, куда хочет плазма.

И вот плазма несёт к Земле магнитную силовую линию, привязанную к какой-то точке на Солнце. А Солнце за две недели уже повернулось противоположной стороной. В итоге ветер загибает силовые линии вот в такие спиральки [5]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Но магнитное поле не может быть само по себе, для его существования нужны какие-то токи. Солнечная система оказывается здоровенной динамо-машиной. Эти токи разгоняются на границе между силовыми линиями, идущими от Солнца, и линиями, которые к нему возвращаются. Эта граница наклонена вместе с магнитными полюсами Солнца. Солнечный ветер запоминает этот наклон Солнца и уносит его с собой. А значит, если сейчас этот токовый слой сверху от Земли, то через две недели он окажется снизу. И вот так выглядит вся эта токовая спиралька размером во всю Солнечную систему, называемая спиралью Паркера [6]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Сверху от токового слоя магнитное поле солнечного ветра направлено от Солнца и налетает на Землю, будучи направленным с юга на север. А через две недели, снизу от слоя — уже с севера на юг.

У Земли же магнитное поле не меняется, а значит, две недели в месяц солнечный ветер вмазывает в магнитосферу Земли магнитное поле, которое направлено не туда.

А значит, и здесь должна получиться динамо-машина, которая разгонит вокруг земли слой тока. Токовый слой разделит земные силовые линии, идущие с юга на север, и солнечные, идущие с севера на юг. Вот здесь он, обозначен крестиком, где магнитосфера Земли продавлена солнечным ветром [7]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Слой тонок и неустойчив, ток в нём распадается на тонкие струйки и затухает. Именно это нарисовано на заглавной картинке. Ток затухает — силовые линии ветра и магнитосферы разрываются, и обрывок линии от Солнца перезамыкается на обрывок силовой линии Земли и улетает дальше. Силовые линии стремятся стать короче — тут их можно представить длинными резинками.

И вот эти огромные космические рогатки стреляют солнечным ветром над нашими головами.

По-моему, это просто красиво.


Ps. Если кто хочет увидеть одного из победителей конкурса на самое красивое плазменное видео с европейской конференции 2018 года — вот оно:

Pps. Пост навеян тем, что европейское космическое агентство выложило в открытый доступ сырые данные с зонда Solar Orbiter, летающего вокруг Солнца. Но в них, конечно, куда больше подробностей.

Иллюстрации взяты отсюда:

[1] https://phys.org/news/2015-06-mastering-magnetic-reconnectio...

[2] https://svs.gsfc.nasa.gov/12329

[3] https://insider.si.edu/2017/07/3d-simulations-reveals-sun-fl...

[4] https://www.sciencealert.com/physicists-have-measured-the-ce...

[5] http://old.inspirehep.net/record/1605710/plots

[6] https://en.wikipedia.org/wiki/Interplanetary_magnetic_field

[7] http://space.rice.edu/IMAGE/livefrom/sunearth.html

Показать полностью 5 1
470

Зонд «Паркер» поставил новый рекорд близости к Солнцу

Зонд «Паркер» поставил новый рекорд близости к Солнцу NASA, Космос, Солнце, Космический зонд, Зонд Паркер, Исследования, Техника, Технологии

Зонд «Паркер» совершил шестой по счету близкий пролет мимо Солнца, поставив новые рекорды близости к звезде и скорости движения рукотворного космического аппарата. Он оказался всего в 13,5 миллионах километров от фотосферы светила, что эквивалентно 35 расстояниям от Земли до Луны, и вновь успешно собрал научные данные, которые вскоре передаст на Землю, сообщается на сайте миссии.


Солнечный зонд «Паркер» был запущен в космос в августе 2018 года. Он предназначен для изучения и определения параметров солнечного ветра вдоль своей траектории, а также исследования внешних слоев звезды, и за семь лет работы должен совершить 24 оборота вокруг Солнца, все больше сближаясь с ним. Для того, чтобы аппарат сохранял работоспособность в условиях высоких температур и мощных потоков заряженных частиц, он оснащен многослойным теплозащитным щитом, за которым укрыты научные приборы, и системой охлаждения.


За два года работы «Паркер» совершил пять сближений с Солнцем и получил немало интересных данных, в частности показал движение солнечного ветра, увидел пылевой след астероида Фаэтон и комету NEOWISE, помог понять механизмы ускорения частиц около Солнца и впервые обнаружить заряженные частицы, рождающиеся на границе между быстрым и медленным солнечным ветром.


11 июля 2020 года зонд совершил третий пролет вблизи Венеры, 25 сентября начал шестое тесное сближение с Солнцем, а 27 сентября пролетел на минимальном расстоянии около 13,5 миллионов километров от фотосферы звезды, двигаясь со скоростью 466592 километров в час, установив новые рекорды по близости к Солнцу и скорости движения рукотворного космического аппарата. Ожидается, что в середине декабря 2024 года зонд практически войдет в атмосферу Солнца, оказавшись на расстоянии около шести миллионов километров от условной поверхности звезды, что в семь раз ближе, чем перигелий орбиты Меркурия, это позволит получить уникальные научные данные.


https://nplus1.ru/news/2020/09/29/parker-six-flyby

Показать полностью
195

Солнце, 28 сентября 2020 года

В линии H-alpha (656,28 нм):

Солнце, 28 сентября 2020 года Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор, Длиннопост

Оборудование:

-хромосферный телескоп Coronado PST H-alpha 40 mm

-монтировка Meade LX85

-светофильтр Deepsky IR-cut

-астрокамера QHY5III178m.

Сложение 100 кадров из 3017 в Autostakkert.

В ультрафиолете (365 нм):

Солнце, 28 сентября 2020 года Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор, Длиннопост

Оборудование:

-телескоп-астрограф Meade 70 мм quadruplet apo

-монтировка Meade LX85

-светофильтры Baader Astrosolar Photo + ZWB2 + НПЗ СЗС-22

-астрокамера QHY5III178m.

Сложение 100 кадров из 3522 в Autostakkert.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

Показать полностью 1
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: