Дубликаты не найдены

+10

Блэт, а у меня ничего не было. У нас в стране луна была обычной - светлой.

раскрыть ветку 3
+6

Тут не в стране дело. ТС с Марса снимал затмение.

+2

пора валить из этой страны

0
Что за страна?
+2
Опять гоблинов мочить...
0

Вон тут люди на вчерашнем видео с затмением НЛО обнаружили!

https://youtu.be/Vqr33SJjOTk

0
Когда вместо заголовка - целый пост.
0

сколько еще постов про луну сегодня будет??????????

0
Спасибо за фото, я все проспала(( Хоть так посмотрю...
+1
Комментарий удален. Причина: данный аккаунт был удалён
раскрыть ветку 7
+11
Вот эту луну шталь? Ахуянна братан 17 год это был как помню.. купил самсунг А5... в ожидании 28.07.2018
Иллюстрация к комментарию
раскрыть ветку 6
+18
У меня луну из-за зданий видно не было, я сфоткал сигнальные фонари на высотке типо это Луна
Иллюстрация к комментарию
+1
Комментарий удален. Причина: данный аккаунт был удалён
раскрыть ветку 2
0
Самсунг А7. Херня еще хуже...
Иллюстрация к комментарию
раскрыть ветку 1
-1
Анапа, двор
-2

Специально полчетвертого утра пошел во двор посмотреть луну. Спускаясь по лестнице встретил компанию из пьяных баб, которые с кабака шли. Чуть не стал жертвой сну-сну

-16

все хорошо, только как же вы задолбали в ленте своей луной

раскрыть ветку 7
+2

заигнорь тег луна, в чем проблема?

ещё комментарии
ещё комментарии
Похожие посты
86

Терраформирование Марса

Во всех этих разговорах в последнее время о том, что Илон Маск (Elon Musk) и SpaceX пытаются колонизировать Марс, многие скептики быстро находят несколько существенных просчетов в этом футуристическом проекте.

Короче говоря, Марс является негостеприимным для человеческой жизни, как ни крути. Его поверхность (в значительной степени) сухая и засушливая, его атмосфера слабая и токсичная, а температура далека от прогулок по Майами-Бич. Несмотря на все это, ученые и инженеры проявляют уверенность в том, что жизнь на Красной планете не только вероятна в будущем, но и неизбежна.

С научной точки зрения, жизнь человека на Марсе, вероятно, могла бы рассказать нам больше о прошлом Солнечной системы, а также об истории нашей планеты, чем мы когда-либо могли бы узнать из жизни только на Земле. Это также был бы феноменальный шаг в завоевании и изучении иных миров. Теоретически, мы могли бы использовать поселения людей на Марсе в качестве образца для будущих миссий колонизации, возможно, даже других звездных систем. Марс также мог бы служить в качестве важной промежуточной остановки для межпланетных миссий в недалеком будущем. Наконец, человеческая цивилизация, ограниченная одной планетой, просто обречена на гибель.

Однако, как мы знаем, Марс сегодня не будет легким местом для жизни. С биологической точки зрения, создание поселения на Марсе сегодня ничем не отличается от создания поселения на Луне. В далеком будущем необходимо будет терраформировать планету для того, чтобы людям было легче существовать на поверхности Марса, а также для того, чтобы эта планета служила вторым домом для человечества.

Терраформирование — это процесс, посредством которого биосфера планеты изменяется с помощью технологии, чтобы сделать ее более подходящей для землеподобной жизни человека. Тотальное терраформирование требует изменения многих факторов атмосферы и поверхности планеты для того, чтобы приспособить такую жизнь. Существует четыре основных фактора, которые необходимо учитывать для успешного прохождения этого процесса: атмосферное давление, состав атмосферы, температура и наличие жидкой воды.

Терраформирование Марса Вселенная, Космос, Планеты и звезды, Марс, Колонизация, Терраформирование, Длиннопост, Текст, Видео

Этапы терраформирования Марса. Модель.

Если мы посмотрим на текущие атмосферные и планетарные параметры Марса, то увидим, что он далеко не похож на Землю. Давление его атмосферы составляет всего 6,4 мбар (~1/200 от земной) и почти полностью состоит из углекислого газа (CO2). Он не имеет стабильных источников жидкой воды, небольшие карманы жидкой воды ненадолго образуются перед тем как замерзают на поверхности или испаряются в разряженной атмосфере. Марс тоже холодный, его средняя температура всего 215 К (–58° С).

Эта температура, однако, более теплая, чем можно было бы ожидать для скалистой планеты на таком расстоянии от Солнца, как Марс. Фактически, если вы посчитаете, используя закон Стефана Больцмана, то обнаружите, что на Марсе на самом деле на 3K теплее, чем должно быть. Это связано с тем, что его атмосфера состоит почти исключительно из парникового газа, вышеупомянутого диоксида углерода. Даже этот чрезвычайно тонкий слой углекислого газа повышает температуру на 3К, что примечательно.

Марс также удивительно похож на Землю, поскольку он имеет две ледяные полярные шапки. Северный полюс Марса, состоящий из водяного льда и подобных летучих компонентов, очень похож на Антарктиду. Однако, вопреки тому, что можно было бы подумать, Южный полюс Марса на самом деле гораздо более перспективен для жизни на Красной планете. Это связано с тем, что Южный полюс Марса почти полностью состоит из замерзшей углекислоты, покрывающей сплошной оболочкой нижнюю часть Марса, как мы его видим.

Терраформирование Марса Вселенная, Космос, Планеты и звезды, Марс, Колонизация, Терраформирование, Длиннопост, Текст, Видео

Марс сегодня

Терраформирование

Исследование, проведенное Робертом Зубрин (Robert Zubrin) и Кристофером Маккей (Christopher McKay) в 2005 году, показало, что если южная полярная шапка была бы полностью сублимирована с использованием какой-либо формы устройства для терраформирования, она могла бы высвободить исключительно углекислый газ, который повысил бы давление атмосферы Марса на 100 мбар (0,1 атм). Текущая температура южного полюса Марса составляет около 142 К, что удивительно близко к сублимирующей температуре СО2 в современных атмосферных условиях Марса.

Нам нужно только увеличить температуру южного полюса Марса примерно на 5,5 К, чтобы начать процесс сублимации ледяных шапок полюса. После достижения этой температуры на полюсе углекислый газ будет насыщать атмосферу планеты, дополнительно увеличивая температуру и давление до тех пор, пока вся замерзшая углекислота на полюсе не испарится в атмосферу. После этого процесса средние температура и давление на поверхности Марса будут составлять около 225 К (–48° С) и 106,4 мбар соответственно.

Но, процесс только начинается, поскольку есть еще потенциал в 300 мбар углекислого газа, замороженного в грунте Марса (реголите). После того, как ледяная шапка Южного полюса полностью превратится в пар, равновесная температура Марса будет повышаться достаточно высоко до такой степени, что CO2, содержащийся в ледяном марсианском реголите, также будет сублимирован в атмосферу. Это, в свою очередь, приведет к повышению атмосферного давления на Красной планете до 41% от уровня давления на земной поверхности и фактически приведет к повышению температуры на экваторе выше точки замерзания воды, когда Марс находится в перигелии (ближе всего к Солнцу).

Однако весь этот процесс предполагает наличие футуристического устройства для терраформирования, которое имеет возможность увеличить температуру Южного полюса Марса на 5,5 К. Однако, правда в том, что это устройство не должно быть настолько футуристическим.

Массивное отражающее зеркало, размещенное на орбите Марса в правильной точке, может сделать трюк. Чтобы отразить достаточное количество солнечного света, способного расплавить ледяные шапки полюса, это зеркало (или комплекс зеркал в совокупности) должно иметь площадь поверхности 3*10⁹ метров или около площади поверхности штата Род-Айленд. Учитывая, что в настоящее время у нас есть возможность запускать полезную нагрузку только в несколько десятков тонн, предстоит большая работа, прежде чем мы сможем попытаться осуществить такой проект.

Терраформирование Марса Вселенная, Космос, Планеты и звезды, Марс, Колонизация, Терраформирование, Длиннопост, Текст, Видео

Другие вопросы терраформирования

Как только весь углекислый газ Марса испарится в атмосферу планеты, может начаться реальное терраформирование. Фотосинтетические живые растения могут быть высажены и выращены, чтобы помочь в преобразовании атмосферы, сделав её более дружественной к человеческой жизни, выделяя кислород. Это, однако, немедленно повлечет за собой отрицательную обратную связь — уменьшение драгоценного CO2, который обеспечивает тепличный эффект для вышеуказанных растений. Чтобы противодействовать этому, средства на основе CFC (хлорфторуглероды) должны будут производить парниковые газы, чтобы восполнить некоторое количества этого СО2 (да, это противоположное тому, что мы делаем здесь, на Земле).

Но растения также нуждаются в воде, чтобы выжить, и это является еще одной проблемой для терраформирования Марса. У Марса много замороженной воды и после того, как мы достаточно увеличили температуру и давление, эта вода станет жидкой. Но, вода в жидком состоянии фактически уменьшает парниковый эффект, отражая солнечный свет обратно в космос, который в противном случае был бы поглощен планетой нагревал её для сбора парниковых газов. Это еще одна проблема, которая должна быть решена нашими объектами, производящими CFC (хлорфторуглероды).


Наконец, сами CFC приводят к проблеме истощения озона, который необходим для того, чтобы блокировать вредоносное воздействие ультра-фиолетового излучения, исходящего от Солнца. В биосфере Марса должна сосуществовать здоровая сбалансированная смесь из растений, воды и CFC, чтобы процесс терраформирования происходил правильно. Как только этот процесс будет завершен, все четыре основных планетарных фактора (состав и давление атмосферы, жидкая вода и температура) будут правильно изменены, чтобы обеспечить земную жизнь на ныне голой поверхности Марса.
Терраформирование Марса Вселенная, Космос, Планеты и звезды, Марс, Колонизация, Терраформирование, Длиннопост, Текст, Видео

Вывод

Технология, и материалы, необходимые для терраформирования Красной планеты, существуют уже сегодня. Это всего лишь вопрос времени, когда какой-то миллиардер-энтузиаст космического предпринимательства накопит необходимые ресурсы и мотивацию, чтобы начать терраформирование Марса. Есть, правда, некоторые потенциальные сложности во внедрении растительной жизни в экосистему Марса, но нет ничего, что будущие, более совершенные поколения человечества не смогут преодолеть.

Как только мы преуспеем в полном терраформировании Марса, что будет дальше для человечества? В этот момент Марс станет собственным, самоподдерживающимся миром, полностью независимым от ресурсов Земли. Ни одно естественное или созданное человеком явление не будут способны остановить продвижение человечества по направлению к звездам. Наконец, мы станем межпланетными.

Вселенная обширна и требует нашего изучения. Марс — это просто первый из потенциальных тысяч шагов в нашем стремлении стать более крупным видом. Однажды человечество сделает скачок к звездам в попытке узнать больше о Вселенной, и больше о нас самих в этом процессе. Вселенная — это наш район, а терраформирование Марса — это как открытие входной двери.


Источник: Terraforming Mars

Показать полностью 4
30

Посадочные аппараты для доставки астронавтов NASA на поверхность Луны прошли первую проверку агентства

Базовый обзор проектов является важным этапом в программе Human Landing System (HLS) в рамках лунной программы Artemis. Согласно официальному заявлению NASA, выбранные по конкурсу провайдеры должны предоставить огромное количество данных и документации, чтобы пройти текущий этап. Однако критерии у обзора довольно общие, они требуют от компаний демонстрации самого базового уровня, опытности и компетентности. Агентством обозначены главные задачи, на которых необходимо сосредоточиться, а также проблемы каждого из разрабатываемых аппаратов.

(На фото технологические макеты посадочных модулей для проверки инженерных решений)

Посадочные аппараты для доставки астронавтов NASA на поверхность Луны прошли первую проверку агентства NASA, Dynetics, Blue Origin, SpaceX, Космонавтика, Космос, Луна, Технологии, США, Длиннопост

Напомним, что после тщательного отбора NASA предоставило финансовые средства SpaceX, Dynetics и National Team на разработку трёх принципиально разных посадочных аппаратов, предназначенных для доставки астронавтов на поверхность Луны.

National Team, в составе Blue Origin, Draper, Lockheed Martin и Northrop Grumman, получили $567 млн на разработку сложной трёхступенчатой системы со спускаемым аппаратом на основе существующего лендера Blue Origin Blue Moon. Компании Dynetics досталось $253 млн на производство чуть более простого спускаемого аппарата, а SpaceX – $135 млн на разработку космического корабля нового поколения Starship Lunar.

Посадочные аппараты для доставки астронавтов NASA на поверхность Луны прошли первую проверку агентства NASA, Dynetics, Blue Origin, SpaceX, Космонавтика, Космос, Луна, Технологии, США, Длиннопост

Основная цель первоначального финансирования NASA состоит в том, чтобы всесторонне охарактеризовать и понять возможности и характеристики каждого из предложений, а также оценить вероятность того, что аппараты в действительности способны обеспечить высадку астронавтов на Луну к концу 2024 года.

Следующей важной вехой программы станет сокращение числа участников проекта. По словам директора NASA Джима Брайденстайна, после завершения следующего этапа обзора (~декабрь 2020 года) финансирование получит только одна из компаний, но не исключено, что, при необходимости, агентство продолжит сотрудничество с выбывшими участниками. На примере Falcon 9, Falcon Heavy и Crew Dragon SpaceX уже доказали, что способны разрабатывать надёжные многоразовые ракеты и космические аппараты, которые не первый год остаются ведущими в своей отрасли и сохраняют самую оптимальную цену запусков на рынке.

Для многих специалистов отрасли вполне очевидно, что в 2021 году компания выведет на орбиту свою сверхтяжёлую ракету-носитель Starship с посторонней помощью или без неё. Предложение SpaceX по лунному кораблю почти наверняка можно считать самым уникальным, учитывая, что это единственная компания, которая уже перешла к проведению реальных лётных испытаний прототипов своей транспортной системы.

Посадочные аппараты для доставки астронавтов NASA на поверхность Луны прошли первую проверку агентства NASA, Dynetics, Blue Origin, SpaceX, Космонавтика, Космос, Луна, Технологии, США, Длиннопост
Посадочные аппараты для доставки астронавтов NASA на поверхность Луны прошли первую проверку агентства NASA, Dynetics, Blue Origin, SpaceX, Космонавтика, Космос, Луна, Технологии, США, Длиннопост

В Бока-Чика уже готовится обтекатель первого полномасштабного инженерного макета Starship Lunar, кроме того команда приступила к подготовке основной части прототипа. И уже через некоторое время мы, возможно, сможем увидеть первый полномасштабный инженерный макет, часть которого летала на 150 метров.

Посадочные аппараты для доставки астронавтов NASA на поверхность Луны прошли первую проверку агентства NASA, Dynetics, Blue Origin, SpaceX, Космонавтика, Космос, Луна, Технологии, США, Длиннопост

Инженер SpaceX Ник Каммингс в недавнем интервью подтвердил, что компания потенциально может совершить несколько попыток беспилотной посадки на Луну корабля Starship ещё до первой попытки высадки астронавтов NASA на спутник Земли.

Отметим, что компания Blue Origin ранее заявляла, что они тоже планируют демонстрационные посадки в 2023-м году. Dynetics говорили о конце 2023 - начале 2024 года. А это значит, нас ожидает настоящая "лунная гонка", теперь уже среди компаний "нового космоса"!

Источник: https://vk.com/wall-41152133_260629

Показать полностью 4
3553

Гражданин Марса

Бета-тестеры Starlink обнаружили интересный пункт в пользовательском соглашении сервиса:

Гражданин Марса Starlink, SpaceX, Илон Маск, Марс, Космос, Суверенитет, Самоопределение, Колонизация, Перевод, Перевел сам, Пользовательское соглашение

9. Регулирующий закон.


Для сервиса Starlink на Земле, земной орбите, или Луне, эти условия и все диспуты связанные с ними будут решаться по законам штата Калифорния, США. Для сервиса Starlink на Марсе, либо на пути к Марсу на Starship или других ракет-колонизаторов, участники соглашения признают Марс свободной планетой, и что никакое земное правительство не имеет суверенитета или права управлять марсианской деятельностью. Следовательно, все диспуты будут решаться по принципам добросовестного самоопределения марсианского поселения.

54

Марс (1968)

Фильм режиссёра Павла Клушанцева, создан на стыке научно-популярного кино и научно-художественной фантазии. В нем рассказывается (на основании научных данных 1960-х годов) о физических условиях на планете Марс, возможности жизни и гипотетических формах растительности на ней, о «каналах» и «морях» красной планеты. Режиссер попытался воссоздать природную среду одной из самой загадочной планеты Солнечной системы. В фильм включены игровые фрагменты — фантазии мастера на тему освоения Марса в недалеком будущем.

435

General Atomics отправила на рассмотрение в NASA проект ядерного двигателя NTP, способного сократить время полета на Марс до 3 месяцев

Американская компания General Atomics Electromagnetic Systems (GA-EMS) представила проектную концепцию реактора с ядерным тепловым двигателем (NTP) для питания будущих миссий астронавтов на Марс для исследования, финансируемого NASA. Конструкция GA-EMS превзошла ключевые рабочие параметры и оптимизировала реактор NTP с точки зрения технологичности, что является наивысшим показателем качества.

«GA-EMS имеет уникальные возможности для разработки и поставки экономичной и безопасной реакторной системы NTP для выполнения будущих космических миссий», - сказал президент GA-EMS Скотт Форни, - «Это захватывающее коллективное усилие, которое напрямую согласуется с нашими более чем 60-летними исследованиями и разработками в области ядерной энергии, включая проектирование и развертывание ядерных реакторов, а также наш опыт в космических системах. Мы рады внести свои идеи в новое поколение космических исследований для нашей страны и всего мира».

General Atomics отправила на рассмотрение в NASA проект ядерного двигателя NTP, способного сократить время полета на Марс до 3 месяцев General Atomics, Ядерная физика, Ядерный двигатель, Марс, NASA, Космонавтика, Технологии, Космос, США, Энергетика, Новости, Длиннопост

В концепции реактора NTP GA-EMS используются достижения в области современных ядерных материалов и методов производства, а также ценный опыт участия компании в проекте Rover Комиссии по атомной энергии (AEC) NASA в 1960-х годах – одна из первых программ, демонстрирующих возможность создания ядерных тепловых двигателей для космических систем. General Atomics изготовила для этого проекта около 6 тонн ядерного топлива.

(Испытания первого ядерного реактивного двигателя в 1967 году / ©NASA)

General Atomics отправила на рассмотрение в NASA проект ядерного двигателя NTP, способного сократить время полета на Марс до 3 месяцев General Atomics, Ядерная физика, Ядерный двигатель, Марс, NASA, Космонавтика, Технологии, Космос, США, Энергетика, Новости, Длиннопост

В 1965 году компания также принимала непосредственное участие в испытаниях и определении характеристик ядерного топлива для реактора SNAP-10A, единственного в США ядерного энергетического реактора, запущенного в космос, который обеспечивал питание спутника в течение 43 дней. Для этого реактора используется то же топливо, которое с 1950-х годов использовалось в 66 учебных, исследовательских и изотопных реакторах General Atomics (TRIGA®), построенных в США и по всему миру.

General Atomics отправила на рассмотрение в NASA проект ядерного двигателя NTP, способного сократить время полета на Марс до 3 месяцев General Atomics, Ядерная физика, Ядерный двигатель, Марс, NASA, Космонавтика, Технологии, Космос, США, Энергетика, Новости, Длиннопост

Ключевой компонент разработки USNC — топливные «таблетки» из урана средней степени обогащения. Они содержат от 5% до 20% высокоактивного изотопа U-235, покрытого керамикой на основе карбида циркония. Такая степень обогащения лежит примерно посередине между «гражданскими» реакторами АЭС и военными. Фирменная технология керамического покрытия делает «таблетки» невероятно устойчивыми к механическим повреждениям и воздействию экстремальных температур.

В компании сообщают, что их тепловыделяющие элементы значительно превосходят по этим параметрам используемые сейчас на атомных электростанциях. А в результате двигатель будет иметь более высокий удельный импульс при меньшей степени обогащения урана, чем в более ранних вариантах ЯРД. Помимо полета к Марсу, среди целей амбициозного проекта — и другие миссии в пределах Солнечной системы. Перспективы концепта в ближайшее время будут рассматривать специалисты NASA и американского Министерства обороны (DoD). Возможно, ведомства даже разрешат его коммерческое применение частными компаниями. Созданное USNC решение будет работать на пределе возможностей современного материаловедения (3000°C) и обладать удельным импульсом вдвое выше, чем лучшие жидкостные двигатели.

General Atomics отправила на рассмотрение в NASA проект ядерного двигателя NTP, способного сократить время полета на Марс до 3 месяцев General Atomics, Ядерная физика, Ядерный двигатель, Марс, NASA, Космонавтика, Технологии, Космос, США, Энергетика, Новости, Длиннопост

Источники:
https://www.atomic-energy.ru/news/2020/09/16/106933
https://naked-science.ru/article/cosmonautics/yadernyj-raket...

Показать полностью 3
44

SpaceX готова применить Starlink для связи на Марсе и Starship для уборки космического мусора

SpaceX планирует использовать свои спутники Starlink не только для обеспечения широкополосного подключения к Интернету в удалённых районах Земли, но и для связи на Марсе. Об этом рассказала главный операционный директор и президент компании Гвинн Шотвелл во время беседы с Time Magazine.


Недавно SpaceX запустила уже 15-ю партию спутников Starlink на низкую околоземную орбиту (НОО). На данный момент группировка компании включает в себя порядка 833 космических аппаратов, и с их помощью SpaceX собирается сделать широкополосное подключение к Интернету доступным в самых отдалённых уголках планеты. В ответ на вопрос о потенциальных вариантах применения Starlink, президент SpaceX указала на рискованный характер бизнеса спутниковой связи на НОО и добавила, что Starlink может стать неотъемлемой частью миссии SpaceX по превращению человечества в многопланетный вид посредством обеспечения пилотируемых миссий на Марс.

SpaceX готова применить Starlink для связи на Марсе и Starship для уборки космического мусора SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Длиннопост, Starlink, Спутник, Космический мусор, Марс, Луна, NASA

Среди прочего, она отметила: «У нас было много причин заняться телекоммуникационным бизнесом. Компании всегда хотят развиваться, и это была хорошая возможность роста для нас, но есть и другие причины. Низкоорбитальная широкополосная группировка никогда не была успешной. Мы всегда ставим перед собой грандиозные, дальновидные цели. И реализовать подобный проект было целью, за которую стоило взяться. Никто ещё не добивался успеха в этой области: Илон Маск всегда говорит, что этот бизнес завален трупами компаний, которые не смогли добиться успеха. Так что и для нас это был вызов.

Такова была одна из причин. Вторая заключалась в том, что как только мы отправим людей на Марс, им понадобятся средства связи. На самом деле, думаю, будет даже более важным иметь вокруг Марса группировку спутников в духе Starlink. И затем, конечно, нужно соединить две планеты — мы должны обеспечить надёжную связь между Марсом и Землёй».

SpaceX готова применить Starlink для связи на Марсе и Starship для уборки космического мусора SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Длиннопост, Starlink, Спутник, Космический мусор, Марс, Луна, NASA

Помимо Starlink, госпожа Шотвелл также поведала о планах своей компании в отношении ракеты-носителя и космического корабля SpaceX Starship. В космической отрасли принято разрабатывать продукты для конкретных задач, но Starship, пожалуй, единственная платформа, которая направлена на достижение весьма широкого спектра целей.

Например, SpaceX уже получила признание NASA за идею применения Starship для использования в качестве посадочного модуля лунной программы «Артемида». Компания также намерена использовать специальные варианты Starship в качестве топливозаправщиков на орбите, которые предназначены для подготовки космического корабля к дальним полётам на Луну и Марс, при этом SpaceX уже готовится продемонстрировать эту систему для NASA. Основатель компании Илон Маск ранее в этом месяце выразил уверенность в том, что система будет готова к орбитальной дозаправке в 2022 году.

SpaceX готова применить Starlink для связи на Марсе и Starship для уборки космического мусора SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Длиннопост, Starlink, Спутник, Космический мусор, Марс, Луна, NASA
SpaceX готова применить Starlink для связи на Марсе и Starship для уборки космического мусора SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Длиннопост, Starlink, Спутник, Космический мусор, Марс, Луна, NASA

В дополнение к двум упомянутым вариантам использования (и третьему — собственно, пилотируемой миссии на Марс) госпожа Шотвелл упомянула, что SpaceX может использовать Starship для уборки орбитального мусора, который в настоящее время представляет угрозу для Международной космической станции (МКС) и других миссий.

Её ответ последовал на вопрос о планах SpaceX по уменьшению и удалению космического мусора: «На самом деле, программа Starlink была прекрасной возможностью для нас, чтобы задаться проблемой космического мусора и выучить собственные уроки. Изначально мы начали развёртывать эту группировку на гораздо бо́льшей высоте. Именно на это мы получили лицензию. Но когда мы обнаружили, что спутники на этой более высокой орбите могут находиться в течение столетий или тысячелетий, нам это не очень понравилось. Потому что всегда будут иметь место отказы спутников, как вы упомянули — сегодня есть остатки ракет, засоряющие космическую среду и мёртвые спутники, засоряющие космическое пространство. Поэтому мы попросили перенести всю группировку на меньшую высоту, чтобы эти спутники могли сгорать в атмосфере гораздо быстрее. И на самом деле мы выводим спутники на более низкую орбиту, чтобы неработающие после запуска космические тела быстро возвращались на Землю и разрушались.

Я также хочу упомянуть здесь Starship — это необычайно передовой корабль. Он не только снизит стоимость доступа в космос, но и станет транспортным средством, которое будет перевозить людей с Земли на Марс. Но у него также есть возможность принимать груз и команду одновременно, и поэтому, вполне возможно, мы могли бы использовать Starship, чтобы добраться до некоторых из мёртвых ракетных тел (в основном, конечно, к чужим ракетам), чтобы забрать часть этого мусора из космического пространства. Это непросто, это будет нелегко, но я верю, что Starship предложит возможность сделать это. И я очень рада этому».

SpaceX готова применить Starlink для связи на Марсе и Starship для уборки космического мусора SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Длиннопост, Starlink, Спутник, Космический мусор, Марс, Луна, NASA

Помимо более быстрого возвращения в атмосферу Земли (в случае поломки двигателей на это сейчас уходит порядка 5 лет), уменьшение высоты орбиты спутников Starlink также снижает задержки сигналов. Это критически важно для маркетинга и продвижения технологии. А использование Starship для уборки орбитальных обломков и мусора может стать первой в истории миссией подобного рода.

SpaceX готова применить Starlink для связи на Марсе и Starship для уборки космического мусора SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Длиннопост, Starlink, Спутник, Космический мусор, Марс, Луна, NASA

Источник: https://3dnews.ru/1023765/spacex-gotova-primenit-starlink-dl...

Показать полностью 5
643

Цветная Луна, 24 октября 2020 года, 19:40

Цветная Луна, 24 октября 2020 года, 19:40 Луна, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron Omni XLT 127

-монтировка Sky-Watcher AZ-GTi

-редуктор Antares f/6.3

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 100 кадров из 1465 в Autostakkert.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

32

Мобильная пусковая установка готовится к старту лунной миссии

Мобильная пусковая установка проходит испытания на стартовом комплексе 39В Космического центра имени Кеннеди. Эти процедуры проводятся в рамках подготовки к лунной миссии Artemis I, которая запланирована на 2021 год.

Эта установка служит для подготовки к старту ракеты-носителя SLS и корабля Orion, который совершит облет Луны в рамках миссии Artemis I в беспилотном режиме. За пару месяцев до старта установка будет выкачена на комплекс 39В уже с ракетой и кораблем для генеральной репетиции старта.

А в рамках нынешних тестов системы мобильной установки будут проверены на симуляцию старта, сама установка будет осмотрена и прочищена. В этой установке инженеры будут иметь доступ ко всем системам и элементам собранной ракеты с кораблем для их обслуживания, подключения к наземной инфраструктуре и заправки. Также будет проверена система пожаротушения.


Страница миссии Artemis на официальном сайте Nasa: https://www.nasa.gov/specials/artemis/

Новость взята отсюда: https://vk.com/feed?w=wall-22468706_97305

Мобильная пусковая установка готовится к старту лунной миссии NASA, Artemis, Луна, Космос, Sls
Мобильная пусковая установка готовится к старту лунной миссии NASA, Artemis, Луна, Космос, Sls
201

Космические деньги

Про финансы и экономику освоения космоса

Космические деньги Луна, Космос, Колонизация, Стоимость, Starship, Длиннопост

Логистика освоения солнечной системы описана в посте
Колонизация солнечной системы

Уточнение
@sun.ami в прошлом посте нашёл ошибку: у меня при расчете купола взят полный объём сферы, должно быть 2100 вместо 4200 м3.



Внимание: расчёт сугубо оценочный с округлениями и допущениями, предназначен для только для понимания порядка затрат.


1. Стоимость запуска многоразового корабля Земля - НОО

Рассчитаем стоимость доставки 100 тонн на НОО для корабля типа «Starship» и первой ступени типа «Super Heavy» от «SpaceX». Данный аппарат наиболее близок к реальному производству и уже достаточно проработан, чтобы по нему можно было провести оценку.

Стоимость двигателя «Merlin 1D» при тяге 67 тс составляет около 1 млн $ (или 15000 $/тс). Пересчитав пропорционально мощности можно оценить стоимость двигателя «Raptor»: при тяге в 200 тс, получаем стоимость в 3 млн $.

Космические деньги Луна, Космос, Колонизация, Стоимость, Starship, Длиннопост

На первой ступени планируется 37 двигателя «Raptor», стоимость их составит 111 млн $. Двигатели составляют примерно половину от стоимости всей ступени, таким образом, фюзеляж ступени с топливной системой и авионикой будут стоить также 111 млн $.

Стоимость «Starship» (периодически буду называть его 2-ой ступенью) - это 6 двигателей и 18 млн $.
Остальные элементы можно оценить пропорционально элементам 1 ступени:
- через отношения масс 180:120;
- через отношение длин 70:50.
Также можно выразить суммарную стоимость через двигатели, принимая, что они стоят 25% от всего корабля.
Получаем, соотвественно, 74, 79 и 54 млн $. Возьмём максимальные 79 млн $.

Вся ракета получается 319 млн$.

Расчёт коррелируется с другими данными, найдеными на просторах интернета.

Космические деньги Луна, Космос, Колонизация, Стоимость, Starship, Длиннопост

Инфографику увидел в посте
Космическая экспансия человечества

Базовая цена запуска ракеты-носителя «Атлас-5» составляет 109 млн $. На первой ступени установлены двигатели «РД-180», стоимостью 25 млн $ (тягой 390 тс) и «RL-10A» тягой 10 тс (данных по стоимости не нашёл). Двигатели первой ступени составляют около четверти от цены запуска. Также примерно четверть составляет прибыль компании, стоимость пусковых услуг, страховка.

Ещё был найден такой расчёт:
https://astronews.space/spacecrafts-2/252-raschet-stoimosti-...

Далее идёт эффект многоразовости.
На текущий момент первая ступень «Falcon 9» при заявленном десятикратном использовании достигла 6 повторных пусков, используя керосиновые двигатели. Это позволяем предположить, что к 2035 году вполне реально достижение на более совершенном «Starship», проектируемые с учётом полученного опыта и более совершенных двигателях, следующих показателей:
- ресурс планёра и первой ступени - 50 циклов взлёта-посадок (шаттл «Discovery» остановился на 39);
- ресурс двигателя 25 циклов взлёта-посадок;
Следующее предположение - после каждой посадки требуется затратить 1 % от стоимости элемента на осмотр и, при необходимости, ремонт.

Таким образом каждый запуск будет стоить 5.16 млн $ по ресурсу двигателей, 3.8 млн $ по ресурсу планера и, соответсвенно, 1.29 и 1.9 млн $ на осмотр и ремонт.

При многоразовом использовании, когда стоимость 1 запуска сильно падает, вклад топлива начинает существенно расти. «Starship» использует метан-кислородную пару. Стоимость жидкого метана - 430 $ за тонну, жидкого кислорода - 200 $ за тонну (цена в России при текущем курсе). Оптимальное соотношение кислорода к метану 3.65 к 1. Соответсвенно средняя цена топлива - 250 $ за тонну.

Для запуска 100 тонн и возвращения ступеней используется 3400 на 1-ой и 1200 тонн на 2-ой. При цене по 250 $/т получаем 1.15 млн $.

Следующее допущение: увеличение частоты пусков снизит стоимость пусковых услуг (пусковой стол, пункт управления, заправка, транспортировка, посадочные платформы и страховка) до 25 % от стоимости ракеты с топливом и подготовкой к повторному пуску. Прибыль компании примем тоже как 25 %.

Итого получаем: 13.3 млн $ - ракета и топливо, 20 млн $ - суммарная стоимость запуска 100 тонн на НОО.
При увеличении ресурса планёра и двигателей до 100 и 50 пусков соответсвенно, а также появления конкурентов для «SpaceX», что повлечёт снижение прибыли и стоимости организации пуска до 10%, получим стоимость вывода на НОО чуть выше 10 млн $ (уже 2035...2040 год).

Вполне реальная цифра к 2040 году:
100 тысяч $ за тонну на НОО

Для справки: самая низкая цена сегодня («Falcon 9») - 4 млн $ за тонну.


2. Стоимость рейса НОО - Луна

Космические деньги Луна, Космос, Колонизация, Стоимость, Starship, Длиннопост

Для полетов между НОО Земли и НОО Луны используется отдельный корабль, который не совершает посадок на поверхность.

Такому кораблю не нужны мощные двигатели, вполне достаточно два (для безопасности) метановых аналога «Мерлина». Таким образом, стоимость двигателей будет около 2 млн $.

Отсек полезной нагрузки «Starship» при пересчёте пропорционально длине составит примерно 40 тонн массы и 28 млн $ в цене.

Удельная масса и стоимость бака составляет около 60 кг и 0.038 млн $ на тонну топлива.

Требуемый запас характеристической скорости для полёта между Землей и Луной около 4 км/с, что при удельном импульсе в 3800 м/с потребует топлива по массе почти в 2 раза больше массы корабля.

Чтобы вернуться после доставки 100 тонн, для корабля массой 120 тонн (40 отсек и двигатели + 80 баки), потребуется 240 тонн топлива. Для того, чтобы доставить от Земли корабль массой 460 тонн (корабль, топливо и целевая нагрузка) потребуется уже 920 тонн топлива. Фактически получаем тот же «Starship», но с намного большим ресурсом планёра (не надо выдерживать вход в атмосферу) и дешевыми двигателями.

Получаем стоимость 81 млн $ (79 ступень + 2 двигателя) с ресурсом (грубо) 500 полетов (до Луны и обратно) для планера, но 50 для двигателей.

Стоимость осмотра для планера приём также 1 % от стоимости (проводится реже, но в условиях космоса), а для двигателей - 4 % от стоимости (повышение из-за условий космоса).

Для такого корабля возникают дополнительные траты - доставка топлива, новых двигателей и запчастей на орбиту.
Масса 2 двигателей и некоторого количества ЗИП примем за 2 тонны.

Дополнительно к замене двигателей придётся добавить 0.2 млн $, что, относительно мало, а вот за подъем на орбиту 1200 тонн топлива придётся выложить дополнительно 120 млн $.

Стоимость работ по организации примем равной двойной стоимости наземного пуска - около 3.5 млн $.

Стоимость вывода корабля на орбиту - 12 млн $, с учётом ресурса в 500 полетов, это добавит только 0.024 млн $ за один полёт.

Итого стоимость отправки на Лунную орбиту 100 тонн груза составит почти 125 млн. (0.04 + 0.16 + 0.79 + 0.08 + 0.024+ 3.5 + 120.2) причём доля доставки топлива составит 96 %.

Для пилотируемых миссий такой вариант подходит, так как важно время.

Вполне реальная цифра к 2045 году:
1.25 млн $ за тонну между НОО Земли и Луны на химических двигателях.


Космические деньги Луна, Космос, Колонизация, Стоимость, Starship, Длиннопост

Если ракета на химическом топливе оправдана для пассажирских перевозок, то перевозка грузов выйдет слишком дорого. Все грузовые рейсы выгодно осуществлять на ионных ядерных буксирах.

На ОКР по разработке такой техники выделили 4.2 млрд рублей. Из чего можно сделать вывод, что стоимость опытного образца мощностью 1 МВт и массой в 20 тонн выйдет в 2.1 млрд рублей. Буксир, массой в 200 тонн и выводимый в два этапа, может (далее экспертная оценка) иметь мощность 30 МВт и стоимость 21 млрд рублей или 300 млн $.

Время набора 4 км/с для буксира массой 200, корабля 40 и с нагрузкой 100 тонн займёт 16 дней, таким образом, полёт в обе стороны займёт 36 дней (с учётом стыковки, разгрузки, выхода на орбиту разгона).

Срок службы ядерных буксиров составляет 10 лет, что эквивалентно 100 рейсам.

Для ионных двигателей с удельным импульсом 50 км/с потребуется 50 тонн ксенона на рейс.

Стоимость ксенона 250 тыс $ за тонну. Учитывая необходимость вывода на орбиту, стоимость на рейс составит 17.5 млн $.

Доставки 100 тонн при помощи ядерного буксира будет состоять из 4 млн $ - за ресурс корабля, 3 - за ресурс буксира, 0.24 - за доставку на орбиту корабля и буксира, 3.5 - организация запуска, 3 - осмотр и ремонт, 17.5 - рабочее тело для ионных двигателей. Всего 31.5 млн $. Даже в ядерном буксире стоимость топлива (ксенона) составит 55.6 %.

Вполне реальная цифра к 2045 году:
0.32 млн $ за тонну между НОО Земли и Луны при помощи ядерного буксира.


3. Стоимость доставки груза с НОО Луны на поверхность

Космические деньги Луна, Космос, Колонизация, Стоимость, Starship, Длиннопост

Необходимый запас характеристической скорости для посадки/взлёта с Луны с запасом для коррекции орбиты и маневрировании на посадке составляет 1.9 км/с.

Для возврата корабля в 60 тонн (40 корабль и 20 двигатели и топливные баки) потребуется 40 тонн топлива. Соответсвенно, для посадки такого корабля с грузом 100 тонн необходимо 132 тонны топлива. Общая масса - 332 тонны. 3 двигателя «Merlin 1D» более чем достаточно для взлета или посадки с резервированием.

Стоимость лунного шаттла составит 40 млн $ (3 - двигатели, примерно 30 - корабль (36 % от «Starship»), 7 - баки). Ресурс принимается для планера в 200 посадок (нет входа в атмосферу), для двигателей - 50 циклов.

Доставка 1 тонны груза с поверхности Земли до НОО Луны обойдётся в 0.415 млн $. Доставка 2 тонн запчастей и двигателей - 0.83 млн $, корабля - 24.9 млн $, 172 тонн топлива для 1 посадки взлёта - 71.4 млн $. Итоговая стоимость составит 75.8 млн $ (0.08 - двигатели, 0.32 - корабль с доставкой, 3.5 организация рейса, 0.12 + 0.37 - осмотр двигателя и корабля, 71.4 - топливо) за 100 тонн. Доля топлива - 84 %.

Вполне вероятная цифра к 2045 году:
0.76 млн $ за тонну между НОО Луны и ее поверхностью.


4. Подведем итог

Стоимость доставки:
Земля - орбита Земли - 0.1 млн $ за тонну груза;
Земля - ортита Луны - 0.42 млн $ за тонну груза или 1.35 млн примерно за 4-х человек.
Земля - Луна - 1.18 млн $ за тонну груза или 2.11 млн $ примерно за 4-х человек.

Дорого ли это?

Сейчас самую низкую цену - 4 млн $ за тонну за вывод на НОО - предлагает «SpaceX» на «Falcon 9».

Постройка авианосца типа «Gerald R. Ford» стоит 14 млрд $, а его авиакрыло около 8 млрд $. Это соответственно отправка 11800 тонн и примерно 15000 человек.

Бюджет NASA - 25 млрд $ в год, сопоставимо с авианосцем. Это позволит США без особых экономических усилий держать постоянную базу в несколько сотен астронавтов на Луне.

Бюджет Роскосмоса намного скромнее - около 2.5 млрд $. Всю инфраструктуру не построить, но в кооперации с Китаем, можем себе позволить пару десятков человек на Луне.

Показать полностью 5
1110

Выдержки из выступления Илона Маска на конвенции Марсианского общества

О графике испытаний Starship:

- выход на орбиту — с вероятностью 80%-90% состоится в 2021 году

- вероятность возврата корабля и 1-й ступени в этом полёте — 50%

- испытание заправки на орбите — 2022 год

- лунная версия Starship — 2022 или 2023 год

- полёт Starship к Марсу — около 2024 года

Выдержки из выступления Илона Маска на конвенции Марсианского общества SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Марс, Длиннопост

Целью создания Starship является как можно более быстрое строительство самодостаточного поселения на Марсе. Маск не исключает возможности того, что этого не удастся добиться за время его жизни. По его грубым прикидкам, для создание самодостаточного города потребуется доставить 1 млн тонн грузов, что соответствует 4-5 млн тонн на низкой орбите Земли. Современные одноразовые ракеты-носители способны вывести менее 1% от этой величины.

«Одноразовые ракеты-носители совершенно глупы. Они являются напрасной тратой времени. Я считаю что людям необходимо прекратить тратить на это время. Если вы будете пытаться продать одноразовый самолёт — вас выкинут из кабинета. Если вы будете пытаться продать одноразовый автомобиль — вас тоже выкинут из кабинета.»

Выдержки из выступления Илона Маска на конвенции Марсианского общества SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Марс, Длиннопост

Далее следовала серия вопросов и ответов:

Лучшее место для посадки на Марсе?
— Я не уверен в этом. Но я могу назвать критерии. Первый из них широта: скорее всего это будет северное полушарие, достаточно далеко на север, чтобы там был водяной лёд, но и чтобы там всё ещё хватало солнечного света. Также это должна быть низина, чтобы получить максимальную выгоду от торможения об атмосферу.

Как вы распределяете приоритеты миссии: исследования, строительство инфраструктуры и наука?

— Первым будет строительство топливного завода.

Вопрос от подростка, который хочет стать инженером и создателем роботов, с мечтою работать в SpaceX: что самое важное в образовании, чтобы стать инженером?

— У этой профессии много разновидностей: можно быть аэрокосмическим инженером, в сфере электроники, программного обеспечения или инженером в сфере химии, занимающимся созданием безопасного производства топлива. Я думаю что физика — хорошая база для критического мышления.


Boring Company изначально задумывалась как фирма по производству тоннелей на Марсе?

— Нет. Изначально она была чем-то вроде шутки. Я думал что туннели являются хорошим решением по снижению проблемы трафика в городах и улучшения качества жизни, позволяя превратить парковки в зелёные парки. Для этого вам нужно перейти в 3d [уйти от «плоской» инфраструктуры - прим. пер.]. Я думаю что для Марса туннели тоже хороши. Но там вам потребуется намного более лёгкое оборудование: вы не заботитесь о массе на Земле, но вам много надо будет заботиться об этом при отправлении на Марс.


В Boring Company вы изучили много технологий, которые могут пригодиться на Марсе?

— Да, пожалуй.


У вас есть какие-нибудь советы для молодых людей, которые любят Марс, но не знают как поучаствовать в его заселении?

— Я думаю любой сильный защитник позиции необходимости освоения Марса имеет значение. Люди часто даже не думают об этом. Я часто общаюсь с людьми, которые даже не знают об этом. Поэтому я считаю важным для человечества и сознания в целом привнести дискуссию об этом в общество. Говорить об этом с друзьями и знакомыми — я думаю это то, что мы должны делать. По моей оценке на освоение Марса мы будем тратить меньше 1% усилий, точно меньше чем на здравоохранение, возможно даже меньше чем на косметику — этого будет достаточно, чтобы сделать жизнь многопланетной. Но для этого нужно чтобы люди стали говорить об этом в 100 раз чаще. Я думаю это то, что реально важно. [вся космонавтика мира составляет $424 млрд в год, в то время как косметика составляет $532 млрд, а производство табака - $849 млрд - прим. пер.]


Какая самая классная деталь в разработке Starship?

— Я думаю что самая классная деталь — это возможность работы с отличной группой инженеров, приходить к интересным решениям. Думаю что лучшее — это возможность работы с умными и креативными людьми, приходящими к таким решениям, которых не было ранее. Это большая награда.

На что вы делаете акцент при приёме на работу, в особенности в отношении инженеров?

— Мы смотрим на признаки исключительных способностей. Или как минимум на стремлении делать исключительные вещи в SpaceX.


Вы планируете делать систему связи Марс-Земля на подобии Starlink?

— Да, я думаю мы будем использовать лазер, вероятно выведенный на орбиту, чтобы избежать атмосферной дифракции. Таким образом это будет лазерный луч, идущий от орбиты Земли до орбиты Марса. А также спутники-ретрансляторы на солнечной орбите, так как лазерный луч нельзя отправить сквозь Солнце [когда оно будет оказываться между Марсом и Землёй - прим. пер.].


Может ли Starship использоваться для других местоназначений, вроде Венеры и других планет?

— Starship сможет перемещаться к любой цели в Солнечной системе, имеющей твёрдую поверхность, когда появятся склады топлива. Это не тот транспорт, который доставит нас к другим звёздам, но когда мы станем многопланетным видом, мы создадим этим запрос на инновации в космических полётах, которые в конечном счёте приведут нас к межзвёздным полётам.

Выдержки из выступления Илона Маска на конвенции Марсианского общества SpaceX, Starship, Raptor, Двигатель, Технологии, Ракета-Носитель, Космонавтика, Космос, Илон Маск, США, Марс, Длиннопост

Источник: https://vk.com/wall-171516950_275
Полная трансляция: https://www.youtube.com/watch?v=y5Aw6WG4Dww&t=2s

Показать полностью 2
46

Самая высокая гора в Солнечной системе

Самая высокая гора в Солнечной системе Марс, Солнечная система, Космос, Горы, Ландшафт, Олимп

Олимп — потухший вулкан, расположенный на Марсе. Его высота от основания составляет 26 километров. Ширина Олимпа — 540 километров.

Интересно то, что из-за такой ширины невозможно увидеть подножье горы, находясь на её вершине, так как оно скроется за горизонтом из-за кривизны поверхности планеты.

218

Обмельчал нынче космос

Пятый сезон сериала «Экспансия» выйдет в декабре. У меня с этим сериалом получилась интересная история.


Сначала я увлёкся книжной серией и прочитал несколько романов Джеймса Кори. Под этим псевдонимом пишут два автора: Даниэль Абрахам и Тай Френк.


В отличие от другой космической фантастики — у Джеймса Кори человечество хоть и научилось летать, но так и не выбралось за пределы Солнечной системы. В итоге, бесконечный океан космоса превратился в прудик с местными разборками трёх рас.

Обмельчал нынче космос Сериалы, Фильмы, Космос, Фантастика, Научная фантастика, Космический корабль, Марс, Земля, Астероид, Экспансия, Пространство, Джеймс Кори, Литература, Книги, Длиннопост

Первые — земляне, вторые — марсиане, а третьи — астеры, жители пояса астероидов.


В общем, это такая «Игра Престолов» в космосе, тут даже зомби есть.


После того как я прочитал книгу — сел смотреть сериал. И чуть не умер со скуки. Выключил после третьей серии и ещё год к нему не возвращался. На самом деле, я допустил ошибку. Сериал долго раскачивается, первую половину сезона нужно просто выждать. Зато потом начинается один из лучших космических сериалов нашего времени.


Книжная и экранная «Экспансия» связаны друг с другом персонажами и шаблоном сюжета, но мне показалось, что в сериале создатели сильнее углубились в космическую политику.

Обмельчал нынче космос Сериалы, Фильмы, Космос, Фантастика, Научная фантастика, Космический корабль, Марс, Земля, Астероид, Экспансия, Пространство, Джеймс Кори, Литература, Книги, Длиннопост

Например, на первый план выходит Крисьен Авасарала — заместитель генерального секретаря ООН. Её сыграла Шохре Агдашлу, у её персонажа интересный акцент, она носит шелка и пьёт чай. Но не покупайтесь на её внешность — под этой одеждой скрывается прожжённый политик.

Обмельчал нынче космос Сериалы, Фильмы, Космос, Фантастика, Научная фантастика, Космический корабль, Марс, Земля, Астероид, Экспансия, Пространство, Джеймс Кори, Литература, Книги, Длиннопост

Мой любимый персонаж — Камина Драммер, астер. Как и все астеры, она постоянно вворачивает словечки из своего языка. Кстати, язык астеров — это по типажу креольский язык. Во время колонизации люди из разных стран работали вместе и им нужно было как-то понимать друг друга. Так появился креольский, ставший для жителей астероидов средством общения.


Taki — спасибо,

Sabaka! — чёрт подери (взяли из русского),

Beltalowda – жители пояса астероидов.


Язык придумал Ник Фармер, полиглот, и сделал это именно для сериала. Астерский креольский — настоящий язык, который при желании можно выучить.


Я люблю такую проработку вселенной и жду пятого сезона.


Taki, Beltalowda!

Показать полностью 2
865

Колонизация солнечной системы

Часть 4. Трава у дома

Колонизация солнечной системы Колонизация, Луна, Марс, Космические путешествия, Космос, Длиннопост

Рассмотрим инфраструктуру колоний на Луне и Марсе.

Очевидно, первые полеты на другие планеты будут похожи на высадку американцев на Луну - прилетели, поработали, улетели. Но со временем появятся постоянные базы для десятка человек, а потом и полноценные колонии на тысячи.

Начало постройки базы будет выглядеть как-то так:
- прилетает спутник ДЗЗ, который строит подробнейшие карты с рельефом, по которым определяются лучшие места для посадки;
- прилетает пилотируемая миссия, подтверждается точка развёртывания базы, ставятся навигационные маяки в точки посадки (параллельно можно разворачивать лунный/марсианский «Глонасс»);
- в обозначенные точки прилетает куча беспилотных ракет, выгружают тонны оборудования, роботизированных модулей, манипуляторов и экскаваторов;
- выполняются все подготовительные работы, которые могут быть выполнены удаленно и автономно;
- в уже подготовленную временную станцию направляются отряды колонистов, которые должны будут обустроить основу для долговременной станции.

Собственно, что нужно для обеспечения колонии?
- космодром;
- жилые модули;
- электростанция;
- производство;
- биосферные модули;
- транспорт.


Космодром

Колонизация солнечной системы Колонизация, Луна, Марс, Космические путешествия, Космос, Длиннопост

Космодром - основная часть инфраструктуры любой действующей колонии.

Так как что на Луне, что на Марсе отсутсвует органика, то будет необходимо регулярно снабжать колонистов едой, пластиком и резиной.

Для посадочной площадки требуется довольно прочное основание и защита прилегающих территорий от пыли, поднимаемой двигателями. И если защититься от пыли можно растянув довольно легкую термостойкую пленку, то для поверхности площадки потребуются металические листы и небольшой слой связанного грунта (аналогично бетону) под ними.

С учётом того, что в целях безопасности посадочную площадку необходимо делать на удалении от обитаемых модулей, возникает вопрос доставки людей из герметичного корабля до герметичного помещения. И тут либо аналог «кишки» в аэропорту, лило скафандры и электробусы.

В любом случае, процесс разгрузки грузового корабля потребует тяжелой автотранспортной техники.

В 100 тонн можно уложить стальную площадку диаметром 50 м и толщиной 6 мм. Достаточно мало, но если превратить реголит с помощью «эпоксидки» в аналог бетона, то и 6 мм сверху такого основания будет вполне достаточно.


Жилые модули

Колонизация солнечной системы Колонизация, Луна, Марс, Космические путешествия, Космос, Длиннопост

Самая важная вещь для модуля - это герметичность и возможность выдерживать перепад давления в 1 атмосферу (на Марсе давлением местной атмосферы можно пренебречь).

Другой важный аспект - защита от радиации. Самый простой способ защитится от вредного космического излучения на планетах с твёрдой поверхностью - расположить людей за парой метров грунта. Делать панорамное смотровое окно в крыше над кроватью будет не самой хорошей идеей, если, конечно, оно не толщиной в метр. При этом маленькие боковые окна-трубы, которые идут сквозь защиту - вполне пригодны для создания психологического комфорта.

В целом, для этих целей (избыточное давление и необходимость держать массу земли) идеально подходит шарообразная форма купола, причём распределённый вес земли сверху, будет уравновешивать внутреннее давление. Это обеспечит минимальную массу конструкции и, как следствие, более дешёвую доставку модулей на Луну.

Для возведения такого модуля необходимы:
- луноход-трактор для углубления и выравнивания площадки, насыпи грунта на поверхность модуля (рыть в глубь слишком сложно, а если строить на поверхности, то все равно придётся рыть яму, чтобы добыть грунт для насыпи сверху);
- стальные арочный каркас-основа и панели, которые соединяются сваркой;
- роботы-манипуляторы, типа «Kuka» для автоматической сборки всей конструкции.

Технологический аналог таких модулей - большие нефтяные резервуары типа РВС-20000, на Земле делают без особых проблем.

Масса полусферического купола (каркас и обшивка) радиусом 10 м составит около 25 тонн, а с учётом внутренних помещений и системы жизнеобеспечения можно спокойно уложиться в 100 тонн. Стоит отметить, что объём такого строения около 4200 м3. Для человека на Земле вполне комфортно жить в 50 м3. Таким образом, купол, запускаемый одной ракетой с Земли, обеспечит жильем примерно 50 человек в комфорте или 125 по нормативам общежития, и при этом в центральной части останется большое общее пространство.


Электростанция

Колонизация солнечной системы Колонизация, Луна, Марс, Космические путешествия, Космос, Длиннопост

На любой внеземной базе все оборудование будет электрическим. Отсюда возникает потребность в большом количестве мегаватт.

Может показаться, что будущие колонии будут утыканы солнечными панелями. Но это не так. Если на Марсе небольшие вспомогательные «поляны» панелей оправданы, то на Луне исключены. Основа энергетики - газовые ядерные реакторы.

Причины следующие:
- на Марсе слишком низкая энергия солнечного излучения и для 1 кВт потребуется 10 кг панелей. Есть смена суток, что повлечёт для среднего потребления 1 кВт - 20 кг панелей и 30 кг аккумуляторов, что даст 50 кг/кВт.
- на Луне очень длинная ночь, которая потребует огромного количества аккумуляторов, так как все системы должны работать круглосуточно.

Ядерный реактор может иметь удельную массу менее 30 кг/кВт (если верить данным по «Нуклону» и, что более важно, работать ночью.

Поэтому, вместо бескрайних «полей» солнечных - небольшой холмик с «полянкой» ярко-красного свечения радиаторов реактора.


Производство

Колонизация солнечной системы Колонизация, Луна, Марс, Космические путешествия, Космос, Длиннопост

Основа существования любой колонии - это воздух и вода.

На Луне вода содержится в районах полюсов в виде льда, а также в очень малой доле в реголите. На Марсе в районах полюсов в виде льда, а также под поверхностью, в том числе, в жидком виде.

В случае с Марсом, если повезёт, можно пробурить скважину. А так,потребуются экспедицию на элетрогрузовике с цистерной в кратеры, поближе к полюсам, где будут добывать лёд, и доставлять обратно на станцию.

Кислород для воздуха можно получать либо из воды, либо из оксидов методом электролиза. Если организована добыча металлов, то кислород может быть побочным продуктом.

Стоит отметить, что на Марсе можно получать азот для воздуха путём обогащения местной атмосферы.

Если есть вода и кислород, то можно рассмотреть возможность добычи местных полезных ископаемых.

На Луне в большом количестве представлены:
- Кремний;
- Кальций;
- Магний;
- Железо;
- Алюминий;
- Титан (не во всех районах).
Остальное представлено в малых количествах.
На Марсе плюс-минус тоже самое.

С учётом того, что на Луне есть вода и нет особых проблем с электричеством, можно достаточно просто наладить производство (металлургическое) основных конструкционных материалов, а также стекла.

Имея железо, титан, алюминий и выполнив доставку 3D-принтеров на Луну, можно изготавливать довольно сложные изделия из металла.

Тут возникает проблема: можно спокойно делать предметы из металла и керамики, но привычную пластмассу или резину можно получить только с Земли.

Целесообразно организовать производство изделий, типа электродвигателей или аналогичной сложности, которые практически полностью состоят из металла.

Помещение завода - все тот же металлический купол, аналогичный жилым.


Биосферные модули

Колонизация солнечной системы Колонизация, Луна, Марс, Космические путешествия, Космос, Длиннопост

Если вода в колонии имеет замкнутый цикл, то вот с едой возникают проблемы. Человеку нужно в среднем 2.5 кг еды в день. Разовая поставка в 100 тонн, обеспечит пищей 100 человек на год.

Современные теплицы позволяют иметь урожайность до 50 кг/м2 в год. Модуль диаметром 20 м, даст около 25 тонн овощей в год при двухъярусном варианте, а также будет утилизировать углекислый газ.

Выращивать животных спасла не имеет, так как они потребляют слишком много корма, который тяжело получить в замкнутых условиях. Проще привезти мясо с Земли.

Естественно, что биосферный модуль не сможет обеспечить полную автономность, но даст возможность несколько упростить снабжение и самое важное - обеспечить психологический комфорт людям.


Транспорт

Колонизация солнечной системы Колонизация, Луна, Марс, Космические путешествия, Космос, Длиннопост

Что на Луне, что на Марсе вариантов транспорта всего 2 (не считая велосипеда):
- электропоезд;
- электромобиль.

Развитие железнодорожной сети вполне оправдано - производство подвижного состава и рельс возможно непосредственно в колонии.


Что имеем в итоге?

Внешне - радиальная сеть холмов, соединенные между собой переходами. В центре большие с производственными и биосферными модулями, по периметру жилые меньшего размера. На удалении, с одной стороны посадочные площадки, с другой ядерная электростанция. Все это связано дорогами. Колонии связаны между собой сетью железных дорог и грунтовок.

Внутри - многоэтажные интерьеры из стекла и металла, квартиры по периметру полусферы с маленькими иллюминаторами, в центре просторное общее помещение (спортивные залы, столовые, зоны отдыха). Переход из одного купола в другой, а также до производственных модулей - по длинным коридорам.


PS: Следующий пост цикла будет про экономику и стоимость таких проектов.

Показать полностью 6
424

Марс, 12 октября 2020 года, 23:10

Марс, 12 октября 2020 года, 23:10 Марс, Планета, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 2500 из 17834 кадров в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

616

Колонизация солнечной системы

Часть 3. Точки опоры

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

В этой части рассмотрим рациональный способ колонизации солнечной системы и логистику. Стоит отметить, что речь идёт не о разовой высадке, а про постоянно действующие полуавтономные базы, между которыми выполняются регулярные рейсы.

Подразумевается уровень технологий близкий к текущему, а это наличие аппаратов на ионных двигателях с ядерными энергетическими установками, полностью многоразовых космических кораблей, выводящих около 100 тонн на НОО и обратно.

На мой взгляд, способ освоения космоса может быть только один: создание опорных орбитальных станций, с их помощью осуществление стабильных перемещений с поверхности планет на низкую орбиту и далее между опорными станциями планет.

Очередность освоения банальна: опорные орбитальные станции на орбитах Земли и Луны - освоение Луны - орбитальная станция Марса - Марсианская база.

Чтобы человеку лететь дальше, нужен скачок технологий в части двигателей (обеспечивающий запас по скорости ближе к 100 км/с), без него постоянные пилотируемые полёты дальше пояса астероидов маловероятны - слишком большая длительность. Поэтому Каллисто и Титан - это уже очень далекая перспектива, а Церера на грани достижения аппаратами ближайшего будущего.

«Новый дивный Мир»
Первое что нужно для создания колоний - это опорные орбитальные станции.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Фотография станция «Мир»

В обозримом будущем неизбежно появление орбитальных станций, по сравнению с которыми «Мир» и МКС будут смотреться небольшими cubsat’ами.

Создание колонии, подразумевает перемещение большого количества грузов с поверхности Земли на поверхность другой планеты (спутника) и постоянное перемещение людей между ними.

Посадка и взлёт на поверхность могут быть выполнены только при помощи химических двигателей, при этом межпланетные перелеты или доставку грузов (где время не играет большого значения) выгоднее выполнять на ионных. Тут выявляется первая задача такой станции: необходимость пересадки пассажиров, накопление и загрузка контейнеров.

В целом, если речь идёт о массовых полетах, то экономически целесообразно делать разные корабли:
- для выполнения посадки на Землю (Марс) с возможность выдерживать высокие тепловые нагрузки при посадке;
- для выполнения посадок/взлёта на Луну, которые будут иметь в шесть раз меньше двигателей чем для взлёта с земли, небольшие топливные баки и без тепловой защиты;
- для выполнения пассажирских перевозок между станциями с радиационной защитой вместо тяжёлых элементов для посадки на поверхность, а также с минимальным количеством двигателей;
- для грузовых перевозок в виде медленного ионного ядерного буксира с возможностью установки множества стандартных контейнеров (хотя для космоса это скорее цилиндры).

Например, взлёт с Луны и выход на ее низкую орбиту, требует в 6 раз меньше тяги и в 7 раз меньше топлива. Соотвественно, при одинаковой выводимой массе полезной нагрузки Лунный аппарат можно сделать более чем в 6 раз дешевле.

Для перелётов между Землей и Луной не нужны мощные двигатели, которые обеспечивают взлёт с поверхности, а достаточно одного маломощного (но тут нужна оптимизация с точки зрения вероятности отказа). Топливные баки можно делать меньше примерно в 4 раза. Это все снижает массу, что позволит без особых потерь делать массивную радиационную защиту.

Туристический чартер будущего (не надо воспринимать всерьёз)

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

До тех пор, пока в колонии не начнёт функционировать производство компонентов топлива - необходимо осуществлять дозаправку ракет. Взлёт с земли не позволяет иметь на борту достаточного количества топлива для полетов даже к Луне (имеется ввиду применение и возвращение аппаратов многоразового использования). Таким образом, для любых полетов с НОО (если они не в один конец) потребуется наличие топлива на орбите. Например, чтобы заправить до полного «Starship» требуется выполнить 12 запусков и осуществить 11 стыковок с процедурой перелива топлива. Очевидно, удобнее и выгоднее выполнить заправку один раз, пристыковавшись к орбитальной станции. И быстрое обеспечение топливом - это второе основное предназначение орбитальных станций.

Появление кораблей, которые не рассчитаны на сход с орбиты (буксиры с ядерными энергоустановками), повлечёт за собой необходимость выполнения сборочных, ремонтных операций и технического обслуживания прямо в космосе. Учитывая, что вывод более 100 тонн с Земли достаточно тяжелая задача, поэтому, чтобы собрать грузовой корабль с реактором мегаватт на 30, его придётся выводить на орбиту по частям и уже на ней выполнять крупноузловую сборку. Это третья функция орбитальной станции.

Фактически на орбите Земли и любого другого «шара», где развивается колония, необходим грузовой и пассажирский порт. Соотвественно, появляется необходимость наличия постоянного рабочего персонала, для которого требуется создать комфортные условия. Тут уже неизбежно появление «центробежной» гравитации.

В итоге, на орбитах Луны, Марса (а затем и на других обозначенных планетах) получим что-то вроде МКС, с длинными фермами причалов, ядерным реактором, полями панелей радиаторов, шарообразными баками с топливом, надувными ангарами и вращающимся тором жилых модулей. По всему этому великолепию будут постоянно передвигаться «лифты» и люди в скафандрах.

Картинки, удовлетворяющей меня с инженерной точки зрения, не нашёл, поэтому прикреплю наиболее адекватную с просторов интернета.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Выгоднее иметь одну международную станцию. Чем больше - тем безопаснее при выходе из строя отдельного модуля. Чем чаще на неё летают - тем дешевле снабжение и ротация людей. Станция будет расти, пока не упрется в предел по площади панелей системы охлаждения и прочность конструкции, необходимой для выполнения коррекции орбиты.

Стоит отметить: для оптимизации запусков к Луне и Марсу наклонение орбиты станции должно быть около 25 градусов, что заставляет задуматься о роли России в этом прекрасном будущем.


Полёт с Земли на Луну будет выглядеть примерно так:
- добираешься до космопорта;
- садишься на ракету;
- взлетаешь и летишь к орбитальной станции;
- отдыхаешь с зале ожидания с видом на Землю пару часов;
- пересаживаешься на корабль с метан-кислородными двигателями до Луны;
- отлетаешь от Земной станции, летишь в космосе (по времени как трансокеанский перелёт) и выходишь на Лунной станции;
- там пересаживаешься на посадочный шаттл с водородо-кислородными двигателем, и долетаешь до Лунного космопорта;
- садишься на экспресс-луноход и едешь до нужной базы.

У нас некоторые на поезде до Чёрного моря дольше ездят.

Колонизация солнечной системы Космос, Луна, Марс, Орбитальная станция, МКС, Солнечная система, Длиннопост

Картинка из интернета.

Процесс доставки на Марс посылки будет примерно следующим:
- на марсианском алиэкспрессе делается заказ;
- заказ приходит в сортировочный центр космопорта;
- его вместе с другими заказами упаковывают в стандартный космический грузовой контейнер (например, цилиндр 8x12 м) и выводят к орбитальной станции;
- там автоматические манипуляторы под присмотром оператора разместят контейнер на буксире с ионными двигателями, добавит ещё штук 11 таких контейнеров (с запасными реакторами, разными консервами, компьютерной техникой, скафандрами и прочими вещами);
- далее этот космический контейнеровоз начинает свой полёт на Марс;
- на марсианской станции его разгружают и по одному контейнеру спускают с орбиты на посадочных модулях;
- далее груз сортируют и доставляют заказ уже в жилой модуль.


Про инфраструктуру колонии в следующем посте.

Показать полностью 4
313

Человека - в космос

Ответ на вопрос, что делать человечеству на других планетах.

Человека - в космос Космос, Человечество, Луна, Марс, Космические путешествия, Длиннопост

Предлагаю рассмотреть вопрос колонизации соседних планет и спутников с точки зрения мотивации, не касаясь финансовой стороны вопроса. В моем понимании, денежный вопрос вторичен, зависит от существующих технологий и степени необходимости осваивать космические просторы.

Рассмотрю 2 сценария для каждого из которых присутствуют свои интересы на солнечную систему:
- первый для текущего политического положения, где все страны практически конкурируют между собой;
- второй для объединённого в одну глобальную страну мира (утопическая, а может и антиутопическая перспектива, но возможная).


«Каждый сам за себя»
В данной концепции основной движущей силой является конкуренция стран: военная, экономическая и политическая.

Человека - в космос Космос, Человечество, Луна, Марс, Космические путешествия, Длиннопост

Основным фактором развития космоса а ХХ века было военное и политическое соперничество США и СССР.
Гагарин полетел (далее грубое обобщение) вместо фоторазведовательной аппаратуры на ракете, которая предназначалась в своей базе для доставки ядерных боеголовок старым союзникам. Армстронг гулял по Луне, лишь для того, чтобы у США тоже был свой «первый человек».
Станция «Мир» и «Space Shuttle» - последствия все той же военно-политической конкуренции.

Сейчас XXI век, глобальные игроки сменились. Теперь «первый человек» требуется уже Китаю, деньги и технологии есть, осталось подождать. И для этой цели вполне подойдёт создание небольшой лунной базы или полёт к Марсу. Сразу город на Луне не построят, но запустят цепную реакцию, где США (и тем кто потянет) придётся отвечать. Каждый полёт, каждый новый модуль - это совершенствование технологий освоения космоса, что позволит, сделав «небольшой шаг для человека», через некоторое время «протоптать тропинку», а потом и «проложить автобан» на другие планеты.

Другой аспект - экономический. Фактически, Луну и Марс можно рассматривать как Америку, когда ее начало осваивать Европейцы. Принцип будет простой: кто первый территорию занял - тому она и будет принадлежать. Нужна она или нет, покажет время, а соорудив серию баз по периметру - можно половину видимой стороны Луны сделать своей. Но это произойдёт, естественно, после создания необходимых технологий.


«Один за всех»
Главная мотивация объединённого человечества (предполагаем, что это позитивный сценарий, а не тотальное угнетение) - выполнение глобальных задач и научное развитие (второе, конечно, маловероятно)

Человека - в космос Космос, Человечество, Луна, Марс, Космические путешествия, Длиннопост

Когда мир объединён и целью правящего класса является прибыль - то эксплуатировать остаётся только своих граждан. Чтобы прибыли было много и постоянно, а граждане не сильно возмущались, нужно ставить глобальные задачи, в выполнении которых задействованы огромные массы людей. Но что еще более важно, эти глобальные задачи должны нравятся людям. Идеальный пример - колонизация Марса: строим металлургические заводы, химические, конвейеры по производству ракет и космических кораблей, вводим налог на освоение космоса для спасения человечества и устраиваем лотерею для полетов на Марс - и все счастливы. Все работают для великой цели, а прибыль с ракет идёт.

Научное развитие - самый лучший вариант. Познаем другие планеты, ищем внеземную жизнь, вместо Эвереста покоряем Олимп. Авианосные соединения, ядерное оружие и прочие средства уничтожения иностранных партнеров в рамках единого мира строить уже не надо, и ресурсы можно перенаправить на космическую сферу. Ну и очевидное для науки - заселяем другие планеты, чтобы если прилетит метеорит/комета или иной «конец света», то сохранить человечество как вид.


Варианты, при которых человечество начнёт осваивать космос, есть и для них понятна мотивация. Так что вполне вероятно, следующее поколение уже будет иметь постоянные базы вне Земли.


В посте использованы кадры из к/ф «Планета бурь».


PS:
@Uberkreatur написал пост Космическая экспансия человечества
В нем разобраны кратко экономика и мотивация для космической экспансии. Кому тема космической экспансии интересна - советую прочитать.

Показать полностью 2
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: