78

Ольга Сильченко - Внегалактическая астрономия

Что такое внегалактическая астрономия? Какие объекты Вселенной она изучает? Когда стала зарождаться данное направление астрономии?

Ольга Касьяновна Сильченко, доктор физико-математических наук, заместитель директора по научной работе Государственного астрономического института имени П. К. Штернберга рассказывает, как развивалась внегалактическая астрономия, какими инструментами пользуются астрономы для изучения галактик и как было открыто расширение Вселенной.

Дубликаты не найдены

-4

Так спокойно. Солнечная система вращается вокруг центра Галактики с около световой скоростью !? ПрЕнОгНкАкУаПрТьЛгШ чего !?

раскрыть ветку 2
0

Обсчиталось ! 800 000 км\ч (+\-) Каюсь !

раскрыть ветку 1
0
800 000 км/ч = 222 км/с
Скорость света 300 000 км/с.
Это очень быстро по человеческим меркам, но все же до скорости света не дотягивает.
Похожие посты
70

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы

Миссия IMAP поможет исследователям лучше понять границу гелиосферы, своего рода магнитного пузыря, окружающего и защищающего Солнечную систему. В этой области постоянный поток частиц от Солнца, называемый солнечным ветром, сталкивается с материалом из остальной части Млечного Пути. Это столкновение ограничивает количество вредного космического излучения, входящего в гелиосферу. IMAP займется сбором и анализом частиц, которые преодолевают защитный рубеж.

«Солнце много делает для нашей защиты. IMAP имеет решающее значение для расширения нашего понимания того, как работает этот «космический фильтр», – сказал Деннис Андручик, заместитель помощника директора NASA по научным миссиям.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

Другая цель миссии – больше узнать о генерации космических лучей в гелиосфере. Местные космические лучи, а также поступившие из Галактики и из-за ее пределов воздействуют на космонавтов, могут нанести ущерб технологическим системам и кроме этого играют свою роль в существовании самой жизни во Вселенной.


Космический аппарат будет располагаться на расстоянии около 1,5 миллиона километров от Земли в первой точке Лагранжа (L1). Это позволит зонду максимально использовать инструменты для мониторинга взаимодействия солнечного ветра и межзвездной среды во внешней Солнечной системе.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

На зонде будут размещены 10 научных инструментов, предоставляемых международными исследовательскими организациями и университетами. Полетит он на Falcon 9 в октябре 2024 года. Общая сумма запуска составила примерно $109,4 млн., включая обслуживание запуска и другие связанные с миссией расходы."

Показать полностью 1
66

Случайно увидели полярное сияние в ночь с 23 на 24 сентября

Отправились на наблюдения и совершенно случайно сняли полярное сияние!! Причем в ролике так называемое "живое видео", а не таймлапс. Примерно так сияние мы видели и собственными глазами. В общем, пресловутый эффект присутствия обеспечен:) Также в этом выпуске показываю Большую и Малую Медведицы, Гиады и Плеяды, и Марс.

57

Звуки космоса

Исследователи из рентгеновского центра Chandra (Chandra X-ray Center) «озвучили» снимки центральной области Млечного Пути, остатков взрыва сверхновой Кассиопея А и Столпов Творения.

Составное изображение галактического центра в рентгеновском, инфракрасном и оптическом диапазонах (по ссылке в конце поста есть варианты в разных участках спектра):

Кассиопея А:

Столпы творения:

Источник

Полный список «озвучиваний» (отдельно в разных частях спектра)

Показать полностью 1
353

«Роскосмос» сообщил о 22 уголовных делах по итогам аудита

Заявил глава службы внутреннего аудита Артем Мельников. Речь, как он уточнил, идет о хищении бюджетных средств, злоупотреблениях и превышении полномочий на предприятиях «Роскосмоса».

В 2019 году по инициативе главы «Роскосмоса» Дмитрия Рогозина, возглавившего госкорпорацию годом ранее, департамент внутреннего аудита, который ранее занимался лишь проблемами бухгалтерского учета, был реорганизован в службу внутреннего аудита. Функции этой структуры были расширены, кроме того, она стала взаимодействовать с Генпрокуратурой, ФСБ и другими правоохранительными ведомствами. Возглавляет службу Артем Мельников, до прихода в «Роскосмос» работавший в прокуратуре. Перед приходом в корпорацию он возглавлял управление Генпрокуратуры в Северо-Кавказском федеральном округе

Хищения в «Стратегических пунктах управления».


В частности, идет следствие в отношении бывшего руководителя корпорации «Стратегические пункты управления» Владимира Полянского, рассказал Мельников. Эта структура «Роскосмоса» выполняет научно-исследовательские, опытно-конструкторские и технологические разработки по созданию наземного оборудования для предстартовой подготовки ракет на пусковых объектах. «Дело возбуждено по факту хищения бюджетных средств путем изготовления фиктивных актов о приемке выполненных работ в рамках государственного оборонного заказа на сумму более 2 млрд руб. В результате Полянский начислил и выплатил себе премию в размере около 20 млн руб.», — сообщил Мельников.

В 2019 году в отношении Полянского уже возбуждалось уголовное дело по факту злоупотребления полномочиями. Топ-менеджер, возглавлявший корпорацию до 2019 года, обвинялся в незаконной выплате себе «золотого парашюта» в размере 4,8 млн руб. Полянский вину признал и возместил ущерб. Замоскворецкий райсуд Москвы прекратил уголовное дело с назначением судебного штрафа в 100 тыс. руб.


Семейственность в «Геофизике».


Еще одно нарушение было замечено службой аудита на красноярском предприятии «Центральное конструкторское бюро «Геофизика», рассказал Мельников. Предприятие является «дочкой» «Роскосмоса» и производит радио- и телевизионную передающую аппаратуру.«На «Геофизике» все значимые посты занимали члены одной семьи. Генеральный директор — отец, зам генерального — сын, начальник архива — дочь, начальник планового отдела — невестка, главный инженер — зять. Соответственно, и зарплату они получали не как все сотрудники», — рассказал Мельников. Фамилии экс-сотрудников он называть отказался, добавив лишь, что все они покинули предприятие «по собственному желанию».

С июля 2019 года гендиректором АО «ЦКБ «Геофизика» является Андрей Крылывец, указано на сайте «Роскосмоса». Ранее он возглавлял военное представительство № 2649 Минобороны. Прежним руководителем предприятия, согласно информации, размещенной на сайте Союза машиностроителей России, был Александр Дегтерев. За несколько месяцев до прихода Крылывца Дегтерев попросил освободить его от занимаемой должности в связи с выходом на пенсию. Годом ранее мэр Красноярска поздравлял его с присвоением звания Почетный гражданин города и назначением на должность председателя Красноярского отделения Союза машиностроителей.

При этом Денис Александрович Дегтерев был заместителем гендиректора ЦКБ «Геофизика» по экономическим вопросам. Сейчас заместителем гендиректора ЦКБ «Геофизика» по экономике и финансам является Игорь Манько.


Злоупотребления на «Вымпеле».


Кроме того, МВД проводит доследственную проверку по факту злоупотреблений менеджмента Московского машиностроительного завода «Вымпел» при реализации инвестиционного проекта по техническому перевооружению предприятия на сумму 290 млн руб., рассказал Мельников. Это предприятие специализируется на выпуске оборудования для стартовых и технических комплексов ракет и выполняло заказы для программ МКС, «Морской старт», «Мир», «Бриз-М», «Рокот» и других.

Предприятие подконтрольно корпорации «Московский институт теплотехники» (МИТ), которая является 100-процентной «дочкой» «Роскосмоса». МИТ, в свою очередь, является разработчиком межконтинентальных ракет «Тополь-М» и стратегического ракетного комплекса морского базирования «Булава».


Претензии к подрядчикам РКС и ревизия Восточного.


В ходе проводимой «Роскосмосом» и Генпрокуратурой совместной проверки компании «Ракетные космические системы» (РКС) установлены нарушения при реализации двух инвестпроектов, сообщил Мельников. «В отношении подрядчиков — «Лан Технолоджи» и «Экрос-Инжиниринг» — Главным следственным управлением СК возбуждены уголовные дела по факту мошенничества в особо крупном размере. По версии следствия, их действия причинили ущерб РКС на 302,3 млн руб.», — сказал глава службы внутреннего аудита «Роскосмоса».

РКС занимается разработкой приборов для космических систем и комплексов связи, навигации, телеметрии, управления и дистанционного зондирования Земли.

Отдельная тема — расходование денежных средств при строительстве космодрома Восточный, обратил внимание Мельников. «Чтобы усилить контроль за денежными потоками, решением гендиректора госкорпорации под руководством нашей службы создана постоянно действующая контрольно-ревизионная группа», — сообщил он. Мельников добавил, что «Роскосмос» постоянно обменивается информацией с управлением Генпрокуратуры в Дальневосточном федеральном округе, а также с прокуратурой Амурской области и космодрома Восточный. «За последние годы только жесткими масштабными проверками удалось добиться кардинального перелома ситуации в отрасли», — подытожил глава службы внутреннего аудита «Роскосмоса».


Кто строил Восточный.


В 2011 году было начато техническое и эскизное проектирование нового российского космодрома, назначены руководители работ. Строительство стартового комплекса космодрома началось в 2012 году. Сроки окончания неоднократно переносились, а из-за нарушений на объекте было возбуждено более сотни уголовных дел. Генподрядчиком по строительству выступало подведомственное Минобороны Федеральное агентство специального строительства (Спецстрой). В декабре 2016 года Спецстрой был упразднен указом президента.

Контракт с генподрядчиком работ по строительству был расторгнут в начале 2017 года. В том же году «Роскосмос» поручил подведомственному ему ФГУП ЦЭНКИ достроить первую очередь космодрома.

В октябре 2018 года «Роскосмос» подписал контракт объемом 39 млрд руб. с ПСО «Казань» на строительство второй очереди Восточного. Эта компания выступала подрядчиком строительства объектов к чемпионату мира по футболу 2018 года. «Коммерсантъ» утверждал, что «Казань» как генподрядчика лоббировал президент Татарстана Рустам Минниханов, который «весьма трепетно относится к загрузке мощностей крупнейшей республиканской строительной компании».

Подробнее на РБК:

https://www.rbc.ru/politics/22/09/2020/5f649fa09a794780f22e6...

Показать полностью
1025

Лесная дорога в соседнюю галактику

Фото в масштабе

Лесная дорога в соседнюю галактику Астрофото, Галактика, Туманность Андромеды, Космос, Звёзды, Вселенная, Лес

Галактики больше, чем можно себе вообразить. Даже на расстоянии 2.52 миллионов световых лет от нас галактика Андромеды всё равно занимает огромную область на небе. Чтобы было понятно, насколько она огромна, я решил сделать такой снимок, но тут приходится идти на хитрость: снимать отдельно небо с компенсацией вращения Земли, обрабатывать, а потом совмещать с неподвижной Землёй. Здесь и галактика, и Земля, сняты с одинаковым фокусным расстоянием 100 мм именно для того, чтобы сохранить пропорции. Сейчас галактика поднимается достаточно высоко, поэтому пришлось искать то самое место, где галактика бывала еще месяц назад и снимать как можно раньше.


Вообще я планирую сделать целую серию подобных снимков (галактики, туманности и т.п.) вместе с Землёй с одинаковым фокусным расстоянием, просто для понимания масштабов. Дождусь только правильного объектива...


Снято 20 сентября 2020 года где-то в дебрях Рязанской области.

Камера Canon 600D, объектив Canon 55-250mm (здесь 100 мм), компенсация вращения Земли с помощью астротрекера Sky-Watcher Star Adventurer.


Фото в высоком разрешении (для желающих найти пару косяков на снимке или просто рассмотреть галактику поближе) как всегда по ссылке на диске.

Больше ночных фотографий и астрофотографий в моём инстаграме.

Показать полностью
308

Ио и Юпитер, 17 сентября 2020 года, 21:02

Ио и Юпитер, 17 сентября 2020 года, 21:02 Юпитер, Ио, Астрофото, Астрономия, Космос, Планета, Starhunter, Анапа, Анападвор, Гифка

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC (50 fps).

Сложение 1000 кадров из 4488 в Autostakkert, деротация 6 стэков в WinJUPOS.

Место съемки: Анапа, двор.


Ниже — анимация вращения Юпитера (20:53-21:07).
Ио и Юпитер, 17 сентября 2020 года, 21:02 Юпитер, Ио, Астрофото, Астрономия, Космос, Планета, Starhunter, Анапа, Анападвор, Гифка

Мой космический Instagram: star.hunter

Показать полностью 1
163

Карта свежих отложений водяного льда на Энцеладе

Карта свежих отложений водяного льда на Энцеладе Космос, Астрономия, Наука

NASA JPL собрали воедино данные, полученные аппаратом Cassini в течение 13 лет в инфракрасном диапазоне, и составили карту отложений водяного льда на поверности спутника Сатурна Энцелада.

Источник

Интерактивный глобус Энцелада

451

Марс, 18 сентября 2020 года, 00:21

Марс, 18 сентября 2020 года, 00:21 Марс, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 1000 из 8973 кадров в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

619

Сатурн, 17 сентября 2020 года, 21:11

Сатурн, 17 сентября 2020 года, 21:11 Сатурн, Планета, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 5000 кадров из 29916 в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter
181

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем

Радиотелескоп MWA (Murchison Widefield Array), расположенный в одном из отдаленных и необжитых уголков Австралии, недавно закончил проведение самого глубокого и самого широкого обзора .

Целью аппарата являлись поиски признаков присутствия внеземных технологий. За счет уникальных возможностей телескопа MWA астрономы во время поиска охватили гораздо больший участок неба, чем во время любого другого аналогичного поиска, просканировав в низкочастотном диапазоне по крайней мере 10 миллионов звездных систем, находящихся в направлении созвездия Паруса. Но, к сожалению, если внеземные цивилизации и существуют в той области космоса, они пока остались для нас "неуловимыми".

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем Астрофизика, Космос, Наука, Интересное, Новости, Поиск, Иные, Цивилизация, Длиннопост

Исследования проводились учеными из австралийского Международного центра радиоастрономических исследований (International Centre for Radio Astronomy Research, ICRAR). Во время поисков проводилось сканирование низкочастотной части радиоспектра, включая FM-диапазон, с целью поисков достаточно сильных источников радиоизлучения, которые могут стать "указателем" на присутствие так называемой "техноподписи" высокоразвитой цивилизации.

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем Астрофизика, Космос, Наука, Интересное, Новости, Поиск, Иные, Цивилизация, Длиннопост

Dipole antennas of the Murchison Widefield Array (MWA) radio telescope in Mid West Western Australia. Credit: Dragonfly Media./

Дипольные антенны радиотелескопа Murchison Widefield Array (MWA) в Среднем Западе Западной Австралии. Предоставлено: Dragonfly Media.


"Мы сканировали небо в направлении созвездия Паруса в течение 17 часов, охватив область космического пространства в 100 раз более широкую и глубокую, чем это делалось раньше" - пишут исследователи, - "Но, как писал Дуглас Адамс в своей книге "Автостопом по Галактике", космос - это очень большое место. С этой точки зрения проведенный нами поиск был похож на попытку найти что-нибудь в земном океане, исследовав объем воды, сопоставимый с объемом бассейна на заднем дворе вашего дома".


Телескоп MWA входит в состав Мерчисонской радиоастрономической обсерватории (Murchison Radio-astronomy Observatory), которая находится в пустынной необжитой местности, в 800 километрах от Перта, Австралия, и находится под управлением австралийского Национального исследовательского агентства CSIRO (Commonwealth Science and Industrial Research Organisation).

Площадь антенного поля радиотелескопа MWA составляет 3 квадратных километра и он является одним из сегментов будущего радиотелескопа Square Kilometre Array (SKA), в состав которого войдут и другие сегменты, расположенные в Западной Австралии и Южной Африке. В результате, чувствительность телескопа SKA будет в 50 раз выше, чем чувствительность любого из отдельно взятых современных радиотелескопов, и при его помощи ученые будут в состоянии проводить еще более широкие и глубокие поиски, включая поиски признаков существования внеземных цивилизаций.


"При помощи радиотелескопа SKA мы сможем тщательно просканировать миллиарды звездных систем в поисках следов "техноподписей", скрывающихся в "океане" сигналов космических шумов и сигналов от астрономических объектов" - пишут исследователи.

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем.

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем Астрофизика, Космос, Наука, Интересное, Новости, Поиск, Иные, Цивилизация, Длиннопост

Русскоязычный источник:

https://www.dailytechinfo.org/2020/09/16/


Англоязычный источник:

https://phys.org/news/2020-09-australian-telescope-alien-tec...

Показать полностью 2
1103

Мой адрес не дом и не улица

Когда-нибудь, указывая свой полный почтовый адрес, мы будем заканчивать его:

- Планета Земля (третья от звезды)

- Солнечная система

- Галактика Млечный Путь (между рукавом Стрельца и рукавом Персея)

- Местная группа галактик (подгруппа Млечного пути)

- Скопление Девы

- Сверхскопление Ланиакея

Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост

Изображение в оригинальном разрешении

Показать полностью 8
849

Взрыв звезды, съёмки которой велись телескопом Хаббл на протяжении четырех лет

V838 Единорога (V838 Mon) — необычная переменная звезда в созвездии Единорога, находящаяся на расстоянии около 20 000 световых лет (6 кпк) от Солнца. Звезда пережила серьёзный взрыв в начале 2002 года. Первоначально предполагалось, что причиной взрыва была обычная вспышка новой, но позднее эта гипотеза была опровергнута. Причина вспышки до сих пор неясна, но на этот счёт было выдвинуто несколько теорий, например, что взрыв связан с процессами умирания звезды и поглощения компаньона или планет. Температура поверхности V838 Единорога — 3270 кельвинов (2996.85 градусов Цельсия), радиус — 380 радиусов Солнца, светимость — в 15 000 раз больше светимости Солнца. Оценки массы колеблются от 5 до 10 масс Солнца.

Взрыв звезды, съёмки которой велись телескопом Хаббл на протяжении четырех лет Взрыв, Вспышка, Звезда, Космос, Снимки из космоса, Телескоп Хаббл, Единорог, Созвездия, Вселенная, Видео, Гифка, Теория, Reddit

Гифка отсюда - https://redd.it/itt7w1

Текст и видео отсюда - https://ru.wikipedia.org/wiki/V838_Единорога

Показать полностью 1
436

Жизнь на Венере!

Новость номер один сегодня — сообщение об обнаружении жизни на Венере. Уже много десятилетий астрономы предполагали, что облака в верхних слоях атмосферы этой планеты могут содержать микроорганизмы. И вот наконец-то, астрономы смогли зарегистрировать, следы жизнедеятельности микробов, живущих в средах, лишенных кислорода.


Вместе с астрономом Пулковской обсерватории попытаемся разобраться, что же все-таки обнаружено, в чем сенсация этой новости и кто может обитать на Венере.

Официальный пресс-релиз этой новости состоялся в 14.09.2020 18:00 (МСК). Однако некоторые недобросовестные СМИ стали сливать эту информацию значительно раньше, наплевав на все правила публикации релиза. Ну а так, как уже можно об этом говорить, то приведем краткое содержание этой новости.


Группа астрономов из университета Кардиффа в Великобритании обнаружила в спектре облаков Венеры редкую молекулу: фосфин. На Земле этот газ образуется только или в ходе производственных процессов, или в результате жизнедеятельности микробов, живущих в средах, лишенных кислорода. Регистрация фосфина может указывать на присутствие внеземной жизни. Обнаружить эти молекулы удалось при помощи телескопа Джеймса Клерка Максвелла (JCMT) в Восточно-Азиатской обсерватории на Гавайских островах. Для подтверждения этого открытия пришлось задействовать 45 антенн Большой Атакамской миллиметровой и субмиллиметровой антенной решетки (ALMA) в Чили, более чувствительного телескопа, который Европейская Южная обсерватория (ESO) эксплуатирует на партнерских началах. Оба астрономических инструмента наблюдали Венеру на длине волны около 1 мм.


Исследователи из Великобритании, Соединенных Штатов и Японии провели оценку концентрации фосфина и пришли к выводу, что такое количество молекул не могло образоваться в результате небиологических процессов на планете, например в результате воздействия солнечного света или вулканических извержений. Наши современные представления о химии фосфина в атмосферах каменистых планет исключают возможность его небиологического образования на Венере.

Жизнь на Венере! Наука, Космос, Астрономия, Венера, Жизнь, Видео, Длиннопост, Внеземная жизнь

На картинке ниже — изображение спектра, полученного на телескопе JCMT (серый) и на телескопе ALMA (белый).


Плавая в верхних слоях атмосферы Венеры в составе облаков, молекулы фосфина поглощают миллиметровые волны определенной длины, излучаемые на более низких высотах. Наблюдая планету в миллиметровом диапазоне длин волн, астрономы могут выявить эту линию поглощения фосфина в виде депрессии в спектре.

Жизнь на Венере! Наука, Космос, Астрономия, Венера, Жизнь, Видео, Длиннопост, Внеземная жизнь
Показать полностью 2
98

Сингулярность: добро пожаловать в нигде

Пространство-время – та сцена, на которой разворачивается вся история Вселенной: с момента Большого Взрыва, через рождение Млечного Пути, Солнца и расцвет динозавров – к Александру Македонскому и электронным научно-популярным журналам. К нему часто добавляют слово континуум, от латинского «непрерывное» – но кое-где и пространство-время обрывается. Здесь теряют силу привычные законы физики. Здесь время выглядит иначе. Здесь даже нельзя сказать «здесь», поскольку здесь нет и пространства. Это – область нигде и никогда. Это – гравитационная сингулярность.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikipedia

Притяжение геометрии


Со времен древних греков пространство казалось чем-то неизменным, постоянным, однородным, а время – не связанной с ним циклической спиралью вечного возвращения и повторения. К эпохе научно-технических революций эти представления лишь укрепились. Декартова система координат расчертила мир тремя взаимно перпендикулярными осями, время выпрямилось в отдельную, независимую от пространства (и вообще ни от чего) прямую стрелу. Во многом мы до сих пор живем в тех представлениях, возникших еще в XVIII веке.


Революционность взглядов Эйнштейна во многом состояла в понимании двух важных фактов, переворачивающих взгляды и на время, и на пространство. Во-первых, они взаимосвязаны и представляют собой единый пространственно-временной континуум. А во-вторых, континуум этот вовсе не неизменен и не постоянен: он деформируется в присутствии любой формы энергии, в том числе – в виде массы.


Классический способ представить этот обновленный Эйнштейном мир дает пример из геометрии. Представьте себе двухмерное пространство – туго натянутую сетку, на которую положен тяжелый бильярдный шар. Запустите мимо него теннисный мяч: шар немного растянул сетку, и мяч в своем движении отклонится, словно притянутый им, а возможно, даже «упадет» на него. Гравитация в эйнштейновском понимании может рассматриваться как геометрическое свойство пространства-времени, его искажение, возникающее под действием энергии (массы). Даже просто вращающееся массивное тело увлекает за собой «сетку» пространства-времени.


Мысленно расширьте этот пример на четыре измерения (три пространственных плюс одно временное) – и вы получите примерную геометрическую модель реального пространства-времени. Обратите внимание: где есть масса (энергия) – там нет прямых координатных осей, да и само время перестает быть прямолинейным и равномерным для всех наблюдателей. Представление о прямой оказывается просто математической абстракцией: самая прямая вещь, которую мы знаем из физики, – это траектория светового луча, движение фотона – но и оно искажается под действием гравитации. Притянутая материя локально движется по прямой, однако в глобальном рассмотрении эта прямая в гравитационном поле оказывается кривой.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Depositphotos

Разрывая сети


Но что если мы бросим на сетку из нашего геометрического примера не бильярдный шар, а что-нибудь потяжелее? Гантель, двухпудовую гирю. Скорее всего, наш демонстрационный экспонат не выдержит и лопнет, а в центре его останутся лишь дыра, нити, обрывки пространства-времени нашей модели. Нечто вроде сингулярности.


Даже в философском смысле сингулярность – антоним континуальности (непрерывности, отсутствия лакун, квантованности, разделенности на фрагменты – NS). Сингулярность – нечто, происходящее лишь однажды. Точка, к которой события стремились, пока не разрешились уникальным исходом. Взрыв, слияние, освобождение. В точках сингулярности математические функции резко меняют свое поведение: устремляются в бесконечность, переламываются, внезапно обращаются в ноль. Если переменная Х стремится к нулю, а функция от Х – к бесконечности, знайте: вы уже в сингулярности. В области, где обрывается непрерывная (континуальная) геометрия пространства-времени – и происходит нечто совсем уж невообразимое.


Удивительно, что Общая теория относительности сама обозначает границы своей применимости: в сингулярности «не работает» и она. При этом теория не только указывает на саму возможность существования гравитационных сингулярностей, но в некоторых случаях делает их вообще обязательными. Речь, в частности, о черных дырах – объектах колоссальной плотности, которая делает их невероятно массивными для своих размеров.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

Черная дыра / ©Wikimedia Commons

Черная дыра может иметь массу, сравнимую с массой крупной планеты или с миллиардом крупных звезд, но эта масса определяет лишь величину той области вокруг нее, где царит одна лишь гравитация – и откуда не вырваться ничему, ни веществу, ни излучению, ни информации. Размер этой «области невозврата» называется радиусом Шварцшильда, а ограничивает ее горизонт событий, условная линия, по одну сторону которой Вселенная живет своими законами, а по другую властвует сингулярность.


Гравитационная плюс космологическая


Принято говорить, что в сингулярности «законы физики теряют силу». Это не так – просто привычные законы здесь неприменимы, как неприменимы законы классической механики к миру квантовых частиц. По красочному выражению немецкого профессора Клауса Уггла, поведение математических уравнений и функций в сингулярности «становится патологическим». Заметить этот момент достаточно просто – достаточно наблюдать поведение свободно падающих частиц.


Независимо ни от вида самой частицы, ни от того, где именно она падает, она стремится двигаться по максимально прямой траектории, которая только существует в данных условиях. В пустом космосе, у поверхности Земли или за границей горизонта событий частица меняет траекторию лишь под действием других сил, в том числе гравитации. Но в сингулярности гравитационное поле возрастает до бесконечности, и свободно падающая частица просто… перестает существовать.


Прямые здесь обрываются (это свойство сингулярности называется геодезической неполнотой), а с ними обрывается и судьба частицы. Как показал еще около 40 лет назад великий математик Роджер Пенроуз, геодезическая неполнота должна возникать внутри любой черной дыры. Впоследствии его выкладки развил Стивен Хокинг, расширив эти представления до целой Вселенной.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

Черная дыра / ©Wikimedia Commons

Да, вначале была сингулярность. Еще в 1967 году Хокинг строго доказал, что если взять любой вариант решения уравнений Общей теории относительности и «развернуть их» назад во времени, то при любом раскладе в расширяющейся Вселенной мы придем к ней, к сингулярности. Из бесконечного провала этой «космологической праматери» и распустился цветок нашего пространства-времени.


Впрочем, при всей своей красоте «теоремы сингулярности Пенроуза – Хокинга» лишь указывают на возможность их существования. О том же, что происходит там, внутри, что можно «увидеть» в сердце черной дыры и чем была Вселенная до Большого Взрыва, они не говорят ровным счетом ничего. Возьмем хотя бы космологическую сингулярность Хокинга: она должна иметь одновременно бесконечную плотность и бесконечную температуру, совместить которые пока никак не получается. Ведь бесконечная температура означает бесконечную энтропию, меру хаоса системы – а бесконечная плотность, наоборот, указывает на хаос, стремящийся к нулю.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

Сингулярность оголяется


Впрочем, это далеко не единственная странность вокруг сингулярности. Среди диковинных гипотез, построенных на строгой основе общей теории относительности, стоит вспомнить идею существования «голых сингулярностей» – не окруженных горизонтом событий, а значит и вполне наблюдаемых извне.


По мнению некоторых физиков, голая сингулярность может появляться из обычной черной дыры. Если черная дыра вращается чрезвычайно быстро, сингулярность вместо точки может приобрести кольцеобразную форму тора, окруженного горизонтом событий. Чем быстрее дыра вращается, тем сильнее сходятся внешний и внутренний горизонты – и в какой-то момент они могут слиться, исчезнув.


К сожалению, в реальности наблюдать голую сингулярность пока не удается, зато в фантастике она встречается регулярно. Одна из населенных разумными существами колоний в культовой киносаге «Звездный крейсер «Галактика» вращается не вокруг звезды или планеты, а вокруг такой голой сингулярности.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

Голая сингулярность / ©Wikimedia Commons

Стоит сказать, что Роджер Пенроуз ввел в космологию принцип космической цензуры, предположение, согласно которому голых сингулярностей во Вселенной быть не может. Ученый образно сформулировал свой подход: «Природа не терпит голых сингулярностей». Этот принцип до сих пор остается недоказанным и не опровергнутым окончательно.


Как (не) попасть в сингулярность


Рассуждая логически, можно прийти к выводу о том, что оказаться внутри сингулярности мы не сможем никогда – вплоть до момента окончательной гибели Вселенной. Давайте представим частицу, притянутую черной дырой. Вот она, ускоряясь, по спирали приближается к ней. Чем сильнее гравитация и выше скорость, тем, согласно уравнениям того же Эйнштейна, сильнее замедляется течение времени. Наконец наша частица пересекает горизонт событий.


Сколько у нее ушло на это времени? Для стороннего наблюдателя это могут быть годы. Но вот частица устремляется к сингулярности в центре дыры – пространство-время вокруг нее буквально встает на дыбы, время для частицы практически останавливается. Можно представить это и наоборот: время Вселенной в сравнении с ней ускоряется практически бесконечно.


Но ведь даже черные дыры не вечны. Как показал Стивен Хокинг еще в 1970-х, в результате сложной игры гравитации и квантовых эффектов у горизонта событий все черные дыры понемногу испаряются и рано или поздно исчезают. Быть может, исчезнет и частица, так и не добравшись до сингулярности. Но тут снова появляются парадоксы почище тех, что встретились Алисе в Стране Чудес. Например – где же находится эта частица?

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

С точки зрения теоретической физики, черные дыры – пустые. Да, их ограничивает горизонт событий, но за ним нет ничего, что можно было бы измерить, обозначить, зафиксировать – а значит, нет ничего вообще. Вся масса черной дыры сосредоточена в сингулярности – бесконечно малой точке, окруженной сферой, полной почти метафизической тьмы.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

Что у нее внутри?


Некоторые теоретики полагают, что Вселенная не терпит не только голой сингулярности, но и разрывов пространства-времени. Поэтому каждая сингулярность является червоточиной – своего рода провалом, туннелем, соединяющим одну область мира с какой-то другой «прямым ходом», образно называемым «кротовой норой» или «червоточиной». Но это лишь гипотеза, и неизвестно, появится ли у нас когда-нибудь хотя бы возможность подтвердить ее или опровергнуть.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

Главный вопрос остается: что там, внутри сингулярности? Что наступает после того, как сама ткань пространства-времени мнется, растягивается, дыбится, пока не разрывается окончательно? Ответить на него проще простого: неизвестно.

Источник: Naked Science.

Показать полностью 8
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: