Найдены возможные дубликаты

Отредактировал Syendy 1 год назад
+111
Слишком умная шутка, даже комментариев нет...
раскрыть ветку 10
+134

Они есть и их нет.

раскрыть ветку 7
+43
Первый пошёл
раскрыть ветку 4
+1
И тут первый коммент коллапсировал.
-1

Ты их уже открыл, значит они или есть, или нет.

+32

Шутка не очень умная. Вот так лучше. 

Иллюстрация к комментарию
раскрыть ветку 1
0
Взлетаем, вторая пошла
+70

Иногда я мечтаю попасть в круг людей куда умнее меня, пусть и в одной теме, как физика, к примеру. И пусть я буду кроманьонцем среди них, но хоть чутка начну понимать что-то сверх школы, проёбанного университета и того, что я самостоятельно, для саморазвития вычитал/посмотрел. Мир физики так удивителен, но его надо понимать.

ещё комментарии
+7
Ну дарова
Иллюстрация к комментарию
+17
Физика особая наука. В ней нельзя остановиться и сказать - "все, эти явления я могу точно описать". Все что мы можем это говорить -"я могу точно обьяснить эти явления на уровне современной науки". А потом вдруг появляется новая теория, ее удается как то подтвердить опытами, и всю физику приходится перевыдумыватт
раскрыть ветку 2
+12
В наше время физика высказывает предположения посмелее всех этих эзотерик. Очень круто и захватывающе, правда.
+4

".. на уровне современной науки в рамках принятой нами модели".


Иногда просто модель оказывается не точной, физику не надо корректировать, надо корректировать модель.

+3

Церковники : "Таки шо мы вам говорили!"

+4

Для меня квантовая механика понятнее и проще, чем термодинамика.

раскрыть ветку 2
0

Термодинамика прекрасна.

0

Правда? Тогда объясните мне, что такое спин? Что такое обменное взаимодействие?

+9

Да щас, получилось у них во всем разобраться. Как спектральная плотность энергетической светимости черного тела зависит от частоты и температуры не знали. Не разобрались бы без Планка и квантовой физики.

раскрыть ветку 1
+11
Ну собсна откуда ноги растут, хотя и не только конечно
+1
Иллюстрация к комментарию
0
Ни чё не поняла, но собачка клёвая))
0
Славный пёсель.
0

а где шутки про парадокс Тахионов? (

0

Песик Планка?

-10
Иллюстрация к комментарию
-33

Симпотичный зверь, эта ваша квантовая механика. Глядя на эту морду становится понятно, почему в ней есть кот (шрёдингера).

Не понятно только жив ли он, в этой хитромордой механике..

раскрыть ветку 5
+23

Вангую - Ты думаешь, что ты умный.

раскрыть ветку 4
+4

Вангую - Ты не думаешь, что ты умный.

раскрыть ветку 3
ещё комментарии
-1

https://habr.com/ru/post/437938/ - вот тут подробно объяснено, откуда и зачем квантовая механика.

Похожие посты
432

Разгадан величайший парадокс квантовой механики

Разгадан величайший парадокс квантовой механики Физика, Квантовая физика, Парадокс, Наука, Ученые, Китай, Квантовая механика, Открытие

Китайские ученые успешно проверили гипотезу, называемую квантовым дарвинизмом, которая объясняет трудноразрешимые противоречия между квантовой механикой и классической физикой, в том числе парадокс кота Шредингера. Исследователи протестировали одно из основных положений концепции, согласно которому одно из состояний квантовой системы многократно «отпечатывается» в окружающей среде, с которой эта система взаимодействует. Об этом сообщает издание Science Alert.


Для объяснения, как возникает классическая физика, исследователи предположили существование особенно устойчивых к декогеренции состояний, называемых состоянием указателя (pointer states). Конкретное местоположение частицы или ее скорость, значение ее спина или поляризация могут быть зафиксированы как устойчивое положение стрелки на измерительном устройстве. Иными словами, взаимодействие с окружением разрушает одни состояния, а другие оставляет, например, положение частицы. Это называется суперселекцией, индуцированной средой.

Согласно второму условию квантового дарвинизма, способность человека наблюдать какое-либо свойство зависит от того, насколько хорошо оно «отпечатано» в окружающей среде. Ученые подсчитали, что частица пыли в один микрометр за одну микросекунду «отпечатается» в фотонах около ста миллионов раз, что и обуславливает ее классические свойства. Разные наблюдатели видят пылинку в одном и том же месте благодаря «копированию» информации о наиболее устойчивом состоянии (в данном случае местоположении).


Ученые создали квантовую систему (фотон) в искусственной среде, состоящей всего из нескольких частиц (других фотонов). Согласно предсказанию квантового дарвинизма, наблюдая только за средой, можно получить всю информацию о классическом поведении частицы. Результаты проверки этого положения показали совместимость наблюдаемых свойств с теорией. Однако для доказательства последней необходимы дальнейшие исследования.


Декогеренцией называют процесс, когда квантовая система, которая находится в состоянии суперпозиции (ее альтернативные состояния наложены друг на друга), начинает проявлять классические свойства. Именно поэтому кот Шредингера, который, согласно мысленному эксперименту, является одновременно живым и мертвым, при открытии коробки оказывается лишь в одном из двух альтернативных состояний. Квантовая система запутывается с окружающей средой, взаимодействуя с огромным числом атомов, в результате чего ее состояния прекращают быть наложенными друг на друга. Если окружающая среда состоит из миллиарда атомов, то декогеренция происходит почти мгновенно, а кот не может быть одновременно живым и мертвым на отрезке времени, который поддается измерению.

Так себе источник: https://m.lenta.ru/news/2019/07/25/quantum/amp/

Показать полностью
847

Так ли "пуст" вакуум как нам кажется?

Мы привыкли понимать слово «вакуум», как область пространства, где полностью отсутствует какая-либо материя, однако по-настоящему пустого пространства в нашей вселенной попросту не существует. А всё из-за одного наблюдения, который в 1927 году сделал немецкий физик Вернер Гейзенберг. Выраженное в математической формуле, данное наблюдение получило название «принцип неопределённости» или даже «принцип неопределённости Гейзенберга».

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

У квантовой механики есть несколько отцов-основателей, однако именно Вернер Гейзенберг получил Нобелевскую премию по физике с формулировкой «за создание квантовой механики...».


Простыми словами, эта формула значит следующее: чем точнее мы будем знать положение квантового объекта в пространстве, тем меньше мы будем знать о моменте этой частицы и наоборот. Сам по себе, данный принцип является краеугольным камнем в фундаменте квантовой механики.


Давайте разбираться


На сегодняшний день, единственной экспериментально-подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя), является квантовая теория поля (КТП). Согласно этой теории, пространство пронизано различными квантовыми полями, своё поле есть для каждой частицы. Различные энергии полей заставляют их колебаться и вибрировать с разной интенсивностью, и эти пики возбуждения и есть электроны, кварки, нейтрино, фотоны, глюоны и пр.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Поскольку поля являются квантовыми, это значит, что возбуждение поля может происходить не с какой угодно энергией, а лишь «порциями» или квантами – целочисленными множителями какого-то базового минимального уровня. Иными словами, уровни энергии можно представить определёнными ступенями, чем выше «ступенька», тем больше частиц находится в данном квантовом состоянии. Вся «математика» квантовой теории поля состоит из путешествий вверх и вниз по этим ступеням при помощи операций создания и аннигиляции, помогают в которых диаграммы, которые придумал американец Ричард Фейнман – по-своему легендарная фигура и не только в физике.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Пример – диаграмма аннигиляции электрон-позитронной пары, которая порождает фотон, который, в свою очередь, снова распадается на электрон-позитронную пару. Просто следим за стрелочками и смотрим, как происходит взаимодействие частиц.


Самый низкий энергетический уровень нашей «лесенки» не должен иметь никакой энергии, что означает, что в данном квантовом состоянии отсутствуют какие-либо частицы, это состояние вакуума. В идеальном вакууме, энергия всех полей всё время должна находиться в состоянии вакуума, но тут на сцену выходит принцип неопределённости Гейзенберга. Мы видели, что невозможно одномоментно зафиксировать положение и момент частицы, но у принципа неопределённости есть одно следствие – оотношению неопределённости подвержены не только момент и скорость, но и любые две сопряжённые переменные. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Иными словами, соотношение неопределённости можно также применить и к энергии со временем, в той интерпретации, что Δ E – максимальная точность определения энергии квантовой системы, достижимая путём процесса измерения, длящегося время Δ t :

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Чем точнее мы будем стараться определить временной интервал, тем меньше определённой будет энергия квантового поля в заданном отрезке времени, квантовое поле будет размыто по всем энергетическим состояниям. В вакууме, наиболее вероятный уровень энергии – нулевой, но иногда поле будет содержать достаточно энергии, чтобы создать частицу, будто бы «из ничего». Такие частицы называются «виртуальными частицами». Квантовая теория поля рассматривает подобные виртуальные частицы как основу и связующее звено всех взаимодействий в нашей вселенной. Например, электромагнитное взаимодействие рассматривается как обмен виртуальными фотонами между двумя заряженными частицами.


Однако, законы сохранения должны соблюдаться и здесь, и виртуальные частицы обычно создаются парами частица-античастица. И существовать такие пары могут лишь в тот краткий миг времени, отведённый принципом неопределённости, и чем выше энергия виртуальной частицы, тем меньший период времени она может существовать. Это ограничение и определяет дальность действия каждого из фундаментальных взаимодействий. Например, безмассовый фотон может иметь крайне малые уровни энергии, поэтому может существовать неопределённо долго, достаточно долго, чтобы передавать электромагнитное взаимодействие на любое расстояние. В случае с глюоном же, требуется более высокая энергия на его создание, что означает, существует предел для перемещения виртуального глюона, что делает сильное ядерное взаимодействие (переносчиком которого и являются глюоны) столь ограниченным по расстоянию.


Кто-то может возразить, что виртуальные частицы – лишь математический трюк, костыль, которым подпирают теорию (хотя надо отметить, что КТП делает предкрасные предсказания и описания явлений в своей области), но как же «поймать» виртуальную частицу, которая по определению существует между измерениями, живёт тогда, когда мы не смотрим?


Первые намёки на них мы получили в 1947 году Уиллисом Лэмбом и его аспирантом Робертом Ризерфордом (нет, не тем Резерфордом), которые заметили слабое различие между энергиями стационарных состояний ²S₁⸝₂ и ²P₁⸝₂ атома водорода. Позднее его назовут Лэмбовский сдвиг, а самому Лэмбу дадут Нобелевку, однако на то время по модели Бора, данные уровни должны были иметь идентичные уровни энергии. Данное открытие заставило учёных исследовать глубже данный феномен. Позднее американец немецкого происхождения Ханс Бете объяснил данный сдвиг флуктуациями энергии вакуума.


Виртуальные частицы и анти-частицы образовываются в пространстве между ядром и электронами, после чего ориентируются по силовым линиям электрического поля, что в какой-то степени загораживает электроны от положительного заряда ядра, что и влечёт за собой слегка разную энергию электрнов:

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Другим способом поохотиться на виртуальные частицы является обнаружение их общего влияния на вакуум. Если квантовые поля находятся в постоянном возмущении из-за непрерывного появления и аннигиляции виртуальных частиц, то «нулевая энергия» (энергия нулевого уровня) данных полей будет ненулевой и абсолютно пустой объём пространства будет иметь какое-то количество реальной энергии – энергии вакуума.


В 1948 году голландский физик Хендрик Казимир придумал замечательный способ обнаружить данную энергию. Он предложил расположить две проводящие пластины, расположенные очень близко друг к другу таким образом, чтобы между ними могли существовать фотоны только определённой частоты (возьмите гитарную струну определённой длины – она будет резонировать только на определённые звуковые частоты). Нерезонирующий фотон не сможет существовать между пластинами, что вызовет пропорциональное уменьшение энергии вакуума между пластинами, однако на внешней поверхности пластин могут существовать фотоны с любой энергией, в результате чего возникнет сила, сдавливающая пластины ближе друг к другу. Эффект Казимира был впервые успешно измерен лишь в 1984 году.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Вне зазора, сформированного пластинами, могут существовать частицы с любыми частотами. Между пластинами, возможны частицы лишь с определённым набором частот.


Ни эффект Казимира, ни сдвиг Лэмба не позволяют оценить количество энергии вакуума в абсолютном выражении. Данные эксперименты способны оценить лишь относительную разность уровней энергии между между разными состояниями, поэтому возникает вопрос, а сколько вообще энергии содержится в вакууме? На данный момент наука пока не знает ответа на этот вопрос. Одним из ответов может быть ускорение расширения вселенной – тёмная энергия может быть энергией вакуума.


Австралийским учёным из центра исследования субатомной структуры материи физического отделения университета Аделаиды под руководством Дерека Лайнвебера удалось создать компьютерную модель флуктуаций, происходящих в крохотном объёме пространства 2,4×2,4×3,8 фемтометра (1×10⁻¹⁵ метра). Анимация ниже построена при помощи данной модели. Уровень энергии закодирован в цвете, при этом самый низкий уровень энергии сделан прозрачным, так, чтобы мы могли видеть, что происходит внутри. Анимация смоделирована со скоростью 1×10²⁴ кадров в секунду.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Анимация Центра исследований субатомной структуры материи физического отделения университета Аделаиды (Австралия)


Именно так выглядит пустое место или вакуум. В пустоте непрерывно происходят подобные флуктуации, потому что даже в самом разреженном вакууме межзвёздного или даже межгалактического пространства всё равно присутствует энергия. Это может показаться странным, но для создания истинного вакуума с минимально-возможным уровнем энергии, этой энергии придётся затратить гораздо больше. И даже если бы нам удалось создать подобный истинный вакуум, он бы оказался крайне нестабилен, словно гвоздь, сбалансированный вертикально на своём острие – малейшая помеха и энергия снова хлынет в него, возобновляя флуктуации.

P. S. Всех пикабушников с наступающим новым годом! В следующем посте будем разбираться с тем, кто такие кварки.

Показать полностью 6
867

Теория относительности, квантовая механика и теория суперструн. Большие дрязги в семействе физических теорий.

Поскольку статьи на тему перечисленных теорий появляются тут стабильно, и стабильно запутывают мозги всем желающим приобщиться, решила прояснить пару моментов.


Пожалуй, лучше всё-таки начать с того места, откуда ноги растут. Да, с той самой большой Ж, в которой физики оказались в конце 19 века. Конкретно: великим умам от науки было банально нечего делать: все законы открыты, описаны, а то, что непонятно – новая область под названием «электродинамика», ну никак не вписывается в существующие уравнения. Не хочет электричество Максвелла дружить с Ньютоновской механикой.


В двух словах, основная фигня заключалась в том, что электромагнитные волны были волнами. Описывались как волны, вели себя как волны, распространялись как волны. Но привычным образом думая о волнах, физики тут же вспоминали про тот факт, что волны – колебания некоей среды. Например, звук – волны, распространяющиеся в воздухе и являющиеся движением воздуха. Морские волны – движение воды. Но что тогда является средой для электромагнитных волн? Что такое колеблется, что несёт через себя электромагнетизм? «Значит что-то, таки, есть!» удумали умнейшие и замутили эфир. То есть некую независимую от материи среду, в которой происходит распространение электромагнитных колебаний: света, радио и всего того привычного, что уже вошло в жизнь. Конечно же, теория теорией, но её надо же подтверждать: эфир стали искать. Тут наших мозговитых ждал серьёзный облом: никакого эфира обнаружить не удалось. Свет распространялся во все стороны с одинаковой скоростью, независимо от скорости наблюдателя, никакой анизотропности или внешнего воздействия на движущийся объект со стороны эфира не было.


Получалась странная лажа: вот мы вроде стоим на месте, меряем скорость света. Получаем результат. Бежим вперёд, опять мерям скорость света, который сами излучаем. Тот же результат. Стоим, меряем скорость света, который даёт фонарик бегущего человека… Снова те же цифры! Цимес оказался в том, что скорости не складываются! Традиционная механика не действует! Ньютон переворачивается в гробу, физики чешут репку и начинают усиленно думать. «Шозахерня?! – читается у них на лбах. – Если традиционные уравнения не работают, как же тогда нам описывать электромагнетизм??»

Тут после некоторых относительно недолгих поползновений в плане анализа максвелловских уравнений со стороны Лоренца и Пуанкарэ на сцене появляется всем известный тогда ещё неизвестный чувак с еврейской фамилией и именем Альберт. «Ребята, вы все лохи! Господа, мы подходим не с той стороны! Я всё придумал!», после чего начинает втирать вроде бы стрёмную дичь… однако народ следит за рассуждениями (или делает вид, что следит), впечатляется, а затем признаёт: наследник хитрого народа, таки, прав. Со своею теорией относительности.


В чём суть: Эйнштейн заметил одно из главных свойств уравнений Максвелла. Они справедливы для инерциальной системы отсчёта. Любой. Их вид не меняется. А что если системы разные? А пофиг, уравнения всё равно те же. И для стоящего человека и для бегущего с фонариком. Этот факт стал «первым постулатом» теории относительности.


Вторым постулатом стало то, что у взаимодействий существует максимальная скорость распространения. Магнитное поле распространяется не быстрее определённой скорости. Как и электрическое. Как и гравитационное. Вообще все воздействия осуществляются не быстрее определённого значения. Значения скорости света в вакууме (пока будем считать, что совпало).

Отсюда вылезла нехорошая фигня, которая явно не укладывалась в мозги не только обывателей, но и великих: свет распространяется с одной скоростью относительно стоящего и относительно бегущего. Скорость не складывается и не вычитается. Если сие записать в виде уравнений на бумагу, получится, что у стоящего и бегущего разные масштабы времени. Время! Течёт по-разному! «Но это же бред!» - думали обычно физики и выкидывали свои наработки на мороз. Кроме Эйнштейна.


Мужик, не долго думая, решил: «а почему нет?». Действительно, чисто математически мы ведь можем допустить подобные модели, так почему не попробовать? Но для этого надо изменить понимание самого подхода к анализу законов, проявляющихся в мире: никакого глобального пространства-времени не существует, каждый объект живёт в своей собственной системе отсчёта. Да, из одной системы можно перейти в другую, выполнив некоторые преобразования, но сути это не меняет. «Всё относительно» появилось именно на этом этапе: у каждого своя система отсчёта.

Победой такого подхода стало не объяснение «почему так происходит?» (на это вопрос теория относительности как раз не отвечает), а возможность самого описания процессов: как посчитать. Получилось нечто вроде «голографического» подхода к рассмотрению проблемы электромагнетизма: если мы знаем, как работает обычный патефон и какой звук получается на выходе, то с mp3 плеером можно допустить примерно то же описание процесса воспроизведения звука. Хотя бы отчасти. И результат (звук) будет такой же.

Впрочем, теория относительности (общая и специальная) позволила, развив собственные математические модели, заглянуть в некоторые аспекты взаимодействия материи и успешно спрогнозировать многие явления. Но, как говорится, главный косяк остался. А именно: квантовая механика.


Квантовая механика совершенно не хотела дружит с ТО. Камнем преткновения стал третий постулат теории относительности, который говорил, что пространство «гладкое» - однородно и одинаково во всех направлениях. Как, впрочем, и время. Квантовая механика сей постулат обнулила, утвердив (и подтвердив) то, что на самом деле в пространстве идёт активное шебуршение: постоянно рождаются и умирают пары виртуальных частиц-античастиц с разными энергиями. Получилось, что само по себе пространство вроде как нихрена и не однородное.

Ещё раз: в теории относительности пространство-время это что-то вроде резинового листа, который сам по себе взаимодействует с веществом, искажая свою геометрию. Чисто подход к рассмотрению такой. В квантовой механике пространство-время – контейнер для частиц, не более. Ни с чем не взаимодействует. Справедливые результаты выдают обе теории. Одна на больших масштабах, другая – на малых.

И как, падшая женщина, всё это совместить?


Вот тут-то и появилась теория струн. Не сама по себе, конечно, и не так сразу, но… В 1968 году физики вдруг заметили, что свойства частиц, участвующих в сильном взаимодействии отлично описываются математической функцией Эйлера, которая применялась для описания колебаний гитарных струн. «Аааа, так вот в чём было всё дело-то!!» воскликнули мозговитые и кинулись, для начала, перепроверять результаты. Представьте себе, результаты были те же.


По всему выходило, что движущаяся частица (а какая у нас частица не движется?) – это и не частица вовсе, а колебание, передающееся по некоей одномерной струне. С переносом энергии, конечно. Выглядит как гребень волны на воде: вот он гребень, но по сути это волна на поверхности жидкости, которая хоть и переносит энергию, но не саму жидкость.

Дальнейший анализ математических описаний привёл к некоторым очень хорошим выводам. Во-первых, сами собой получились значения основных констант микромира. Во-вторых, согласно моделям, так называемые собственные колебания струн полностью уравновешивали квантовые флуктуации, то есть заставляли дружить теорию относительности и квантовую механику. Это был epic win. Но, конечно же, нашлись и проблемы типа не наблюдавшейся в экспериментах суперсимметрии частиц или предсказания таких из них, квадрат массы которых был отрицателен (мнимая масса - тахионы).


По результатам дальнейшего автомозгоклюйства, математическая модель струнной теории оказалась согласуемой с реальностью, если построить её не на 4 измерениях (3-пространство + время), а на 11. В итоге оказался математический монстр. Огромный, не до конца описанный и не понятно как к нему подступиться. Но, как ни странно, способный объединить все существующие в природе взаимодействия в единую систему и окончательно подружить теорию относительности с квантовой механикой. Монстрика назвали М-теорией, а на выяснение конкретного количества зубов во всех труднодоступных местах пока положили болт. Ну действительно, надо ставить такие эксперименты, что всей вселенной не хватит.


Отдельно от себя лично отмечу вот что. Основной особенностью, объединяющей теорию относительности и М-теорию, является подход к рассмотрению. И там и там опора идёт прежде всего на математику с допущениями типа «а почему бы и нет». Анализ абстрактных моделей, затем попытка подтвердить на практике (что чаще всего невозможно для м-теории). То, что «круглое оранжевое и пахнет как мандарин» не всегда является мандарином, нашим учёным ещё только предстоит понять. При попытке самостоятельных разбирательств в обеих теориях всегда следует помнить, что они описывают поведение объекта по принципу «выглядит так, как будто… » и дальше модель. Действительность сложнее.

Показать полностью
269

Квантовые чудеса. Часть 3

Заключительная часть всех моих статей по безумному научпопу. Тэг "юмор" как всегда предупредительно поставлен.


В наших предыдущих псевдолекциях мы как могли растолковали простому люду про чёртов корпускулярно-волновой дуализм, о том, что вся материя вокруг нас на самом деле имеет волновые свойства, даже кирпич или бутылка водки, и что наблюдение за квантовым объектом лишает его вездесущности.

Сегодня мы, наконец, продолжим издеваться над обывателями и расскажем в предельно доступной форме про неопределенность, правящую миром, вызвав у тех, кто профессионально разбирается в предмете тонны ненависти и раздражения. Случайные картинки из гугла прилагаются, хотя в силу усложнения текста эти картинки стало труднее выискивать. Тем, кто не в теме, рекомендуем почитать наши предыдущие посты, потому что сейчас действительно будет сложно для понимания нахрапом. Мотивирующую картинку прилагаем.

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост
Итак, понимание того безумия, которое творится в квантовой физике, было бы очень неполным без одного открытия, который сделал в 1927 молодой немецкий физик Вернер Гейзенберг. Кстати на тот момент ему было 26 лет, подумайте об этом. Впрочем, его гениальность не помогла отвертеться от участия в немецком ядерном проекте во время второй мировой, и что характерно теория относительности и квантовая физика считались тогда еврейскими лженауками – в общем, бытовые проблемы человечества снова и снова мешали и будут мешать ученым разгадывать тайны мироздания.
Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост
Примерно в 20-е и 30-е годы прошлого века в научных кругах шла эпическая битва за правильное понимание законов квантового мира. Проклятых (и проплаченных госдепом) либералов возглавлял Нильс Бор, а консерваторов-патриотов – лично дедушка Альберт, который, напомню, до конца жизни не верил в квантовую физику.


Одним из камней преткновения оказалось вычисление местоположения электрона в атоме и его скорости в определенный момент времени. По странным и непонятным причинам ученые никак не могли вывести формулу для расчета обоих значений одновременно. Эйнштейн говорил, что все эти теоретики неучи и двоечники, потому что чего-то упускают, и бог, знаете ли, не играет со Вселенной в азартные игры. Нильс Бор попивал пивко и утверждал, что классическая физика вообще не применяется для таких случаев как движение электронов. И тут вундеркинд Гейзенберг заявил: все нормально, мужики, так и должно быть.

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост

Давайте вместе ужаснемся открытию на примере. Если пнуть ногой мяч с точно рассчитанной силой, то удивительная и не всем доступная наука физика, в частности классическая механика, легко ответит нам на вопрос, где будет находиться мяч через пять секунд после пинка и какова его скорость. Это же элементарно: расстояние равно время умножить на скорость. Садись, Вовочка, пять по физике!


Теперь мы пнём электроном. По специальным (но все же классическим) формулам считаем его скорость и местоположение на пятой секунде полета и проверяем экспериментом. И получается что-то невероятное. Мы поймали частицу в двух метрах от начала полета, но полученная по результатам эксперимента скорость вообще не такая, да еще и каждый раз разная. И наоборот, чем точнее мы рассчитываем скорость (а вернее импульс, который равен массе, умноженной на скорость), тем хуже себе представляем, где находится частица.


Давайте раз и навсегда разберемся с импульсом, а то эта вещь хоть и из школьной физики, но сильно затрудняет понимание. Импульс это такая характеристика движущегося тела, равная массе этого тела, умноженную на его скорость. Его еще называют количеством движения и измеряют в килограммах на метр в секунду. Чем больше масса движущегося тела, тем больше его импульс. В принципе, косвенно импульс намекает, как больно нам прилетит в лоб брошеный булыжник, и степень этой боли будет зависеть как от массы булыжника, так и от его скорости к моменту прилета в нашу башку. Импульс имеет важное свойство - они никуда не пропадает при столкновении, а передается другому телу, тем самым создавая всемирный закон сохранения импульса.

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост

Не в меру умный Гейзенберг объяснил монстрам классической физики, что это не "фигня какая-то", а фундаментальное свойство нашего мира.


И нарисовал им поясняющую формулу: Δx * Δv > h/m, которая означает, что если мы умножим неопределенность положения частицы (длина отрезка координаты, где кажется находится частица) на неопределенность ее скорости (разница между верхней и нижней предполагаемой скоростей этой частицы), то всегда получим число большее нуля, равное массе частицы, поделенной на постоянную Планка (это такая цифра, у которой ноль целых, тридцать три нуля после запятой, а потом уже цифра 6 и другие).


Проверьте сами: если мы точно знаем, где находится частица, то есть Δx=0, то тогда ее скорость равна невозможному значению, математической бесконечности, потому что для ее расчета нам придется поделить число из правой части формулы на ноль. А на ноль делить нельзя…

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост

Можете себе представить, как тряхануло весь ученый мир – остальной народ ничего не понял, так как готовился ко Второй Мировой, занимался коллективизацией, пытался вылезти из Великой Депрессии и т.д. и т.п.


Оказалось, что природа защитила свои секреты вот таким вот законом, который никому никогда не обойти. Мы можем узнать вероятные значения параметров частицы с заданной точностью, но никогда не предскажем точно оба параметра. Кроме того принцип Гейзенберга распространяется не только на импульс и местонахождение – он также справедлив для энергии частицы и момента времени, когда частица этой энергией обладает.

Вот формула для самых любознательных читателей: ΔЕ*Δt > h


Цитируя одного замечательного автора: "если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц".

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост

Опять же, читатель, лениво прочитавший все вышенаписанное, скажет, мол, товарищи, это все математика и абстракции, мы живем в мире, где поезд выходит из города А в город Б со скоростью, которую нужно рассчитать согласно условиям учебника. Где факты, подтверждающие формулы всех этих немцев и евреев?


Во-первых, мы действительно не можем наблюдать непосредственно этот эффект, потому что различия становятся заметны на очень малых расстояниях (на это нам намекает постоянная Планка в формуле с ее тридцатью тремя нулями после запятой). А во-вторых, принцип неопределенности не так и чужд нашей Вселенной, а очень многое объясняет, почему вещи устроены так как сейчас, а не иначе.


Например, становится ясно, почему существует твердая материя.


Не могу не процитировать еще одного хорошего автора: "что случится с электроном, если его начнут слишком сильно прижимать к ядру. Это будет означать, что его местоположение станет известным с большой степенью точности. Но, согласно принципу неопределенности Гейзенберга, чем больше мы уверены в местоположении частицы, тем меньше мы уверены в ее импульсе. Это очень похоже на то, как если бы мы засунули пчелу в спичечный коробок. Встряхните коробок — пчела разозлится и будет с остервенением колотиться о стены своей тюрьмы. Вот электроны в атомах и есть те самые пчелы в коробках. <…> Когда мы ступаем по земле, наш вес сжимает атомы, из которых она состоит. Это сжатие заставляет электроны хоть чуть-чуть, но приблизиться к ядрам. А принцип неопределенности Гейзенберга понуждает их воспротивиться и оттолкнуться от ядер".

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост
Еще один пример действия квантовой неопределенности мы уже встречали в нашей статье про вакуум. Теперь стало немного понятнее, почему вакуум не может существовать с точки зрения квантовой физики: вакуум это поле с нулевой энергией и нулевым количеством частиц. А этого одновременно быть не может, поэтому природе приходится создавать квантовую пену, лишь бы обойти дурацкий запрет на точное знание всех параметров частиц.
Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост

Тем не менее, многие люди, включая даже настоящих ученых, полагают, что неопределенность измерения можно объяснить классическими средствами. Ведь что получается, говорят эти люди, если мы пытаемся измерить местоположение частицы, то для этого мы должны как-то обнаружить ее в пространстве и для этого мы ставим для нее преграду или ловим потоком других частиц (фотонами, например). Если в макромире освещение фонариком предмета не приведет к изменению параметров предмета, то в микромире ситуация другая. Длина волны фотона сопоставима с длиной волны разыскиваемой частицы и их "столкновение" фатально для системы.


Если фотон имеет очень большую длину волны, мы не можем точно определить положение частицы. Фотоны с большой длиной волны ударяют слабо, поэтому измерение не слишком влияет на электрон, а значит, мы можем определить его скорость достаточно точно. С другой стороны, чтобы как следует понять, где находится частица, нужно ударить ее фотоном с маленькой длиной волны. Фотон с маленькой длиной волны очень энергичный, а значит, сильно ударяет частицу. В результате мы не можем определить ее скорость достаточно точно. (тоже цитата)


На картинке как раз примеры длин электромагнитных волн - ну и какой именно волной ловить частичку, когда в случае красного света она просто потеряется между началом и концом одного "гребня", а в случае с ультрафиолетом - столкнется с практически твердой преградой и отскочит к черту на кулички.

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост
Действительно, кажется, что проблема неопределенности в ограничениях, связанных с измерением - мы не можем измерить технически, а не вообще. Но на самом деле свойство неопределенности фундаментально и не зависит от времени, места, способа измерения параметров частицы. Неопределенность есть даже тогда, когда мы ее не измеряем (но это не значит, что существует некий Вселенский Измеритель наподобие Бога, Аллаха, Летающего Макаронного Монстра, Невидимого Розового Единорога или Ктулху, которые сидят с линейкой и решают, что измерить в каждый момент времени – координаты или импульс).
Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост

Интереснейшим практическим следствием неопределенности является туннельный эффект.


Если по каким-то причинам местонахождение частицы становится все более и более определенным, то скорость частицы становится, как мы знаем, непредсказуемой. Строго говоря, непредсказуемым становится импульс частицы. Вследствие этого обычного совершенно нормального квантового явления неопределенность импульса может дать частице дополнительную энергию, и такая частица иногда может сделать очень странную вещь: пройти сквозь непреодолимый барьер. В макромире это выглядело бы как прохождение сквозь стену или выпрыгивание из ямы без видимых причин.

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост
Но туннелирование в самом деле существует. И мы им пользуемся в таких достижениях прогресса как туннельный диод или сверхпроводники. Тот же радиоактивный распад существует благодаря эффекту туннелирования: альфа-частицы отрываются от тяжелого ядра не за счет собственных сил – ядро их на самом деле очень крепко держит (мы как-то уже рассказывали про сильное взаимодействие) – а как раз из-за существования ненулевой вероятности прорваться через энергетический барьер. И существование термоядерного синтеза внутри звезд (из-за которого наше солнце светит) также обусловлено туннелированием. Вот ведь как все на самом деле-то, котаны.
Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост
Как мы уже говорили, Эйнштейну очень не нравились всякие неопределенности в физике. И в то время, когда Нильс Бор пытался создать хоть какое-то подобие квантовой теории, Эйнштейн всячески изводил его провокационными вопросами.


Так в 30-е годы Эйнштейн и два его единомышленника – Подольский и Розен – предложили так называемый ЭПР-парадокс (по первым буквам фамилий хитрых физиков), гипотетический эксперимент, который доказывал, что неопределенность Гейзенберга можно обойти. Те, кто немного разбирались в том, что происходит, запасались попкорном и издалека наблюдали как физики троллят друг друга. Заголовок газеты тех времен гласил: "Эйнштейн атакует квантовую теорию: Учёный и двое его коллег находят её „неполной“, хотя и „корректной

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост

Попробуем упрощенно разобрать суть парадокса. Допустим Гейзенберг немного прав, и мы почему-то не можем измерить импульс и координаты частицы одновременно. Но попробуем пойти в обход. Давайте столкнем две частицы, и после удара они разлетятся, получив некоторые общие характеристики. Такие частицы физики называют "запутанными".


Отбросив сложную матчасть, вспомним закон сохранения импульса из классической механики – суммарный импульс тел до соударения равен суммарному импульсу после соударения. Итак, частицы сталкиваются, и они разлетаются, поделив импульс, как биллиардные шары после столкновения. Затем мы измеряем координату у первой частицы и импульс у второй. Таким образом узнаем и координату первой частицы (которую измерили непосредственно), и ее импульс (который просто вычислили, измерив импульс у второй частицы и отняв ее от первоначального импульса до соударения).


Осознайте, насколько коварен был Эйнштейн! Поставить подобный эксперимент в те годы было затруднительно (коллайдеры еще не изобрели). Нильс Бор практически на одной вере в чудеса и свежезапиленную копенгагенскую интерпретацию заявил, что эксперимент не получится, потому что частица приобретает значения импульса только после измерения, а не в момент столкновения. Но Эйнштейн казался таким логичным – ведь это будет святотатство - нарушение закона сохранения импульса. Противостояние физиков перешло в затяжную стадию с перевесом в пользу Эйнштейна.


И только спустя 30 лет, один физик по имени Белл придумал специальную формулу, с помощью которой можно было бы проверить, кто прав Эйнштейн или Бор. А еще 22 года спустя (в 1982 году) французские ученые сумели поставить эксперимент и проверили результаты по формулам Белла. Оказалось, что прав был Нильс Бор: Никакой "объективной физической реальности", о которой грезил Эйнштейн, в микромире не существует.


На картинке еще одно более сложное, но все-таки популярное объяснение ЭПР-парадокса (разбирайтесь сами).

Квантовые чудеса. Часть 3 Физика, Юмор, Квантовая механика, Длиннопост
Уот такие уот дела, товарищи. Физика нашего мира на самом деле какая-то совсем странная и интуитивно недоступная 95% населения. Хотя вот лично мы верим, что наш народ да с нашей смекалкой мог бы вмиг решить все проблемы квантовой гравитации, теории поля и приспособить квантовый компьютер на нужды сельского хозяйства. Но только если бы у нас в ВУЗах не церкви строили и не кафедры теологии открывали, а мотивировали бы молодежь идти учиться на здоровые научные специальности. Может быть однажды у нас под Твоюматьевском, от Мухосранска до Нижних Ебеней протянут высокороскоростной коллайдер, самый большой в мире, и там мы получим первую в мире ручную черную дыру и прочие полезные в промышленности вещи, и даже плохо воткнутый кабель не остановит нас на пути открытия тахионов и этих ваших телепортаций...

Искренне просим прощения за возможные неточности в изложении. Напоминаем, что наша цель как можно более популярно объяснить людям, почему физика интереснее "битвы экстрасенсов".

Помните, что если вы что-то не поняли, то это нормально. Квантовую физику мало кто понимает целиком. Не унывайте.

Все изображения взяты из гугла (поиск по картинкам) - авторство определяется там же.

Незаконное копирование текста преследуется, пресекается, ну, и сами знаете...

Господа и дамы, на этом цикл статей закончился. Больше я ничего не писал, писать новые посты в таком духе крайне энергозатратно и новый пост может быть рожден в суровых муках даже через год или два. Поэтому всем подписчикам, кто подписан на меня ради этих постов, даю зеленый свет. Мой аккаунт на Пикабу ни разу не тематический, а создан для общения: сегодня я напишу обзор прочитанной книги, а завтра закину фоточку своего Твоюматьевска. Кому доставляет мой интеллектуально-раздолбайский образ мыслей, оставайтесь - ещё над чем-нибудь поржём или пофилософствуем. Всем остальным - спасибо за внимание. Глядишь, кто из вас глубоко призадумается и откроет Теорию оф Эврифинг, а потом скажет, что вдохновлялся статьями одного придурка с Пикабу.


PS: да, все статьи были написаны и опубликованы мною в ЖЖ Квантуз: https://quantuz.livejournal.com/ (не реклама, жжшечка заброшена) Если хочется еще немножко помедитировать, то там есть еще кое-какой материальчик от меня во славу Юмора и Науки. Адьос, котаны!

Показать полностью 12
431

Квантовые чудеса. Часть 1

Следующий (заключительный) цикл науч-поп постов по развлекательной физике. Все поняли, надеюсь, что тег "юмор" для тех, кто против! Остальным - тег "физика".


Итак, все это время мы пытались найти приемлемую методику изложения безумных тем связанных с квантовыми парадоксами. Мы написали несколько вариантов черновиков, но все они были выброшены на мороз. Потому что когда речь заходит об объяснении квантовых приколов, то мы и сами путаемся и признаем, что многое не понимаем (да и вообще мало кто понимает в этом деле, включая крутых мировых ученых). Увы, квантовый мир настолько чужд обывательскому мировоззрению, что совсем не стыдно признаться в своем непонимании и пытаться понемножку вместе разобраться хотя бы в основах.

И хотя мы, как обычно, постараемся рассказывать предельно доступно с картинками из гугла, неискушенному читателю потребуется некоторая начальная подготовка, поэтому рекомендуем просмотреть наши предыдущие темы, особенно про кванты и материю.

Специально для гуманитариев и прочих интересующихся – квантовые парадоксы. Часть 1.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

В этой теме мы поговорим о самой обыденной загадке квантового мира – корпускулярно-волновом дуализме. Когда мы говорим "самая обыденная" мы имеем в виду, что физикам она уже приелась настолько, что как будто бы и не кажется загадкой. Но это все потому, что остальные квантовые парадоксы обывательскому уму принять еще сложнее.


А дело было так. В старые добрые времена где-то в середине 17-го века Ньютон и Гюйгенс разошлись во мнении, что есть свет: Ньютон без зазрения совести заявил, что свет это поток частиц, а старина Гюйгенс пытался доказать, что свет это волна. Но Ньютон был авторитетнее, поэтому его заявление о природе света было принято как истинное, а над Гюйгенсом посмеялись. И двести лет свет считали потоком каких-то неведомых частиц, природу которых однажды надеялись открыть.


В начале 19 века один востоковед по имени Томас Юнг баловался с оптическими приборами – в итоге он взял и провел эксперимент, который сейчас называют опытом Юнга, и каждый физик считает этот опыт священным.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Томас Юнг всего лишь направил луч (одного цвета, чтобы частота была примерно одинакова) света через две прорези в пластине, а позади поставил еще одну пластину-экран. И показал результат своим коллегам. Если бы свет был потоком частиц, то мы бы увидели на заднем фоне две светлые полосы.


Но, к несчастью всего научного мира, на экране-пластине появилась череда темных и светлых полос. Обычное явление, которое называется интерференцией – наложение двух (и более волн) друг на друга.


Кстати, именно благодаря интерференции мы наблюдаем радужные переливы на пятне масла или на мыльном пузыре.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Иначе говоря, Томас Юнг экспериментально доказал, что свет это волны. Ученый мир долго не хотел верить Юнгу, и одно время его так закритиковали, что тот даже отказался от своих идей волновой теории. Но уверенность в своей правоте все-таки победила, и ученые стали считать свет волной. Правда, волной чего - это было загадкой.

Вот, на рисунке старый добрый опыт Юнга.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Надо сказать, волновая природа света не сильно повлияла на классическую физику. Ученые переписали формулы и стали полагать, что скоро весь мир падет к их ногам под единой универсальной формулой всего.


Но вы уже догадались, что Эйнштейн как всегда все испортил. Беда подкралась с другой стороны – сначала ученые заморочились расчетом энергии тепловых волн и открыли понятие квантов (обязательно почитайте об этом нашу соответствующую тему "Что такое кванты"). А затем с помощью этих самых квантов Эйнштейн нанес удар по физике, объяснив явление фотоэффекта.


Вкратце: фотоэффект (одно из следствий которого является засвечивание пленки) это выбивание светом электронов с поверхности некоторых материалов. Технически это выбивание происходит так, словно свет это частица. Частичку света Эйнштейн назвал квантом света, а позже ей присвоили имя – фотон.


В 1920 году к антиволновой теории света добавился удивительный эффект Комптона: когда электрон обстреливают фотонами, то фотон отскакивает от электрона с потерей энергии ("стреляем" синим цветом, а отлетает уже красный), как биллиардный шар от другого. Комптон за это отхватил нобелевскую премию.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

На этот раз физики поостереглись вот так вот запросто отказываться от волновой природы света, а вместо этого крепко задумались. Наука встала перед ужасающей загадкой: так все-таки свет это волна или частица?


У света, как и у любой волны, есть частота – и это легко проверить. Мы видим разные цвета, потому что каждый цвет это просто разные частоты электромагнитной (световой) волны: красный – маленькая частота, фиолетовый – большая частота.


Но удивительно: длина волны видимого света в пять тысяч раз больше размера атома – как такая "штука" влезает в атом, когда атом поглощает эту волну? Если только фотон это частица, сопоставимая по размерам с атомом. Фотон одновременно и большой и маленький?


К тому же фотоэффект и эффект Комптона однозначно доказывают, что свет это все-таки поток частиц: нельзя объяснить каким образом волна передает энергию локализованным в пространстве электронам - если бы свет был волной, то некоторые электроны были бы выбиты позднее, чем другие, и явление фотоэффекта мы бы не наблюдали. Но в случае потока отдельно взятый фотон сталкивается с отдельно взятым электроном и при некоторых условиях выбивает его из атома.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

В итоге было решено: свет это одновременно и волна и частица. Вернее, и ни то и ни другое, а новая неизвестная ранее форма существования материи: наблюдаемые нами явления это всего лишь проекции или тени реального положения дел, в зависимости от того как смотреть на происходящее. Когда мы смотрим на тень цилиндра, освещенного с одной стороны, то видим круг, а при освещении с другой стороны - тень прямоугольная. Так и с корпускулярно-волновым представлением света.


Но и тут все непросто. Нельзя говорить, что мы считаем свет либо волной, либо потоком частиц. Посмотрите в окно. Внезапно даже в чисто вымытом стекле мы видим свое, пусть нечеткое, но отражение. В чем подвох? Если свет - это волна, то объяснить отражение в окне просто – подобные эффекты мы видим на воде, когда волна отражается от препятствия. Но если свет - это поток частиц, то объяснить отражение так просто не получится. Ведь все фотоны одинаковы. Однако если все они одинаковы, то и преграда в виде оконного стекла должна одинаково на них воздействовать. Либо все они проходят сквозь стекло, либо все — отражаются. А в суровой реальности часть фотонов пролетает через стекло, и мы видим соседний дом и тут же наблюдаем свое отражение.


И единственное объяснение, которое приходит в голову: фотоны сами себе на уме. Нельзя со стопроцентной вероятностью предсказать, как поведет себя конкретный фотон – столкнется со стеклом как частица или как волна. Это основа квантовой физики – совершенно, абсолютно случайное поведение материи на микроуровне без какой-либо причины (а в своем мире больших величин мы по опыту знаем, что все имеет причину). Это идеальный генератор случайных чисел в отличие от подбрасываемой монетки.


Гениальный Эйнштейн, открывший фотон, до конца жизни был уверен, что квантовая физика ошибается, и уверял всех, что "Бог не играет в кости". Но современная наука все более подтверждает: таки играет.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Так или иначе, но как-то раз ученые решили поставить жирную точку в споре "волна или частица" и воспроизвести опыт Юнга с учетом технологий XX века. К этому времени они научились пулять фотонами по одному (квантовые генераторы, известные среди населения под именем "лазеры"), и посему было задумано проверить, что будет на экране в случае, если выстрелить по двум щелям одной частицей: вот и станет понятно, наконец, чем же является материя при контролируемых условиях эксперимента.


И внезапно – одиночный квант света (фотон) показал интерференционную картинку, то есть частица пролетала через обе щели одновременно, фотон интерферировал сам с собой (если говорить ученым языком). Уточним технический момент – на самом деле интерференционную картинку показал не один фотон, а серия выстрелов по одной частице с интервалами в 10 секунд – со временем на экране проявились юнговские полосы, знакомые любому троечнику с 1801-го года.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

С точки зрения волны это логично – волна проходит через щели, и теперь две новые волны расходятся концентрическими кругами, накладываясь друг на друга.


Но с корпускулярной точки зрения получается, что фотон находится в двух местах одновременно, когда проходит через щели, а после прохождения смешивается сам с собой. Это вообще нормально, а?


Оказалось, что нормально. Более того раз фотон находится сразу в двух щелях, значит он одновременно находится везде и до щелей и после пролета через них. И вообще с точки зрения квантовой физики выпущенный фотон между стартом и финишем находится одновременно "везде и сразу". Такое нахождение частицы "сразу везде" физики называют суперпозицией – страшное слово, которое раньше было математическим баловством, теперь стало физической реальностью.


Некий Э. Шредингер, известный противник квантовой физики, к этому времени нарыл где-то формулу, которая описывала волновые свойства материи, типа воды. И немного над ней поколдовав, к своему же ужасу вывел так называемую волновую функцию. Эта функция показывала вероятность нахождения фотона в определенном месте. Заметьте, именно вероятность, а не точное местонахождение. И эта вероятность зависела от квадрата высоты гребня квантовой волны в заданном месте (если кому-то интересны детали).

Вопросам измерения местонахождения частиц мы посвятим отдельную главу.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Дальнейшие открытия показали, что дела с дуализмом еще хуже и загадочнее.


В 1924 году некий Луи де Бройль взял и заявил, что корпускулярно-волновые свойства света это верхушка айсберга. А таким непонятным свойством обладают все элементарные частицы.

То есть частицей и волной одновременно являются не только частицы электромагнитного поля (фотоны), но и вещественные частицы типа электронов, протонов и т.п. Вся материя вокруг нас на микроскопическом уровне является волнами (и частицами одновременно).


И спустя пару лет это даже подтвердили экспериментально – американцы гоняли электроны в электронно-лучевых трубках (которые известны нынешним старпёрам под названием "кинескоп") – так вот наблюдения, связанные с отражением электронов, подтвердили, что электрон это тоже волна (для простоты понимания можно сказать, что на пути электрона поставили пластинку с двумя щелями и лицезрели интерференцию электрона как она есть).

К настоящему времени в опытах обнаружено, что и атомы имеют волновые свойства и даже некоторые специальные виды молекул (так называемые "фуллерены") проявляют себя как волна.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Пытливый ум читателя, который еще не ошалел от нашего повествования, спросит: если материя это волна, то почему, например, летящий мячик не размазан в пространстве в виде волны? Почему реактивный самолет никак не походит на волну, а очень похож на реактивный самолет?

Де Бройль, чертяка, и тут все объяснил: таки-да, летящий мячик или "боинг" это тоже волна, но длина этой волны тем меньше, чем больше импульс. Импульс это масса, умноженная на скорость. То есть, чем больше масса материи, тем меньше длина ее волны. Длина волны мяча, летящего со скоростью 150 км/час будет приблизительна равна 0,0000000000000000000000000000000001 метра. Поэтому мы не в состоянии заметить, как мячик размазан по пространству в качестве волны. Для нас это твердая материя.

Электрон же весьма легкая частица и, летящий со скоростью 6000 км/сек, он будет иметь заметную длину волны в 0,0000000001 метра.


Кстати, сразу ответим на вопрос, почему ядро атома не настолько "волновое". Хоть оно и находится в центре атома, вокруг которого, ошалев, летает и в то же время размазывается электрон, оно имеет приличный импульс, связанный с массой протонов и нейтронов, а также высокочастотным колебанием (скорость) из-за существования внутри ядра постоянного обмена частицами сильного взаимодействия (читайте тему Материя II). Поэтому ядро больше походит на привычную нам твердую материю. Электрон же, по-видимому, является единственной доступной частицей с массой, у которой ярко выражены волновые свойства, вот его все с восторгом и изучают.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Вернемся к нашим частицам. Так что получается: электрон, вращающийся вокруг атома это одновременно и частица и волна. То есть вращается-то частица, и в то же время электрон как волна представляет собой оболочку определенной формы вокруг ядра – как это вообще можно понять человеческим мозгом?


Выше мы уже подсчитали, что летающий электрон имеет довольно огромную (для микромира) длину волны и чтобы разместиться вокруг ядра атома такой волне нужно неприлично много места. Вот как раз именно этим и объясняются такие большие размеры атомов по сравнению с ядром. Длины волн электрона определяют размер атома. Пустое место между ядром и поверхностью атома заполнено "размещением" длины волны (и в то же время частицы) электрона. Это очень грубое и некорректное объяснение – просим нас простить – на самом деле все гораздо сложнее, но наша цель – хотя бы позволить отгрызть кусочек гранита науки людям, которым все это интересно.


Давайте еще раз проясним!


Внимание! Описываемая нами форма материи не является ни волной ни частицей. Она лишь (одновременно) имеет свойства волны и свойства частиц. Нельзя говорить, что электромагнитная волна или электронная волна подобны морским или звуковым волнам. Это РАЗНЫЕ вещи. Привычные нам волны представляют собой распространение возмущений в пространстве заполненным каким-либо веществом.

Фотоны, электроны и прочие экземпляры микромира при движении в пространстве можно описать волновыми уравнениями, они по поведению лишь ПОХОЖИ на волну, но ни в коем случае волной не являются. Аналогично и с корпускулярной строной материи: поведение частицы похоже на полет маленьких точечных шариков, но это ни разу не шарики. Мы пользуемся аналогиями лишь для комфорта восприятия.


Это нужно понять и принять, иначе все наши размышления будут в конечном счете приводить к поиску аналогов в макромире и тем самым пониманию квантовой физики придет конец, и начнется фричество или шарлатанская философия навроде квантовой магии и материальности мыслей.

Квантовые чудеса. Часть 1 Физика, Квантовая механика, Юмор, Длиннопост

Остальные ужасающие выводы и следствия из модернизированного опыта Юнга мы рассмотрим позже в следующей части – неопределенность Гейзенберга, кошка Шредингера, многомировая интерпретация ждут терпеливого и вдумчивого читателя, который еще не раз перечитает наши статьи и покопается в интернете в поисках дополнительной информации.


Всем спасибо за внимание. Приятной всем бессонницы или познавательных кошмаров!


NB: Прилежно напоминаем, что все изображения взяты из гугла (поиск по картинкам) - авторство определяется там же.

Незаконное копирование текста преследуется, пресекается, ну, и сами знаете...

Показать полностью 11
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: