4

NASA решило отправить дрон-вертолет на Марс

NASA решило отправить дрон-вертолет на Марс


Руководство NASA приняло решение (https://www.nasa.gov/press-release/mars-helicopter-to-fly-on...) отправить на красную планету беспилотный вертолет. Он будет прикреплен к днищу марсохода Mars 2020. Его запуск запланирован на июль 2020 года., посадка должна состояться в феврале 2021 года.


Основное предназначение вертолета — демонстрация возможности исследования красной планеты с помощью аппаратов тяжелее воздуха. Его проект разрабатывался специалистами Лаборатории реактивного движения (JPL) с 2013 года. Аппарат весит 1.8 кг и снабжен парой cоосных несущих винтов, вращающихся со скоростью 3000 оборотов в минуту. Это примерно на порядок больше, чем скорость вращения винтов земных вертолетов.


Заряд литий-инонных аккумуляторов позволит дрону находиться в воздухе от 90 до 120 секунд. За это время он сможет преодолеть дистанцию до 300 м. Перезарядка аккумуляторов будет осуществляться с помощью солнечных панелей. Вертолет получит две камеры — навигационную и высокого разрешения. Чтобы не замерзнуть во время марсианской ночи, дрон будет оборудован системой подогрева.


В феврале этого года инженеры из JPL успешно испытали модель вертолета в барокамере. Давление внутри соответствовало давлению атмосферы красной планеты (примерно 1% от давления земной атмосферы на уровне моря). С целью симулировать условия марсианской гравитации (36% от земной), с вертолета были сняты некоторые детали.


Чтобы исключить риск потенциального столкновения, Mars 2020 опустит вертолет на поверхность, а затем отъедет на безопасную дистанцию. Миссия аппарата рассчитана на 30 дней, в ходе которых он должен совершить до пяти испытательных полетов. Во время первого теста, дрон подымется в воздух на 3 метра и пробудет в этом положении 30 секунд. Во время следующих испытаний, специалисты будут постепенно увеличивать продолжительность и высоту полета вертолета.


Если по каким-то причинам дрон потерпит неудачу, то она никак не скажется на основной научной миссии Mars 2020. Успех же проекта может положить начало новой эре изучения Марса с помощью подобных беспилотников.

NASA решило отправить дрон-вертолет на Марс Космос, Вертолет, Марс, Квадрокоптер, Гифка, Видео, Длиннопост
NASA решило отправить дрон-вертолет на Марс Космос, Вертолет, Марс, Квадрокоптер, Гифка, Видео, Длиннопост
NASA решило отправить дрон-вертолет на Марс Космос, Вертолет, Марс, Квадрокоптер, Гифка, Видео, Длиннопост

Найдены дубликаты

+1

про Марс и дрон было


https://pikabu.ru/story/nasa_otpravit_na_mars_vertolet_59012...

https://pikabu.ru/story/na_mars_na_vertolete_5900385


но тут, вроде, другое..

0
~~~Основное предназначение вертолета — демонстрация возможности исследования красной планеты с помощью аппаратов тяжелее воздуха~~~

То есть до этого исследовали марсоходами, которые легче воздуха??)) журнализды (рукалицо).
0

Интересно на что будут опираться пропеллеры если там нет воздуха ?

раскрыть ветку 1
0
Атмосфера на марсе есть, хоть и значительно менее плотная, чем на земле. Потому и испытания в барокамере с разреженным воздухом проводили
0

Прототип пепелаца :-)

Похожие посты
314

NASA провело последнюю проверку экспериментального вертолета, который отправится на Марс

Вертолет Mars Helicopter прошел заключительные функциональные испытания в Космическом центре имени Кеннеди во Флориде. Он будет прикреплен к марсоходу Perseverance, но является самостоятельной экспериментальной миссией и должен стать первым летательным аппаратом, который поднимется в атмосфере другой планеты.

NASA провело последнюю проверку экспериментального вертолета, который отправится на Марс NASA, Марс, Космос, Исследования, Марсоход

Вертолет с двумя роторами, работающими на солнечной энергии, после посадки ровера будет оставаться в капсуле, его развернут, когда руководители миссий определят приемлемую зону для проведения испытательного полета рядом с Perseverance.

Ровер сядет в кратер Jezero на Марсе 18 февраля 2021 года. Запуск состоится ближайшим летом с мыса Канаверал на ракете-носителе Atlas V 541. источник

NASA провело последнюю проверку экспериментального вертолета, который отправится на Марс NASA, Марс, Космос, Исследования, Марсоход
46

Curiosity сделал селфи перед подъемом на гору

Марсоход НАСА «Curiosity» недавно установил рекорд по самой крутой местности, на которую он когда-либо поднимался, преодолев « Глубокий фронтон », широкий слой скал, который находится на вершине холма. И прежде чем сделать это, ровер сделал селфи, снимая сцену чуть ниже Гринхью.

Перед ровером находится дыра, которую он просверлил, когда отбирал пробу у коренной породы под названием «Хаттон». Вся селфи представляет собой 360-градусную панораму, объединенную из 86 изображений, переданных на Землю. Селф снимает марсоход примерно на 11 футов (3,4 метра) ниже точки, где он забрался на осыпающийся фронтон.

Любопытство, наконец, достигло вершины склона 6 марта (2696-й марсианский день, или соль, миссии). Для масштабирования холма потребовалось три проезда, второй из которых наклонил марсоход на 31 градус - самый большой, который когда-либо крутился марсоход на Марсе, и просто стесняется рекордного наклона ровесника Opportunity с 32 градусами , установленного в 2016 году. селфи 26 февраля 2020 года (Sol 2687).

С 2014 года Curiosity поднимается на гору Шарп, 3-мильную (5-километровую) гору в центре кратера Гейл. Операторы вездехода в Лаборатории реактивного движения НАСА в Южной Калифорнии тщательно размечают каждый диск, чтобы убедиться, что Curiosity будет в безопасности. Роверу никогда не грозит такой большой наклон, что он может перевернуться - система качающихся колес Curiosity позволяет ему безопасно наклоняться до 45 градусов - но крутые приводы приводят к тому, что колеса вращаются на месте.

Как делаются селфи?

Перед восхождением Curiosity использовала черно-белые навигационные камеры, расположенные на его мачте, чтобы впервые записать короткометражный фильм о своей «селфи палке», также известной как роботизированная рука.

Миссия Curiosity - изучить, могла ли марсианская среда поддерживать микробную жизнь миллиарды лет назад. Одним из инструментов для этого является камера с ручной линзой Mars , или MAHLI, расположенная в башне на конце манипулятора. Эта камера обеспечивает вид крупным планом песчинок и текстур горных пород , аналогично тому, как геолог использует ручную лупу для более детального обзора поля на Земле.

Поворачивая турель в направлении ровера, команда может использовать MAHLI, чтобы показать Curiosity. Поскольку каждое изображение MAHLI охватывает только небольшую область, для полного захвата ровера и его окружения требуется много изображений и положений рук.

«Нас так часто спрашивают, как Curiosity делает селфи», - сказал Дуг Эллисон, оператор Curiosity в JPL. «Мы подумали, что лучший способ объяснить это - позволить марсоходу показать всем с его собственной точки зрения, как это делается».

Curiosity сделал селфи перед подъемом на гору Марс, Космос
42

Как наблюдать Луну и планеты

Наблюдение за Луной и планетами очень интересно. Наблюдению планет не мешает световая засветка и их можно наблюдать прям из города. Для наблюдения планет не требуются окуляры с большим полем зрения. Даже недорогие окуляры Плёссла могут обеспечить продуктивный результат визуальных наблюдений.

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Юпитер, Сатурн и Марс являются, пожалуй, самыми доступными планетами, для астрономических наблюдений. Я до сих пор помню трепет и удивление от первого взгляда на Сатурн, который я увидел более 20 лет назад, в 80мм «Большом Школьном Рефракторе». Однако часто поступают сообщения от начинающих любителей, о первых наблюдениях, в частности Юпитера и Марса, в которых присутствует доля разочарования. «Я просто вижу шар света без деталей», или «Я вижу маленький диск, на котором не могу полностью сфокусироваться». «Мой телескоп неисправен?» Именно дня начинающих любителей астрономии может быть полезной данная статья. В ней подробно описываются тонкости и особенности визуальных наблюдений планет Солнечной системы.


Планеты — это точки света в небе, а вот Луна большая и очень яркая. Однако Луна имеет много мельчайших деталей, так вот для их рассматривания необходимо использовать те же методики, что используются и для наблюдения планет. Есть несколько важных факторов, которые необходимо учитывать, чтобы получить наилучшее изображение с помощью вашего телескопа:

1) Увеличение


2) Разрешение


3) Блеск


4) Рассеяние света


5) Контрастность


6) Резкость


Увеличение


Самый неоднозначный фактор. Планеты маленькие, так что чем больше увеличение, тем лучше!? Не совсем. Вам необходимо использовать оптимальное увеличение для вашего телескопа. Самый простой способ найти его — рассчитать по оптимальному выходному зрачку телескопа. Выходной зрачок — это размер сфокусированного изображения, которое вы видите через окуляр в вашем телескопе.


Выходной зрачок высчитывается следующим образом: диаметр объектива в телескопа в мм, делим на увеличение, даваемое с тем или иным окуляром. Напомню, увеличение высчитывается делением значения фокусного расстояния объектива в мм, на фокусное расстояние применяемого окуляра.


Фокусное отношение (F/D) объектива телескопа высчитывается так: делим фокусное расстояние объектива делим на его диаметр (апертуру)


Получается, что для человеческого глаза 1 мм выходной зрачок обеспечивает наилучшее разрешение для хорошо освещенных объектов. Допустим, у вас есть 90 мм рефрактор с фокусным расстоянием 900 мм и соотношением фокусов F/D-10. В этом случае для получения наилучших видов Луны или планет необходимо использовать 10-миллиметровый окуляр. Для F/D-5 следует использовать 5 мм окуляр, для F/D-8, 8 мм окуляр и так далее. Используя данное увеличение, большую часть ночей вы сможете наслаждаться прекрасным видом планет.

Есть два исключения:


1) Если видимость (прозрачность и стабильность атмосферы, подробней будет сказано позже) действительно хорошее и ваш оптический телескоп имеет достаточно качественную оптику, вы можете поднять увеличение к 0,5 мм выходному зрачку (чтобы лучше видеть мелкие детали). Для объектива с фокусным отношением F/D-10 это 5 мм окуляр или 10 мм с 2-кратной линзой Барлоу.


2) Если видимость плохая и на выходе 1 мм зрачка, картинку планеты «струит и размывает», вам нужно снизить увеличение и перейти на 1,5 или 2 мм зрачек (чтобы увидеть хотя бы некоторые из основных деталей объекты). Для объектива F/D -10 это были бы окуляры 15 мм или 20 мм., соответственно.


Разрешение


Разрешение зависит от двух факторов: диаметра объектива телескопа (чем больше, тем лучше) и видимости. Видимость (синг)- это мера стабильности атмосферы. Если она устойчива, вы увидите больше деталей; если в атмосфере много турбулентности, то мелкие детали будут «замылены». Если видимость плохая, 10-дюймовый телескоп не покажет вам более 4-дюймового. На самом деле, небольшие инструменты справляются с плохой атмосферой несколько лучше. Так же, проведение наблюдения как можно выше от поверхности земли и вдали от источников тепла (например, крыш) поможет уменьшить негативный эффект «струения изображения». В советской литературе рекомендуется подниматься минимум на 300м. от уровня моря, на вершины холмов, предгорные плато и т. п., для исключения негативного влияния на изображение приземного теплового слоя. Но надо знать, что вершины ОТДЕЛЬНОСТОЯЩИХ холмов будут плохим выборов из-за турбуленции воздуха.

Блеск


Луна и большинство планет очень яркие. Часто мельчайшие детали теряются при интенсивном освещении окуляра, ярким пятном, которое строит объектив, в своей фокальной плоскости. Как это контролировать? Самый простой способ— создать световое загрязнение. Ночная адаптация глаз бывает контрпродуктивна, когда дело доходит до наблюдения Луны и планет. Включите свет на крыльце, балконе или в любом другом месте, где вы проводите наблюдения. А еще лучше наблюдать в тот момент, когда небо еще синее. Лучшие виды Юпитера у меня были прямо перед закатом. Если этого недостаточно, вы можете либо применить диафрагму перед объективом (особенно рекомендуется по Луне, в случае отсутствия специализированного фильтра), либо использовать фильтры. Установка диафрагмы достаточно эффективна для светосильных телескопов, с фокусным отношением F/D-4...F/D-6. Для менее светосильных инструментов, с меньшей апертурой, такие как: F/D-8...F/D-15, я не рекомендую это делать, так как это уменьшает разрешение. Фильтры будут более эффективными (подробнее о выборе фильтра позже).


Рассеяние света


Рассеяние света происходит, когда яркий свет Луны, планет или звезд падает на стеклянную поверхность вашего телескопа. Эффекты рассеяния похожи на блики, потерю контрастности и разрешения. К сожалению, вы не можете контролировать рассеяние света с помощью фильтров. Единственный способ справиться с этим — выбрать диагональ, Барлоу, окуляры и фильтры с хорошим контролем уровня рассеяния света. Проще говоря хорошего качества, диагональ рекомендую выбирать с диэлектрическим покрытием поверхности зеркала.


Контраст

Цель наблюдения планет и Луны заключается в обеспечении высокой контрастности. Это достигается за счет контроля бликов и рассеяния света, а также выбора окуляров с хорошей контрастностью. Вы также можете улучшить контраст некоторых деталей поверхности Луны и планет, используя соответствующие фильтры (подробнее об этом ниже). Так же при применении больших увеличений можно заметить снижение контрастности.


Резкость


Некоторые оптические телескопы способны строить более «острое» изображение, чем другие. Предположу, что у вас, вероятно, уже есть телескоп, в этом случае лучше сосредоточиться на осознанном выборе окуляров и линзы Барлоу. Многие модели окуляров выдают «замыленную» картинку, при высоких увеличениях. К сожалению, некоторые из них продаются как планетарные окуляры. Ортоскопические окуляры — являются самыми лучшими окулярами для наблюдения планет. Бюджетные окуляры также могут ухудшить резкость изображения.

Рекомендации по выбору телескопа и аксессуаров к нему:


Телескоп


В ключе планетных наблюдений можно использовать любой телескоп, независимо от размера и оптической схемы. Однако, если вы делаете покупку специально для наблюдений Луны/планет, длиннофокусные инструменты, с соотношением F/D-8…F/D-15 дадут более качественные результаты. Конструкция без хроматических аберраций предпочтительна, так как ХА снижает разрешение, особенно при применении больших увеличений.


С точки зрения производительности можно порекомендовать:


80-120мм длиннофокусные ахроматические рефракторы и небольшие 80-100мм APO/ED рефракторы.


Так же можно порекомендовать катадиоптрические телескопы (Максутов, Шмидт-Кассегрен) диаметром 5-11 дюймов. Но использовать их потенциал, к сожалению, удастся не часто, из-за нестабильности атмосферы.


Более крупные рефракторы APO способны дать высококачественные, большие увеличения, но они дорогие. Крупные телескопы Ньютона и катадиоптрики потенциально могут обеспечить наилучшие виды планет. Однако, чтобы воспользоваться преимуществами большей апертуры (диаметр объектива), для получения большого разрешения, необходимо выбирать ночи с исключительной стабильностью атмосферы. Это происходит не очень часто, и в среднестатистическую ночь использование меньшего диаметра объектива, будет более практичным.


Фильтры

Фильтры должны быть вашим следующим приоритетом после телескопа, и они должны быть хорошего качества. Держитесь подальше от современных планетарных фильтров, выполненных из пластмассы, продаваемых многими производителями. Они ухудшают разрешение и увеличивают рассеяние света. Для покупки рекомендую стеклянные фильтры Baader, Lumicon или НПЗ. Можно поискать б/у на ебэй, астробарахолках и т.п., главное что бы фильтры небыли поцарапанными


Нейтральная плотность и поляризационные фильтры часто рекомендуются для Луны и планет. Я использовал их вначале, но понял, что цветные фильтры дают лучшие результаты.


Цветные фильтры не только уменьшают блики, но и улучшают контрастность деталей поверхности. Оранжевый № 21 — лучший фильтр для полумесяца Луны и для Сатурна, так же он хорошо работает по Марсу. Лучшие фильтры для Марса — красный №23A и для больших апертур — красный №25. Синий №80A подходит для Венеры и Меркурия, а зеленый №58 — для полнолуния. Юпитер был самым непростым, в плане подбора лучшего фильтра. За эти годы я испробовал много фильтров. Среди цветных фильтров мне на помощь пришел только синий №80A.


Есть пара специальных фильтров от Baader, которые я настоятельно рекомендую для Юпитера, Сатурна и Марса (хотя они слишком слабы для Луны, Венеры и Меркурия). Baader Moon and Sky Glow — лучший фильтр для Юпитера, намного лучше, чем синий №80A. Для Сатурна и Марса получить лучшие результаты можно с контрастным фильтром Baader Contrast Booster. Когда планеты очень яркие (вблизи противостояния), можно использовать два фильтра: Baader Moon and Sky Glow и Baader Contrast Booster вместе и использовать их для всех трех планет. Что мне особенно нравится в этих фильтрах, так это то, что они уменьшают блики и усиливают контраст, но не изменяют в значительной степени естественные цвета поверхности планет.


Окуляры


Ортоскопики! Независимо от того, какое бы у вас увеличение не было самым рабочим, я настоятельно рекомендую приобрести хотя бы один из них для планет. Ортоскопические окуляры сочетают в себе резкость, высокую контрастность и превосходное снижение рассевание света. Подержанные ортоскопы можно легко найти в диапазоне $40-60. Большинство из них производятся она дном или двух заводах в Японии, поэтому контроль качества, как правило, хороший. Если вы предпочитаете покупать новые, то лучшее соотношение цены и качества — это Baader Classic Orthos (BCO). BCO также имеют 50 градусное поле зрения, что гораздо больше, чем у обычных ортоскопических окуляров, а также окуляров Плёссла.


Двумя ограничениями ортоскопической схемы являются узкое поле зрения (40-50 градусов) и короткий вынос зрачка при малых фокусных расстояниях. Например, 18-миллиметровый ортоскопический окуляр имеет удобный вынос зрачка~14 мм. При использовании вместе с 2x Барлоу, эффективное фокусное расстояние становится 9 мм (применяется в телескопах с фокусными соотношениями F/D-8…F/D-10. При использовании 3x Барлоу, эффективное фокусное расстояние становится 6 мм (используется в телескопах с фокусными соотношениями F/D-5…F/D-7).


За эти годы я попробовал много окуляров, в диапазоне цен от начального, до среднего уровня. Некоторые из них имеют размытую картинку на высоких увеличениях, низкий контраст и ужасное рассеяния света. Ортоскопы — лучшее решение для планет. Однако, если вы предпочитаете более широкое поле зрения (особенно актуально для владельцев телескопа Ньютона, на монтировке Добсона, без возможности ведения за объектом при помощи микрометрическими винтами) или большой вынос зрачка, можно порекомендовать Vixen SLV, TeleVue Radians и Delites, Explore Scientific 68 и 82 серии и Meade 5000 UWAs как высококачественные Луна / планетарные окуляры. При очень ограниченном бюджете, можно обойтись и окулярами Плёссла, но только надо брать качественные.


Кто-то сказал бы: «Мои окуляры отлично работают по Луне», так оно и есть. Луна — очень легкий для наблюдения объект. Если ваш окуляр строит несколько размытое изображение, вы все равно увидите много деталей. Тем не менее, тестирование резких, топовых и совсем бюджетных окуляров, рядом друг с другом будет откровением. Подобно переключению с хорошего аналогового телевидения на HD вещание, разница весьма выразительная


Линзы Барлоу

Вам не нужна Барлоу, если у вас есть окуляры в нужном диапазоне фокусных расстояний. Кроме того, бюджетные линзы Барлоу могут ухудшить контрастность и увеличить рассеяние света. Тем не менее, хорошие, качественные Барлоу могут быть полезны. Чтобы получить 1 мм или меньше выходного зрачка в короткофокусном телескопе, необходимо использовать окуляр с коротким фокусным расстоянием. В этом случае может оказаться неудобным вынос зрачка. Лучшим вариантом, в данном случае, может быть использование 2-кратной или 3-кратной Барлоу, совместно с более длиннофокусным окуляром. Кроме того, Барлоу увеличивает эффективное фокусное расстояние телескопа, в результате чего можно получить более устойчивые планетарные изображения при комбинации линзы Барлоу + окуляр, по сравнению короткофокусным окуляром. Можно настоятельно рекомендовать Baader Q barlow 2.25x barlow, а в премиальном сегменте TeleVue 2x и 3x barlow.


Диагональ


Часто упускаемая из виду часть в оптическом тракте это диагональ. Она может быть причиной менее «звездных видов в окуляре телескопа». Одним из главных приоритетов должно стать повышение диаметра диагонали. Если у телескопа 2х-дюймовый фокусер, целесообразно перейти на 2-дюймовую диэлектрическую диагональ, что позволит улучшить изображение, как для DSO (Deep-Sky объектов), так и для планет. У меня был хороший опыт работы со средней по цене, диэлектрической диагональю от GSO. Так же можно рекомендовать производителей: Celestron, Orion, Explore Scientific.


Если вы ищете лучшую диагональ для Луны и планет, я бы выбрал призму хорошего качества. Призмы рассеивают меньше света, чем диэлектрические зеркальные диагонали и более предпочтительны для Луны и планет. С точки зрения соотношения производительности и цены, я бы порекомендовал призму Baader T2.


Наблюдение


Луна

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

На Луне большинство деталей видно на границе освещенной и не освещенной поверхности нашей спутницы. Поскольку терминатор (линия по которой идет граница дня и ночи) меняет свое местоположение каждый день вместе с фазой Луны, вы можете каждую ночь наслаждаться новыми видами. Даже в самые маленькие телескопы и бинокли можно увидеть много кратеров на поверхности Луны. Увеличение апертуры позволяет разрешить более мелкие детали. С моим 8-дюймовым телескопом Шмидт-Кассегрена, в среднем за ночь, я могу разобраться в деталях до ~1 км и провести всю наблюдательную сессию в одном кратере, изучая сложные формы стен, центральной горки, микрократеров и других мельчайших деталей.

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост
Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Меркурий и Венера

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Эти планеты не видны месяцами. Всего лишь на короткий промежуток времени они наблюдаются как «утренняя или вечерняя звезда». Меркурий труднее обнаружить, так как даже в периоды удаления от Солнца, он все равно расположен довольно близко к нашей звезде. Поиск Меркурия невооруженным глазом — это уже достижение. В редкие дни, совпадающие с элонгацией Меркурия (максимальным отдалением от Солнца), со спокойной, ясной атмосферой, планету можно заметить вблизи горизонта. Фазу Меркурия можно увидеть даже в небольшие инструменты.


Венеру увидеть легче. Элонгации планеты длятся неделями. Даже самый маленький бинокль способен показать фазы Венеры. В больших телескопах, с применением фильтров, иногда можно разрешать более темные облака в атмосфере Венеры.


Марс

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

В течение года Марс довольно быстро перемещается по зодиакальным созвездиям. Если он находится в небе, большую часть времени вы можете увидеть только маленький оранжевый диск планеты, без каких-либо деталей. Однако раз в два года Марс вступает в оппозицию (противостояние с Солнцем), когда его кажущиеся размеры значительно увеличиваются. Следующая оппозиция состоится 13 октября 2020 года, так что готовьтесь! :) Начинать наблюдения планеты можно уже с июля!

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Марс — самая трудная планета для наблюдения из-за низкой контрастности деталей поверхности. Фильтры и окуляры обязательно должны быть хорошими. Но даже при наличии 80 мм телескопа и терпения, во время противостояния, можно разобраться во многих деталях на его поверхности. Фокус наблюдения в в том, что надо не торопиться, держать планету в поле зрения телескопа и ждать момента, когда детали поверхности «прорисуются» более отчетливо, в моменты успокоения атмосферы. Это, кстати, общая стратегия наблюдения за такими планетами как: Юпитер, Марс и Сатурн.


Юпитер

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Юпитер обычно виден в течении 4-5 месяцев, каждый год. Благодаря динамичному квартету своих спутников и богатой деталям поверхности, Юпитер является одним из самых интересных объектов в астрономии. Даже бинокли с оптической схемой 10x50 разрешают диск планеты и 4 его спутника. Применяя большие увеличения и диаметр объективов бинокля (например 15х70, 20х80), можно без проблем увидеть пару основных полос на его диске. При наблюдении с применением высококачественных фильтров и окуляров, даже в 80 мм телескоп, появляется возможность увидеть сложную систему полос Юпитера. Вы также можете наблюдать транзиты Большого Красного Пятна и тени спутников Юпитера, по диску планеты. Увеличение диаметра телескопа до 8 дюймов и более, увеличит насыщенность цветов Юпитера, покажет больше мелких деталей в поясах и полярных регионах газового гиганта (включая небольшие штормы и фестоны). А также разрешит спутники планеты на маленькие диски. Наблюдение за Юпитером — это отличный навык, с практикой вы научитесь видеть больше.


Сатурн

Как наблюдать Луну и планеты Астрономия, Космос, Наблюдение, Планеты и звезды, Луна, Марс, Сатурн, Юпитер, Длиннопост

Как Юпитер, Сатурн виден в течении 4-5 месяцев каждый год. Но в отличии от Юпитера, его видимый размер меньше. В бинокли 10x50 выглядит как яйцо, с некоторой практикой и резкой оптикой, в бинокль 15x70, вокруг диска можно разрешить крошечные кольца. Кольца легко обнаруживаются даже в скромных телескопах. Относительно небольшое увеличение апертуры покажет «щель Кассини» в его кольцах (фильтров не требуется). Система облаков Сатурна имеет гораздо более низкий контраст по сравнению с Юпитером. Для разрешения деталей на диске планеты и в ее кольцах, необходимы фильтры и увеличение диаметра объектива телескопа. Крупнейший спутник Сатурна — Титан, хорошо виден даже при малых увеличениях. С большим телескопом можно разрешить еще несколько спутников.


Уран и Нептун


Они имеют тенденцию оставаться в одном созвездии в течение многих лет. Осень является лучшим временем для наблюдения за ними, уже на протяжении последних нескольких лет. Обе планеты можно увидеть в виде «голубых звезд» в бинокль или в небольшой телескоп. При помощи 8 дюймового и больше инструмента, можно рассмотреть очень маленькие, зеленоватые диски планет, без деталей поверхности. Так же при помощи больших телескопов (от 8 дюймов и выше) можно увидеть Тритон, спутник Нептуна, и, по крайней мере три спутника Урана.


Плутон


Все еще планета в моем восприятии! :) Он находится в Стрельце, последние несколько лет. При очень стабильной атмосфере, его можно увидеть только как очень слабую звезду, используя телескоп диаметром 8 дюймов или больше.


«Парад планет»


Каждые два-три года планеты выстраиваются в линию, и видны все сразу, за одну ночь. Я наблюдал данное явление в прошлом — очень впечатляет! :) В следующий раз я сообщу об этом явлении заранее.


К сожалению я не смог описать все нюансы наблюдения Луны и планет в рамках одной, короткой статьи. Надеюсь, я предоставил достаточно информации, чтобы заинтересовать вас планетными наблюдениями. Надеюсь данная статья окажется для кого-то полезной. источник

Всем чистого неба и захватывающих наблюдений!

Показать полностью 8
69

Почти 11 миллионов имен отправятся на Марс вместе с ровером Perseverance

На борт ровера NASA Perseverance установлен алюминиевый блок с тремя кремниевыми чипами, на которых содержатся 10 932 295 имен людей, записавших свои имена в рамках акции «Отправь свое имя на Марс». Также на чипах содержатся 155 эссе, которые были написаны учащимися из США, вышедшими в финал конкурса названий для марсохода.


Ровер Perseverance должен стартовать на Марс ближайшим летом и сядет в кратере Jezero 18 февраля 2021 года. На алюминиевой пластине выгравировано Солнце, а также Земля и Марс, к которым направлены лучи от звезды, что олицетворяет связь между планетами, которую несет миссия Perseverance.


Команда миссии начала приводить конфигурацию 1043-килограммового ровера в режим интеграции с ракетой-носителем Atlas V. nasa

Почти 11 миллионов имен отправятся на Марс вместе с ровером Perseverance NASA, Rover, Марс, Марсоход, Космос
Почти 11 миллионов имен отправятся на Марс вместе с ровером Perseverance NASA, Rover, Марс, Марсоход, Космос
40

Как Китай собирается осуществить посадку на Марс

Китай стремится стать второй страной в истории, которая осуществит посадку и будет управлять космическим аппаратом на поверхности Марса. США были первыми с парой кораблей Viking 1 и Viking 2 в 1976 году,  если не считать миссию Советского Союза  «Марс-3» в 1971 году [Первая в мире мягкая посадка на Марс. Передача данных с «Марса-3» прекратилась вскоре после посадки]. Всего за несколько месяцев до запуска Китай все еще хранит в тайне ключевые детали миссии. Но мы можем понять несколько аспектов того, где и как Китай попытается осуществить посадку на Марс из недавних презентаций и интервью.

Как Китай собирается осуществить посадку на Марс Космос, Марс, Космическая программа, Китай, Длиннопост, Перевод

[Фото: CASC]

Запуск


Небесная механика предполагает, что Китай запустит миссию в конце июля во время окна, открывающегося раз в 26 месяцев, которое позволяет использовать траекторию Гомана, являющуюся наиболее экономичной по затратам топлива. Тогда же предполагается запуск  марсохода Perseverance американского космического агентства NASA и орбитального аппарата Hope Объединенных Арабских Эмиратов.

Как Китай собирается осуществить посадку на Марс Космос, Марс, Космическая программа, Китай, Длиннопост, Перевод

[Фото: CASC]

Тяжелая ракета «Чанчжэн-5» отправит китайский космический корабль в путешествие на семь месяцев, после чего аппарат выйдет на орбиту вокруг Марса в феврале 2021 года.


Космический корабль весом около 5 тонн состоит из орбитального аппарата,  посадочного модуля и марсохода. Ожидается, что компоненты корабля будут оставаться связанными на орбите до апреля. Орбитальный аппарат будет использовать пару камер для получения изображений предварительно выбранных областей для посадки, прежде чем состоится попытка посадить 240-килограммовый марсоход на поверхность.


Посадка


Посадка на Марс представляет собой уникальную и сложную задачу. У Марса разреженная атмосфера, которая слабо замедляет космические аппараты и в тоже время опасно их нагревает. Гравитационное поле отличается от того, которое существует на Земле. Но Китай обладает полезным опытом предыдущих космических миссий.


Когда космический аппарат выйдет на орбиту, Земля и Марс будут находиться на расстоянии около 150 млн километров друг от друга, и для передачи сигналов связи в любую сторону потребуется восемь минут. Поэтому система наведения, управления и контроля (guidance, navigation, and control или GNC) космического корабля будет полностью автономной. Эта система будет основана на GNC космического аппарата «Чанъэ-4», который сел на обратной стороне Луны в 2019 году.


Теплозащитный экран спускаемой капсулы, имеющий форму закругленного конуса с углом раствора в 140 градусов, обеспечит первоначальное замедление при входе в атмосферу со скоростью в несколько километров в секунду. Далее, при движении со сверхзвуковой скоростью,  развернется парашют с дисковым зазором (disk-gap band parashute) для дальнейшего замедления космического корабля. Затем парашют отстегнется. Для данных этапов посадки Китай использует опыт и технологии своего пилотируемого космического корабля «Шэньчжоу-5», которые позволили китайским космонавтам войти в атмосферу Земли и безопасно приземлиться.


Тормозная реактивная тяга будет задействована для замедления космического корабля во время его окончательного снижения. Это будет обеспечиваться двигателем переменной тяги на 7500 Ньютон, аналогичным основному двигателю, который использовался китайскими лунными посадочными модулями «Чанъэ-3» и «Чанъэ-4». Для навигации посадочный аппарат будет использовать лазерный дальномер и микроволновый датчик скорости сближения - технологии, которые также были первоначально разработаны для китайских полетов на Луну.


По словам Чжана Жунцяо, главного конструктора миссии, посадочный аппарат отделится от основного корпуса космического корабля на высоте 70 метров и зависнет над поверхностью в поисках безопасного места посадки. С помощью лидара будут получены данные о неровностях местности. На высоте 20 метров с помощью оптических камер будет задействован режим предотвращения столкновений с препятствиями.


Некоторые из заключительных этапов посадки можно увидеть на кадрах прилунения «Чанъэ-4»


Место посадки

Как Китай собирается осуществить посадку на Марс Космос, Марс, Космическая программа, Китай, Длиннопост, Перевод

Возможное место посадки на равнине Утопия (Utopia Planitia) [Фото: University of Arizona/JPL/NASA]

Первоначально Китай рассматривал несколько возможных мест для посадки в двух обширных областях на поверхности Марса. Впоследствии выбор были сужен до двух предварительных мест на равнине Утопия (Utopia Planitia), согласно презентации на заседании Европейского планетологического конгресса в Женеве в сентябре прошлого года.


Директор Лаборатории исследования планетных изображений (PIRL) Аризонского университета Альфред Макьюен, присутствовавший на сессии, недавно создал карту одной из этих областей  в равнине Утопия.


«Хотя область выглядит гладкой в больших масштабах,  HiRISE обнаружил мелкие шероховатости, включая кратеры, валуны и другие элементы. Эти препятствия можно избежать, используя технологию 'terminal hazard avoidance', которую Китай опробовал на Луне», - написал Макьюен в подписи к изображению.


Какое бы место ни было выбрано, размер эллипса посадки (области, куда статистически наиболее вероятно сядет космический аппарат) составит около 100 x 40 км. Для сравнения, NASA, с его богатым опытом посадки на Марс, предусматривает эллипс посадки размером 25 x 20 км для марсохода Perseverance, благодаря технологии Range Trigger.


Другие необходимые составляющие китайской миссии также проработаны. В настоящее время станции космической связи работают по всему Китаю, а также в Намибии и Аргентине. Испытания двигателей ракеты «Чанчжэн-5» завершены в январе.  Марсоход прошел финальные испытания по воздействию космической среды (смоделированные условия при запуске, полете в открытом космосе и на марсианской поверхности) в преддверии китайского Нового года. Следующим большим шагом на пути к посадке на Марс в 2021 году является успешный запуск с космодрома Вэньчан в июле 2020 года.


Источник


Предыдущий пост по теме:

Как Китай планирует отправить зонд на Марс в условиях вспышки коронавируса

Показать полностью 2
105

Марсианский зонд InSight возобновил бурение, помогая себе ковшом

Американский модуль InSight совершил посадку на Красной планете в конце 2018 года и с тех пор успел подтвердить существование марсотрясений. Однако работа установленного на нем бура системы НР³ оказалась не так успешна. Планировалось, что разработанный в Германии инструмент проделает в поверхности пятиметровую скважину и проведет измерения теплового потока на глубине. Но все сразу пошло не так.

Марсианский зонд InSight возобновил бурение, помогая себе ковшом Insight, Марс, Космос, NASA, Гифка, Длиннопост

38-сантиметровый бур действует ударным способом, взводя внутреннюю пружину и отпуская ее для каждого следующего движения. Однако, погружаясь, он, по-видимому, наткнулся на необычно твердый или плотный участок, и сила отдачи постоянно выбрасывает из отверстия. Время от времени бур приходится поправлять, используя 1,8-метровый манипулятор, вооруженный ковшиком для сбора проб. Однако проблема остается нерешенной уже больше года: бур застрял.


Лишь недавно появилась новая надежда на продолжение его работы. Twitter-аккаунт миссии InSight сообщил, что специалисты Лаборатории реактивного движения NASA и германского космического агентства DLR нашли и с успехом опробовали новый подход и осторожно придавили бур сзади тем же ковшом. Инструмент произвел 25 ударов и погрузился дальше: вдохновленные удачей инженеры собираются продолжить такую работу в течение следующих недель и надеются, что буру удастся преодолеть проблемный участок грунта.


Как разъясняет официальный сайт миссии, НР³ проектировался агентством DLR, исходя из данных о том, что грунт на месте работы InSight будет достаточно рыхлым, а отдельные твердые камни инструмент сможет обходить. Однако в реальности он оказался «скорее похожим на глину, чем на песок», и стенки отверстия не осыпаются сами по себе, оставаясь ровными и не обеспечивая достаточно сцепления для того, чтобы бур не выскакивал при ударе обратно.

Марсианский зонд InSight возобновил бурение, помогая себе ковшом Insight, Марс, Космос, NASA, Гифка, Длиннопост

Удалось ли решить эту проблему окончательно, мы узнаем уже скоро. Сейчас специалисты ожидают снимков и других данных с марсианского зонда, чтобы оценить продвижение бура на глубину. Ожидается, что за 25 ударов он смог погрузиться как минимум на несколько сантиметров. И если все действительно прошло удачно, то в следующие «рабочие смены» инструмент сможет добраться до запланированной глубины, чтобы опустить вниз датчики температуры. ссылка

Показать полностью 1
160

Страничка из дневника марсохода Curiosity

Плато Гринхью


Curiosity, поднявшись на плато, сделал серию цветных снимков на 2698-2702 солы (9 - 13 марта 2020 г.)

Страничка из дневника марсохода Curiosity Марс, Curiosity, Космос, Марсоход, Видео, Длиннопост
Страничка из дневника марсохода Curiosity Марс, Curiosity, Космос, Марсоход, Видео, Длиннопост
Страничка из дневника марсохода Curiosity Марс, Curiosity, Космос, Марсоход, Видео, Длиннопост
Страничка из дневника марсохода Curiosity Марс, Curiosity, Космос, Марсоход, Видео, Длиннопост
Страничка из дневника марсохода Curiosity Марс, Curiosity, Космос, Марсоход, Видео, Длиннопост
Страничка из дневника марсохода Curiosity Марс, Curiosity, Космос, Марсоход, Видео, Длиннопост
Страничка из дневника марсохода Curiosity Марс, Curiosity, Космос, Марсоход, Видео, Длиннопост

Mars 360: NASA's Mars Curiosity Rover - Sol 2658 (360video 8K)

страничка Curiosity

Показать полностью 6 1
254

Остров Девон — кусок Марса на Земле

Пока космос и особенно другие планеты находятся далеко в будущем, ученые пытаются моделировать условия на Земле. Они находят места со сложным и суровым климатом и высаживают туда экспедиции. Одним из таких мест является остров Девон, который даже называют Марс на Земле.


Бесплодная местность острова Девон, чрезвычайно низкая температура, изоляция и удаленность от цивилизации дают ученым NASA целый ряд уникальных возможностей испытать космическое оборудование на Земле.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Экипаж станции исследует остров на моторных модулях EVA.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Арктические ночи, ограниченные логистические и коммуникационные возможности — прекрасные аналоги вероятных проблем, с которыми могут столкнуться члены экипажа космического корабля.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Робот K10 Black на разведке кратера Хотон.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Mars Society управляется и финансируется NASA. Основой базы является научно-исследовательская станция Flashline Mars Arctic Research (FMARS). Она расположена на хребте, прямо над кратером Хотон.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Этот кратер с диаметром в 23 километра образовался около 39 миллионов лет назад. Удар огромного метеорита был настолько силен, что уничтожил почти все живое на острове. Низкая температура предохраняет кратер от эрозии: территория Хотона чрезвычайно похожа на марсианский ландшафт.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Удивительно, но сейчас на острове сохраняется некое подобие жизни. Плато Трулав, на северо-восточном побережье, отличается относительно теплой и влажной погодой. Летом здесь появляется кое-какая растительность.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Жилой модуль станции FMARS.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

На целых 50 дней плато Трулав освобождается от снега, а температура повышается до внушительных 8 ° С. Холодная и влажная почва заселена беспозвоночными, такими как черви, мошки и личинки мух. На острове также есть несколько пернатых.

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Исследователь в скафандре берет пробы из месторождения ценных минералов на равнине Джемини Хиллс

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Ровер K10, предназначенный для автономного функционирования в предельно сложных условиях.

Остров Девон - кусок Марса на Земле

Остров Девон — кусок Марса на Земле Марс, Канада, Остров, Исследования, Космос, Планета, Длиннопост

Ещё не много информации в Википедии:

https://ru.m.wikipedia.org/wiki/Девон_(остров)


Источник: https://dnpmag.com/2020/03/07/devon-mars-na-zemle-3/

Показать полностью 9
53

Программу "ЭкзоМарс" перенесли на 2022 год

Роскосмос и Европейское космическое агентство приняли решение о переносе запуска второй миссии «ЭкзоМарс» на 2022 год. С учётом рекомендаций генеральных инспекторов с европейской и российской стороны специалисты пришли к выводу, что проведение испытаний требует дополнительного времени.


В рамках проведенного совещания руководители Роскосмоса и ЕКА — Дмитрий Рогозин и Ян Вёрнер — согласились с необходимостью проведения дополнительных испытаний аппарата с доработанным оборудованием и с окончательной версией программного обеспечения.


Новый график миссии предусматривает запуск в августе-сентябре 2022 года. Проект «ЭкзоМарс» станет первой миссией, позволяющей проводить поиск признаков жизни на глубине до 2 метров под поверхностью Марса, где существуют уникальные условия для сохранения биологических сигнатур жизни.

К настоящему времени всё лётное оборудование, необходимое для выполнения миссии «ЭкзоМарс», интегрировано на космический аппарат. Посадочная платформа, получившая название «Казачок», полностью оснащена 13 научными приборами, а марсоход «Розалинд Франклин» с установленными на нем девятью научными приборами недавно успешно прошёл заключительные термовакуумные испытания во Франции.


Последние испытания по динамическому вытяжению парашютов миссии «ЭкзоМарс» в Лаборатории реактивного движения NASA завершены успешно, основные парашюты готовы к двум заключительным высотным бросковым испытаниям, которые состоятся в марте в Орегоне (США).


В течение предыдущего месяца проводились квалификационные испытания двигательной установки. Десантный модуль и посадочная платформа «ЭкзоМарс» проходили натурные испытания в Каннах (Франция), цель которых заключается в подтверждении устойчивости космического аппарата к неблагоприятным факторам космического полёта к Марсу.


Новый график миссии «ЭкзоМарс» предусматривает запуск ровера и посадочной платформы в августе-сентябре 2022 года. Этот период выбран с учётом баллистических условий, которые позволяют осуществить запуск с Земли к Марсу каждые два года в рамках двух «окон» (краткосрочных периодов) продолжительностью 10 дней каждый. Проект «ЭкзоМарс» станет первой миссией, позволяющей проводить поиск признаков жизни на глубине до двух метров под поверхностью Марса, где существуют уникальные условия для сохранения биологических сигнатур жизни. сайт роскосмоса

Показать полностью
221

К роверу «Марс-2020» прикрепили вертолет

К роверу «Марс-2020» прикрепили вертолет Марс, Марсоход, Марс-2020, Вертолет

Фото: NASA/JPL-Caltech.


Инженеры НАСА прикрепили к днищу марсохода, который полетит к Красной планете в 2020 году, экспериментальный вертолет. Оборудованный двумя винтами, питаемый от солнечных батарей воздушный аппарат был подключен вместе с системой доставки вертолета (Helicopter Delivery System) к пластине на днище марсохода. Снизу он будет закрыт защитной крышкой, которая отстрелится после посадки в кратере Езеро.

К роверу «Марс-2020» прикрепили вертолет Марс, Марсоход, Марс-2020, Вертолет

Фото: NASA/JPL-Caltech.


Вертолет является технологической демонстрацией с высокой степенью риска. Если он столкнется с трудностями, на научную миссию «Марс-2020» это никак не повлияет. Если аппарат полетит так, как задумано, будущие миссии на Марсе смогут использовать вертолеты второго поколения, чтобы добавить воздушное измерение в свои исследования.


«Наша задача - доказать, что автономный управляемый полет может быть выполнен в чрезвычайно разреженной марсианской атмосфере», - говорит Мими Аунг (MiMi Aung) из JPL, руководитель проекта Mars Helicopter. «Поскольку наш вертолет спроектирован как проверка экспериментальной технологии, он не несет на себе научных инструментов. Если мы докажем, что полет на Марсе - цель выполнимая, то с нетерпением будем ждать того дня, когда марсианские вертолеты будут играть важную роль в исследованиях Красной планеты».


Марсоход вместе с вертолетом стартует в июле 2020 года на ракете Atlas V с мыса Канаверал. Посадка на Марс планируется 18 февраля 2021 года.


Вольный перевод отсюда.

Показать полностью
209

Первый марсианский вертолет совершил испытательный полет

Первый марсианский вертолет совершил испытательный полет Марс, NASA, Mars Helicopter, Вертолет, Испытание, Техника, Космос, Длиннопост

Аппарат изготовили инженеры Лаборатории реактивного движения NASA на испытательном полигоне в Калифорнии. Мини-вертолет весом 1,8 кг успешно взлетел в разреженной атмосфере, приближенной к марсианской.


Свыше полувека мы изучаем Красную планету с орбиты или поверхности, но ни разу еще не посылали на Марс летательный аппарат. В июле 2020 это изменится — с космодрома на мысе Канаверал взлетит отправится ракета Atlas V, созданная специалистами United Launch Alliance. На ее борту будет самый совершенный марсоход, когда-либо созданный человечеством, который соберет образцы грунта для ученых на Земле. А под днищем вездехода разместится вертолет-разведчик.


Но прежде чем это произойдет, проект Mars Helicopter должен показать, что беспилотный летательный аппарат способен сохранить работоспособность в марсианских условиях: выживать при температуре до -90 °C, но и лететь до 90 секунд в разряженной атмосфере Марса. Давление там эквивалентно земному на высоте 30,5 тысяч метров, то есть в 2,5 раза больше рекорда высоты полета для обычных вертолетов, пишет New Atlas.

Первый марсианский вертолет совершил испытательный полет Марс, NASA, Mars Helicopter, Вертолет, Испытание, Техника, Космос, Длиннопост

Испытания проходят внутри симулятора — в вакуумной камере шириной 7,6 метров, давление в которой снижено до уровня марсианского, а земной воздух заменяет углекислый газ.

Для имитации силы тяжести Марса вертолет был привязан к фалу с мотором, который взял на себя две трети его веса.


«Система гравитационной разгрузки сработала отлично, как и наш вертолет, — сообщил Тедди Цанетос, проводивший испытания. — Нам понадобился полет на высоте всего 5 см, чтобы получить все данные, необходимые для того, чтобы подтвердить, что наш марсианский вертолет может совершать автономные полеты в атмосфере, приближенной к марсианской. Нужды подниматься выше не было. Это был чертовски хороший первый полет».


За первые два дня испытаний марсианский вертолет, состоящий из более чем 1500 элементов, изготовленных из углепластика, авиационного алюминия, кремния, меди, фольги и пены, налетал одну минуту.


По мнению ученых, перспективнее всего было бы бросить все силы на исследование полярных областей Марса, в частности — озера с жидкой водой. Нынешние планы недостаточно амбициозны, считают академики.


Ист.

Показать полностью 1
205

Углубимся в историю: откуда растут ноги у квадрокоптеров

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

Дроны, дистанционно управляемые вертолеты, шпионские и военные мультикоптеры — все эти летающие устройства уже давно стали частью повседневности. Сегодня электрической бескрылой «леталкой» уже никого не удивишь. Вот оно, держится в небе на своих маленьких вентиляторах, безо всяких крыльев и только за счет электричества!


Однако, до недавнего времени машины с вертикальным взлетом и на электрической тяге были всего лишь недостижимой мечтой. Как же это стало возможным и почему никто их не делал раньше? Кто первым смог поднять электровертолет в воздух? Давайте посмотрим историю появления в нашем небе многопропеллерных жужжалок.

Предпосылки к появлению электрического вертикального взлета


Еще пятнадцать лет назад в небе среди компактных летающих устройств можно было наблюдать только самолеты и вертолеты с двигателями внутреннего сгорания.


И во всем мире, и в СССР основой авиамоделизма неизменно выступали самолеты. Это были кордовые, неуправляемые и радиоуправляемые модели. Про модели вертолетов ходили только слухи, кто-то хвалился, что смотрел на полет такого, но им не верили, и никто радиоуправляемые вертолеты в глаза толком не видел.


Конкурс радиоуправляемых вертолетов 1982 года в СССР

У моделей самолетов с авиадвигателями, работающими не на топливе, а от электричества, дело обстояло получше, но для вертолетостроения электромоторы на протяжении более ста пятидесяти лет, с самого момента их появления, были абсолютно непригодны. Вертолеты на видео 1982 года тоже имеют ДВС-двигатели.


Однако время не стоит на месте, и постепенно появились две необходимые для подъемной электротяги вещи. Во-первых, появились малогабаритные, а также и бесщеточные, или вентильные, электромоторы (https://ru.wikipedia.org/wiki/Вентильный_двигатель).


Дело в том, что до их появления никакие электродвигатели не давали такой мощности, которая была бы достаточной для подъема нужного веса при приемлемой собственной массе. Поэтому электрические моторы можно было применять в автомобилях, трамваях и метро, с их помощью можно было бриться, перемалывать пищу и качать воду. Можно было даже исхитриться и добавить к ним крылья, поставив их на самолет. Однако, первые электродвигатели в самолетах непременно проигрывали по ДВС по всем параметрам. Правда, не все электромоторы нового поколения изначально предназначались для авиации, сейчас мы об этом поговорим.


Рыбак-вертолетчик, 2010 г. Модель с ДВС

А во-вторых, появились компактные и ёмкие аккумуляторы, чему, скорее всего, значительно поспособствовало развитие мобильной электроники. Например, стали производиться литий-полимерные и литий-ионные аккумуляторы, которые пришли на смену никель-кадмиевым и никель-металлогидридным.


Самые первые аккумуляторы не были легкими и компактными, а поднять такой в воздух не представлялось возможным. Поначалу их пытались применять и в автомобилях, но появился двигатель внутреннего сгорания и на тот момент быстро поставил точку в развитии электромобилей. Современные же литий-полимерные аккумуляторы позволили получить бо́льшую ёмкость на единицу массы.


Перопроходцы


Proxflyer


Первым соединить достижения новых технологий догадался норвежский инженер Peter Muren. Он создал сайт с описанием своего первого изобретения в 2003 году, если Archive.org не врет. Сайт назывался Proxflyer.com (именно с таким написанием, через «Y») и содержал фото и видео полетов невероятного для того времени устройства: вертолета размером всего лишь с пачку сигарет, при этом управлявшегося дистанционно.

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

Archive.org первые версии сайта показывает как созданные в 2003 году (http://web.archive.org/web/20031001000000*/proxflyer.com).


Чтобы заставить модель подняться в воздух, Питер применил самую стабильную в полете вертолетную схему — соосную (как у КА-50 Черной Акулы). В своей конструкции он не стал использовать несуществующие в то время мини-автоматы перекоса и, тем более, гироскопы, тем самым облегчив модель.


Peter Muren демонстрирует первую в мире модель электрического вертолета, 2004 год

Не забывайте, что Ютуб был открыт только в 2005 году, поэтому ролик был залит позднее.


Приводы от электромоторов были выполнены на шкивах, а в качестве ремней использовалась тонкая резинка типа той, которая использовалась в пассиках для кассетных магнитофонов. Шестерней в данной схеме не было. Один мотор крутил оба винта, другой — поворачивал хвост.


Питер смог добиться нужной массы устройства, использовав в своем вертолете новые литий-полимерные аккумуляторы. Для уменьшения веса лопасти и части корпуса вертолета были сделаны из бальзового дерева. В качестве моторов он применил те, которые тогда только что появились и поначалу применялись в виброзвонках пейджеров (кто не знает, что такое пейджер, спросите у своих родителей) и мобильных телефонов. Такие электромоторы так и называли: Pager motor (моторчик из пейджера). Поэтому первые микромоторы делались совсем не для вертикального взлета.


Позже Питер соорудил другие модели, где смена положения вертолета в пространстве осуществлялось путем изменения скорости вращения одного из двух соосных винтов, а ими управляли отдельные моторы. Всего за подъем их отвечало два.

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

Движение вперед осуществлялось за счет третьего электромотора, установленного не вертикально, как у классических вертолетов или как у первой модели, а горизонтально и поднимавшего хвост модели кверху.


Инженеру удалось найти такое сочетание миниатюрных и легких моторов с другими снижающими вес деталями, которое, наконец-то, позволило модели воспарить над столом.


Получив патент на свое изобретение, Питер занялся усовершенствованием своих моделей, а чуть позже фирма Interactive Toy Concepts стала производить игрушечные вертолеты по его схеме.


Pixelito


Второй схемой, разрабатываемой параллельно, стала схема с вертикальным влетом моделиста из Бельгии по имени Александр. Он назвал свой вертолет Pixelito. Александр применил в нем схему, отличную от Proxflyer, с одним несущим винтом.

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

Стабильности ее полёта способствовало специальное устройство на винте: за неимением приемлемых по весу электронных стабилизаторов полета, на винт ставилось массивное навершие, выполнявшее при раскрутке роль гироскопа (сверху на изображении, над винтом, находится балансир (flybar, Bell/Hiller bar)).


Как бы в последствии конструкторы ни пытались, без этой штуки вертолеты с одним винтом летать отказывались. Напомню, что первой вертолетной схеме балансир был не нужен или, может быть, его функцию частично выполняло ограничительное кольцо на лопастях из бальзового дерева.


В этой модели моторчика было тоже два: для основного винта, который позволял лететь вверх-вперед, и для стабилизирующего пропеллера, с помощью которого можно было поворачивать. Модель получилась невероятно маленького размера, о чем можно судить по фото с хомячком, оно 2003 года, так что сорри за качество. Модель весила всего 6,9 грамм.


В 2003 году Александр был уже почти у создания работоспособной модели, и нашел Питера, создателя Proxflyer. Они решили объединить усилия, и таким образом довели свои модели до рабочих прототипов.

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

В записи от 15 Декабря 2003 года говорится:


«Сегодня мы с Питером с удовольствием представляем результат наших последних совместных разработок. Я создал вертолет Pixelito, а Питер — Proxflyer Micron (на тот момент уже не первую модель норвежца — мое примечание). Pixelito — это вертолет с моей собственной системой контроля ротора, а дизайн Питера уже довольно хорошо известен. Мы называем их роботами, потому что такое название характеризует их лучше всего. Примерно 2 недели назад мы с Питером провели чудесные выходные у меня дома и после этого решили, что было бы неплохо вести совместные исследования, каждый у себя дома, но двигаясь к общей цели. Это вылилось в создание модели весом всего 6,9 грамм вместе с аккумулятором, и мы оба знаем, что это не предел.


Александр и Питер.»


Видео только что созданного мини-вертолета Pixelito, но в ролике им управляет друг его создателя, автор Proxflyer Peter Muren. Можно догадаться, что Александр держит камеру.


Pixelito, 2003 год.

Третьим прототипом могла бы стать нашумевшая в то же самое время разработка японской фирмы Seiko Epson. Модель могла летать только вверх и вниз.

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

К сожалению, после первой же новости об этом соосном летающем чудо-устройстве информация про него исчезла, осталась только статья с описанием: https://www.ixbt.com/news/hard/index.shtml?02/35/48.


Судя по всему, разработка не удалась и не получила дальнейшего развития, к тому же, не было ни одного видео с демонстрацией его работы. На фото видно, что в ней была использована схема, в которой соосные винты сочетались с балансиром.


Развитие электрического вертолетостроения


С появлением летающих прототипов идею подхватили и другие производители игрушек, и, используя новые двигатели, аккумуляторы и подобрав более современный и легкий пластик, стали производить модели вертолетов одну за другой, сначала по норвежской схеме, ну а потом и по подобию Pixelito, по-моему, первые серийные модели так и назывались — Pixelito.


Вертолет одной из первых моделей по схеме, аналогичной Proxflyer, фирма Syma, 2007 год

Также одна из первых моделей английской фирмы Fastek Computers, 2007 год

Поначалу вертолеты были, в основном, соосные. Одним из самых плодовитых на тот момент производителей игрушечных радиоуправляемых вертолетов была китайская компания Syma. Авиамоделисты из всех стран также вовсю пробовали разные варианты построек моделей с вертикальным взлетом, и некоторые их достижения были довольно-таки выдающимися, но то, что быстрее всего дошло до конечного потребителя — это продукция фирм-производителей игрушек.


В результате как норвежский, так и бельгийский моделисты неплохо заработали на продаже прав на производство вертолетов на дистанционном управлении, сделанных по их схемам.


В последствии разработками Питера заинтересовались DARPA и норвежское Министерство Обороны, инженер создал свою фирму Prox Dynamics и стал разрабатывать вертолет-шпион для военных целей.

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

Что сейчас там происходит и на какой стадии находится производство, неизвестно.


Улучшения и повышение стабилизации полета


В то время как первые игрушечные вертолеты имели всего 2 канала управления (вперед-вверх и поворот лишь в одну сторону), любители для себя делали и модели на многоканальном радиоуправлении. Чтобы управлять самыми первыми моделями дистанционно управляемых вертолетов, требовалась довольно долгая тренировка, поскольку ровно удержать его в воздухе было довольно трудно, и многое зависело от мастерства пилота.


Для самых простых игрушечных вертолетов вместо радиоуправления применялось управление по инфракрасному излучению. В более продвинутых моделях — по радиоканалу. В дешевых моделях оно было двухканальным, чем дороже — тем каналов управления становилось больше.


В самых дешевых моделях на смену двухканальному управлению добавили третий, и управление стало больше походить на полноценный полет. Вот только держаться в воздухе, несмотря на множество каналов, было все еще непросто.


Обратите внимание, как трудно пилоту совладать с удержанием модели на месте:


Одна из первых моделей вертолетов по схеме Pixelito, 2007 год.

Появление миниатюрных гироскопов значительно улучшило эту ситуацию. После добавления в модель этого устройства полет становился прямо непривычно стабилен, не надо было постоянно держать пальцы на клавишах управления. Однако такие модели стоили гораздо дороже, чем вертолеты без гироскопа. Гироскопы стали применяться и в моделях вертолетов с ДВС.


Видео про модели вертолетов с гироскопами, 2011 год.

Самой популярной из моделей с гироскопом для массового покупателя была модель Syma S107, ну а самыми надежными, выдерживавшими прямые столкновения со стенами, зубы котов и бесконечные тараны мебели, наверное, являлись вертолетики фирмы Himoto.


Электровертолет с гироскопом, 2014 год

В военной области первой испытания выстрелов с радиоуправляемого вертолета стала проводить некая фирма Neural Robotics в 2006 году. Они подвесили дробовик на модель вертолета и стали исследовать поведение модели при выстрелах, а также как стрельба отражается на управлении.


Выстрел из дробовика, 2006 год

Их вертолет обладал ДВС, и этот опыт стал знаковым — он подтолкнул развитие направления ударных дронов. Сейчас военные мультикоптеры во всю сбрасывают бомбы, шпионят и наводят ракеты на цели.


Если сомневаешься — ставь больше пропеллеров!


Почти сразу после появления моделей вертолетов появились попытки создания многопропеллерных, если можно так выразиться, машин.

Углубимся в историю: откуда растут ноги у квадрокоптеров Квадрокоптер, Мультикоптер, Дрон, Вертолет, Rc, Гироскоп, Proxflyer, Pixelito, Видео, Длиннопост

Чем больше пропеллеров было в модели, тем труднее было согласовывать их работу. Тот же вертолет Chinook с картинки выше, без гироскопа колбасило при полете так, что становилось сомнительным применение двух пар винтов. Для полета же моделей с тремя и более количеством двигателей требовалась электроника, на порядок сложнее вертолетной.


Поначалу стали экспериментировать с количеством электромоторов. Это сейчас почти всегда ставится знак равенства между дроном и квадрокоптером, но на заре их появления было совсем не так.


Изначально многомоторные модели собирали исключительно энтузиасты. Почти сразу же возникла идея ставить на модели компактные камеры, которых в то время было не много, а GoPro появилась уже позже, и удачно вписалась в тренд. Камеры собирали из собственноручно припаянных контроллеров к камерам от мобильных телефонов и так далее. Конструкторы мультикоптеров подбирали материалы для их рам, экспериментировали с разными электродвигателями, стали собирать различные модули для согласованного управления пропеллерами и гироскопы, писать для этого ПО и обмениваться удачными находками друг с другом. Получалось с переменным успехом.


Пока не было надежной электроники для согласования моторов и не появились миниатюрные гироскопы, смотреть на полеты таких устройств жутковато. Здесь были и поломанные рамы, и потерянные видеокамеры, и утонувшие в водоемах дорогостоящие электронные модули. Однако год от года стабильность, дальность полета, простота управления и качество снимаемых видео постоянно возрастали.


Появились коптеры с тремя, четырьмя, пятью, шестью, восемью и более пропеллерами — соответственно, трикоптеры, квадрокоптеры, пента-, гекса- и октакоптеры.


Один из первых трикоптеров, 2010 год

И вот, после долгих экспериментов, модели стали уже летать стабильно. Можно было не бояться, что она завалится на бок при полете или что вибрация при полете будет мешать управлению.


Поначалу все ставили себе столько пропеллеров, сколько хотели, но позже каждой схеме, все же, нашлось свое применение.


Пролет квадрокоптера с камерой GoPro Hero 3 на борту через фейерверк, лучше смотреть в HD, 2014 год

Машины с тремя и четырьмя моторами стали чаще применяться для развлекательных полетов, для съемки видео, а увеличенное число пропеллеров пригодилось в коптерах для перевозки грузов, а также в тех случаях, когда от мультикоптера требуется надежность. Ведь если при отказе одного из моторов в модели вертолета неизбежно происходит его крушение, то в случае моделей с несколькими двигателями нагрузку вышедшего из строя мотора можно распределить на другие и удержать машину в воздухе. Долго не утихали споры между приверженцами трикоптеров и квадрокоптеров по поводу баланса между простотой и стабильностью полета.


Октакоптер, специально предназначенный для перевозки грузов, 2012 год

Дальнейшее развитие и перспективы


Благодаря совершенствованию бортовой электроники и использованию модулей GPS, модели научились удерживать свое положение в пространстве и постоянную высоту. На мультикоптеры стали ставить телеуправление, которое по-английски называется FPV — First Person View, вид от первого лица. С его помощью можно управлять дроном, гладя на мир через камеру, установленную на нем. В Сети почти все видео сейчас снимаются с таких дронов.


Проводятся гонки на мультикоптерах, чему способствует система управления с видом от первого лица.


Гонки на дронах с управлением с FPV, 2015 год

Позже одна компания при каком-то технологическом институте стала разрабатывать систему автоматического контроля роя мультикоптеров и добилась впечатляющих результатов: они не только смогли заставить тучи дронов летать по заданным траекториям, не сталкиваясь. Добавив к ним иллюминацию и используя отдельный мультикоптер в качестве пикселя, они смогли составлять из них объемные изображения и надписи. Свое изобретение они впервые применили в рекламе фирмы Intel.


Голограмма из дронов, 2015 год

Уже в 2011 году построили прототип мультикоптера, способного поднять над землей человека. Сейчас это направление активно развивается. Ведь для перевозки людей здесь есть преимущества перед вертолетами. Это и удобство управления, и более компактные размеры, и электричество в качестве топлива, и безопасность из-за наличия нескольких пропеллеров вместо одного-двух.


Первый мультикоптер с человеком на борту, 2011 год

Устройство дронов продолжает совершенствоваться, для них появляется все больше сфер применения. Мультикоптеры совершенствуют многие авиапроизводители, включая Boeing. Да что там Boeing — сама Почта России уже во всю экспериментирует с доставкой грузов по воздуху.


Полет на квадрокоптере с видом от первого лица, от которого захватывает дух, 2017 год.

Возможно, скоро нас ждут аэротакси, огромные пространственные трехмерные скульптуры из дронов на любом большом празднике, доставка посылок и корреспонденции вне зависимости от того, где вы находитесь, а пиццы — всего лишь за три минуты!

Показать полностью 7 17
1221

Экстремальный ховербайк доступен для предзаказа

Экстремальный ховербайк доступен для предзаказа Дрон, Мото, Вертолет, Квадрокоптер

Во время экстенсивного развития рынка транспорта и персональных средств передвижения лингвисты начинают фиксировать кризис дефиниций. Квадрокоптер — это только про небольшие дроны? А если он большой и пассажирский — как правильно? А если у него шесть винтов — секстокоптер? А если пилот сидит на нём, как на мотоцикле, то можно его называть «байк», хотя это производное от bicycle (два колеса), а у него четыре винта?


Калифорнийская компания HoverSurf представила серийный образец Hoverbike S3. Он умеет летать сам по себе (40 минут), либо с пассажиром (10—25 минут, в зависимости от любви к бургерам). Можно полностью положиться на автопилот, а можно предаться детским мечтам из Звёздных Войн и порулить самому.


Грустная новость: стоимость — $150 тыс (около 10 млн рублей). Поставки готовых ховербайков обещают уже в начале 2019 года.

Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: