-3

Мысль прилетела и не уходит уже долго (((

Доброго всем здравия. Есть дурацкий вопрос к физикам. Прошу не топить, хочется услышать аргументированный, или не аргументированный ответ.

На сколько я помню, скорость распространения света в вакууме постоянна и равна примерно 3*10^8. Так вот вопрос, может ли такое быть, что свет не может преодолеть некие силы сопротивления, или назовем это предел распространения информации во вселенной? Вспомнился просто мысленный эксперимент от нашего физика про луч света и ракету, летящую параллельно этому лучу. На ракете космонавт выходит в открытый космос и включает фонарик. Луч света на ракете равен скорости света пучка, двигающегося параллельно ракете. Скорость ракеты здесь не играет роли.

Я понимаю, что подвергать сомнению второй постулат - очень плохо с моей стороны, но что, если мы просто выяснили скорость распространения информации, за счёт скорости света?

Дубликаты не найдены

+1

А вы не можете переформулировать вопрос как-то более понятно?

Вообще, тут примерно такое дело есть, насколько я помню, есть как минимум две вещи, которые свет не может преодолеть. Одна - это всем известный горизонт событий черных дыр, а другой - это сфера Хаббла, связанная с расширением Вселенной. С черными дырами все вроде уже разжевали - на некоторой высоте от ЧД вторая космическая скорость становится выше скорости света, следовательно, никакое тело не может этой скорости достичь и покинуть окрестности черной дыры, ну и свет в том числе.

Хотя тут не все ясно. Я, например, задавался вопросом - а что, если светить фонариком в окрестностях ЧД точно вверх? Так как свет не может замедляться, он будет уходить вверх с постоянной скоростью, и, типа, должен покинуть дыру. Но я лично пришел к выводу, что это невозможно, так как из-за гравитационного красного смещения такой свет сместится настолько далеко в длинноволновую часть спектра, что фактически перестанет существовать.


Со второй, сферой Хаббла, ситуация интереснее. Ну, может, я неправильно это понимаю, если кто-то хорошо знает предмет - поправьте. Но вроде все примерно так: Как известно, чем галактики дальше от нас, тем быстрее они удаляются, енто закон Хаббла. Только не надо понимать это как обычное движение, это другое. Так вот, если между нами и некоторой далекой галактикой расстояние условно Х, и она испустила в нашу сторону свет, то когда этот свет до нас дойдет? Можно подумать, что это будет время X/c (расстояние делить на скорость света), но на самом деле пройдет больше времени, так как за то время, пока свет будет к нам лететь, пространство расширится, и свету придется в конечном итоге преодолеть большее расстояние, чем Х. Расстояние увеличивается пропорционально времени и самому этому расстоянию. Так вот, когда далекая галактика испускает свет в нашу сторону, он летит к нам, преодолевает расстояние, но оставшееся до нас расстояние постоянно увеличивается согласно закону Хаббла. Так вот, если скорость света пересиливает это увеличение, то-есть расстояние благодаря движению уменьшается быстрее, чем оно увеличивается от расширения, то тогда свет до нас в итоге долетит, но если скорость света не пересиливает этого расширения, то свет никогда до нас не долетит, ибо расстояние будет только возрастать, даже несмотря на то, что он движется в нашу сторону. И вот расстояние, с которого свет не сможет до нас долететь, и представляет собой сферу Хаббла, на этой сфере объекты удаляются со скоростью света.

Представить это можно, как поток воды, струящейся по некоторой выпуклой поверхности(вроде шара или параболоида) из фонтана в центре. В самом центре скорость потока небольшая, но по мере того, как вода утекает дальше от центра, стенки поверхности становятся все круче и вода течет по ним все быстрее. Если мы в такой поток поместим некоторую лодочку, которая будет плыть к центру, то если она близко к центру и ее мотор пересиливает скорость потока, то она может доплыть до центра, но если нет - она будет только удаляться, хотя относительно воды она будет двигаться в сторону центра.


Еще в пространстве-времени Минковского есть кажущийся горизонт событий, который возникает для движущихся с ускорением тел. Когда тело движется с постоянным ускорением, возникают области пространства, из которых свет никогда не долетит до такого тела.

+1

>это предел распространения информации во вселенной

бинго. скорость света в вакууме - предельная скорость распространения информации в пространстве. квазиобъекты же могут хоть в миллиард раз быстрее света двигаться, т.к. информации они не переносят

раскрыть ветку 7
+2

Шотакое квазиобъекты?

раскрыть ветку 2
+2

солнечный зайчик или пятно света от лазера

раскрыть ветку 1
0

Может быть тупой вопрос, но все же. Если представить что фонарик летит со скоростью света и светит в направлении движения, то какова будет скорость света излученного фонариком, по отношению к точке отсчета скорости движения самого фонарика?

раскрыть ветку 2
0

даже если забыть про то, что массивный объект не может двигаться со скоростью света? скорости света она будет равна. всегда. даже если два фотона летят навстречу друг другу, то каждый относительно каждого будет лететь со скооостью света

раскрыть ветку 1
0

Ок, спасибо.

0

Ну то что скорость света константа и не зависит от скорости источника, установлено и проверено,  экспериментально. Невозможность её преодолеть - следствие, которое выходит из математических соображений. Преодолеть то её можно но тогда масса должна быть комплексный числом.

0

Ответ элементарен: свет распространяется строго в среде, и если найдётся или появится разрыв в этой среде, то вся математика сразу же идёт лесом. Аналогично в случае искривления пространства, когда это пространство увлекается каким-то массивным телом. Доказать невозможность таких процессов принципиально невозможно, и более того, наши знания о пространстве до сих пор предельно скудны, и в любой момент может вскрыться нечто такое, что разом сделает все современные теории ничтожными.


Акустика дело хорошее, но она не отменяет возможности сверхзвука.


Бояться подвергать сомнению второй постулат и вообще ОТО с СТО совершенно незачем, потому что они созданы математиком, а не физиком, они работают строго для виртуального модельного пространства, и к реальному миру имеют строго опосредованное отношение. Математики вообще не понимают реального мира, в частности, такой вещи, как "время", почему собственно они и с лёгкостью манипулируют такими вещами. Удлиннение линеек, и так далее. Гении материализации и дематериализации. И, да, Гоблин со своей "постоянной" действительно рулит.

0

В классической физике скорость света в вакууме является существующим практическим пределом скорости материального (барионной природы) объекта.


Однако, как говорил Уитворт, "Пределом наших возможностей являются пределы точности наших измерений".


В данный момент мы не располагаем механизмами чтобы измерить скорость света в супервакууме наноструктур, скорость распространения небарионной материи, подтвердить, опровергнуть теории суперлюминального перемещения типа "трубы Красникова" или гипотезы переменной скорости света Магейжу.

0

Скорость выше скорости света бывает, но информацию с её помощью не передать. Только и всего.

раскрыть ветку 6
0

а квантовая запутанность?

но правда, там скорость света не важна.


да и просто есть сигнал, нет сигнала это уже двоичный код. пиши хоть войну и мир, хоть в коментах сри.

раскрыть ветку 5
0

Скорость передачи "запутывания" пока не установлена точно, но не меньше чем в 10^4 раз быстрее скорости света. Таким образом скорость передачи информации может быть больше скорости света.

Скорость распространения гравитации в целом определена и соответствует скорости света в вакууме.

раскрыть ветку 4
0
Есть такая штука - черная дыра. Хреновина с настолько огроменной массой, что её сила притяжения, начиная с некоторого расстояния до черной дыры, не отпускает свет.
0

Кажется я его написал. Понимаю, что корявыми языком, но пардон, что вы хотите от меня, все уже подзабылось.


может ли такое быть, что свет не может преодолеть некие силы сопротивления, или назовем это предел распространения информации во вселенной?

раскрыть ветку 13
+1

Скорость передачи "запутывания" пока не установлена точно, но не меньше чем в 10^4 раз быстрее скорости света. Таким образом уже понятно, что скорость передачи информации может быть существенно больше скорости света.


Ещё один момент: квантовая запутанность должна действовать через горизонт событий.


Заодно: скорость распространения гравитации в целом определена и соответствует скорости света в вакууме.

раскрыть ветку 11
0

Скорость передачи сигнала не может превышать С, а передача информации через запутанность невозможна и доказывается в рамках квантовой механики.

раскрыть ветку 10
0
Скорость света является скоростью света, благодаря фотону, а не наоборот, с формулой е мс2 был бы ещё значек 8 повернутый, безконечная энергия такое себе)
0

ты пересказал учебник, но не задал вопроса. Итак, какой вопрос-то?

0
Физика от Побединского? Киньте ссылку на видео там лучше объясняют
раскрыть ветку 1
-1
тут уже был пост про то как самолет повредился своими же пулями от своих же выстрелов
Похожие посты
1276

Почему замедляется время вблизи массивных планет?

Всем привет, это шестая часть обзора книги Стивена Хокинга «Кратчайшая история времени».

И сегодня мы будем пытаться понять, что же такое общая теория относительности и почему вблизи планет стрелки часов замедляются. Если тыкнуть на хокинга повыше, ещё и мультик покажут.

Общая теория относительности основана на революционном предположении что гравитация – это не обычная сила, а лишь следствие того что пространство-время не является плоским. В этой теории пространство-время искривляется любым помещённым в него предметом имеющим массу или энергию. И тела помещённые в такое пространство следуют не по круговым орбитам. Они следуют по особым линиям, которые называются геодезические. Это аналог прямых в искривлённых пространствах. Не пытайтесь сейчас это представить. Ибо мы вообразить такое не можем, наш разум ограничен тремя измерениями.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

Мы можем лишь провести аналогию с двумерным искривлённым пространством. Обычная плоскость – это пример двумерного пространства. А поверхность земли – это двумерное искривлённое пространство. Примером геодезической линии на поверхности земли – является, например, экватор. Вообще в искривлённых пространствах, геодезическая линия – это такая линия, которая определяется как кратчайшее (или наоборот самое длинное) расстояние между двумя точками. Допустим, вы решили отправиться из Москвы в Магадан. Вы можете двинуться по компасу почти строго на восток и пройти расстояние примерно 6088 км, либо двинуться по искривлённому пути и пройти всего 5921 км. На плоской карте, как вы можете видеть, геодезическая линия практически соответствует полуокружности. Т.е. если представлять поверхность земли как плоскость, то нужно двигаться по сектору, но если посмотреть на этот же путь со сторону третьего измерения, то полуокружность превращается в линию.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

В общей теории относительности тела всегда следуют по геодезическим линиям в четырехмерном пространстве-времени. В отсутствие материи эти прямые линии в четырехмерном пространстве-времени соответствуют прямым линиям в трехмерном пространстве. В присутствии материи четырехмерное пространство-время искажается, вызывая искривление траекторий тел в трехмерном пространстве.


Нечто подобное можно представить, если вообразить траекторию движения спутника пролетающего мимо планеты по прямой. Несмотря на то, что спутник двигается прямо, его проекция на поверхности планеты, будет двигаться по искривлённой траектории, напоминающей окружность.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

Расхождения общей теории относительности с законами Ньютона хоть и очень малы, но всё же есть. Особенно они заметны для планет ближе всего расположенных к солнцу. В частности для меркурия. Практическое подтверждение этих расхождений, было одним из первых доказательств общей теории относительности, для Меркурия расхождения были замечены ещё в 1915 году.


Второе волшебное свойство, вытекающее из общей теории относительности – это отклонение траектории света от прямой линии, под действием гравитации. Лучи света, тоже вынуждены двигаться по геодезическим линиям.


Ну и самое невероятное предположение – замедление течения времени около массивных тел, например нашей планеты. Вспомним что Эйнштейн в 1905 году выдвинул постулат что все законы физики протекают одинаково, для всех свободно-движущихся наблюдателей. Грубо говоря, принцип эквивалентности, общей теории распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля. В рамках нашего ролика, отбросив сложности, можно сказать так: в достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.


Что это означает простыми словами. Представьте, что вы находитесь в лифте посреди пустоты. Лифт неподвижный, нет ни верха ни низа. Он просто висит в пустоте. И вот он начинает двигаться с постоянным ускорением. Вы ощущаете вес, одна из стенок лифта превращается в пол. И если вы уроните яблоко – оно упадёт на пол ровно так же, как если бы вы находились на земле. Эйнштейн понял, что, подобно тому как, находясь в вагоне поезда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания и стал принцип эквивалентности.


Теперь мы готовы перейти к другому мысленному опыту. Представьте что мы находимся на борту огромной, летящей в космосе, ракеты. Для простоты вообразим, что ракета настолько большая, что свету требуется целая секунда, чтобы пересечь её сверху донизу. Ну и в ракете у нас будут два наблюдателя. Один в носу ракеты, другой в самом низу, у двигателей. У обоих наблюдателей есть совершенно одинаковые часы, ведущие отсчёт секунд.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

Верхний наблюдатель, дождавшись тиканья часов часов, даёт сигнал нижнему наблюдателю, а спустя ровно секунду, ещё один. Нижний наблюдатель зарегистрирует эти сигналы с таким же интервалов времени, какой был у верхнего – одна секунда.


А теперь предположим, что наша ракета ускоряется. Поскольку корпус ракеты двигается вверх, то свету требуется пройти меньшее расстояние до низа ракеты, и второй наблюдатель получит сигнал раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше. Так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.


Именно этот принцип и лежит в основе изменения хода часов у разных наблюдателей при ускоренном движении.


В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, даже если ракета не ускоряется, а, например, стоит на стартовой площадке на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!


Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга (об этом можешь почитать в предыдущем посте/посту), общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект. Законы движения Ньютона положили конец идее абсолютного положения в пространстве. Теория относительности, как мы видим, поставила крест на абсолютном времени.


Кстати для нас - людей тоже верен данный принцип. Он известен как парадокс близнецов. Если один из близнецов живёт на вершине горы, а второй у подножия, то первый будет стареть немного быстрее второго. Потому что для второго близнеца, гравитационное поле немного сильнее, а следовательно время течёт медленнее. На нашей планете, это расхождение ничтожно мало, но оно существенно увеличится, если один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

До 1915 года, люди воспринимали время как нечто абсолютное и не изменяемое, но Эйнштейн перевернул всё с ног на голову. Время стало вдруг динамической переменной, которое может меняться в зависимости от наших действий. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят. За сто лет прошедших со времени открытия общей теории относительности человечество радикальным образом пересмотрело свои взгляды на картину мироздания. Как именно ты узнаешь в следующих роликах.

Показать полностью 4
993

Лженаука в СПб!

18-19 мая, в культурной столице России - Санкт-Петербурге, состоится "выступление" лжефизика Катющика В.Г. Он "опроверг" Ньютона, Хокинга, Эйнштейна, Ландау и многих других! Уровень идиотизма на квадратный метр будет зашкаливать. Приходите, не пожалеете!

https://www.sci-tribunal.org/  И все это мракобесие будет проводится от имени Хакасского Технического Института.


А если серьезно, вопрос: нельзя ли этому как то законно воспрепятствовать?

112

Чёрные дыры и краш-тест общей теории относительности

Чёрные дыры и краш-тест общей теории относительности Yes Future, Теория относительности, Альберт Эйнштейн, Черная дыра, Физика, Длиннопост

Сегодня астрономы Европейской Южной Обсерватории собираются представить миру первую в истории фотографию горизонта событий (проще говоря границы) черной дыры Стрелец А. Этот объект хоть и находится в самом центре нашей галактики Млечный путь, но от Земли до него целых 25 000 световых лет.

Событие достаточно громкое — вероятно, теория относительности на массивных объектах будет подтверждена или опровергнута.

В каком-то смысле чёрные дыры всё ещё объекты гипотетические. Но астрономы практически не сомневаются в их реальности — получено огромное количество косвенных доказательств их существования. Сфотографировать чёрную дыру (да и вообще увидеть) невозможно — эти объекты поглощают всё электромагнитное излучение. А это значит, что ни радиотелескоп, ни оптический не могут её увидеть.

Но чёрные дыры “выдаёт” их окружение. Их гравитация притягивает пыль и газ, поэтому на границе черной дыры материя образует аккреционный диск. Атомы там двигаются с невероятной скоростью. На таких скоростях материя настолько раскаляется, что начинает излучать рентгеновское и другие мощные излучения.

Учёные из Европейской южной обсерватории обещают нам показать тень чёрной дыры. По форме тени чёрной дыры, можно будет определить расходится ли теория гравитации с реальным положением дел.

Если тень будет иметь заранее смоделированную форму, то это будет означать, что общая теория относительности вблизи чёрной дыры сохраняется. А вот самые небольшие отклонения покажут, что теория гравитации Эйнштейна имеет определённые оговорки.
Это создаёт огромный простор для физиков теоретиков для создания новых теорий, в которые впишется поведение чёрных дыр.

Можно сказать происходит самый сумасшедший краш-тест во Вселенной. На кон поставлено будущее современной физики.

Официальный доклад учёных начнётся сегодня в 17:00 по московскому времени.
Ссылка на трансляцию:
https://www.youtube.com/watch?v=Dr20f19czeE&feature=youtu.be

Как думаешь, мы на пороге новых открытий?

Чёрные дыры и краш-тест общей теории относительности Yes Future, Теория относительности, Альберт Эйнштейн, Черная дыра, Физика, Длиннопост
Показать полностью 1
608

Теория относительности. Классические ошибки понимания классической физики.

Этот пост мотивирован к написанию большей частью благодаря твёрдой уверенности отдельных продвинутых физик-кунов из числа пикабушников в … теории относительности. Если точнее не в самой теории, а её роли в современной физике. Итак, о священных коровах.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Большинство из нас в общих чертах представляет теорию относительности как достаточно заумную фигню, в которой лучше не разбираться, дабы не сломать мозг. При этом основные положения теории про скорость света, релятивистские эффекты и прочие плюшки принимаются как данное, то есть то, с чем лучше не спорить или до чего лучше не докапываться. Ибо понабегут, докопаются и засмеют, если не зачмырят. Тем не менее, суть самой теории, её центральная идея остаётся непонятой в той же степени, в какой непонятым остаётся оператор дивергенции из высшей математики. А ведь по сути и то и другое – не нечто сверхсложное. Я бы сказала даже наоборот – весьма и весьма простые вещи заложены в основу «великих» теорий.


Итак, кратенько, суть теорий относительности.


Хотя в одном из пердыдущих постов уже писала, повторюсь. Откуда ноги растут: электромагнитные волны. Все. Радио, микроволновки, радары, видимый свет, рентгеновское излучение и гамма-лучи. Всё, что имеет электромагнитную природу и поддаётся описанию волновой природы. Мы знаем, что волна – это колебание. Колебание чего-то, колебание какой-либо среды. Звук – колебание молекул воздуха, морские волны – колебания воды, а электромагнитные… А кстати, что колеблется в электромагнитной волне? Какая среда получает изменяющиеся мгновенные значения электрического и магнитного поля, чтобы получилась волна? «А вот хрен знает, но это очень интересный вопрос!», подумали в своё время учёные и стали искать ответ.


Сначала придумали эфир. Некую субстанцию, пронизывающую всё, и способную передавать электромагнитные волны. Придумать-то придумали, а ведь его ещё найти надо. Искали. Не нашли. Ну нет эфира. Мало того, что его нет, так у электромагнитных волн ещё одну фишку нашли: они распространяются с одной и той же скоростью. Всегда. Независимо от того, двигается ли источник или нет. Как бы мы не мерили скорость. Как бы не двигались при этом сами и как бы быстро не двигался источник, скорость света всегда будет одна и та же. Нет сложения скоростей! Ньютоновская механика идёт в жопу, заставляя физиков не по детски охреневать плакать от бессилия.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Вот тут то на сцену выходит знаменитый еврей и рассказывает всем правду со своими догадками. Оказывается, на самом деле всё выглядит так, будто время в разных системах отсчёта идёт по-разному. Если система отсчёта движется, то время в ней замедляет течение. И как бы мы в этой системе не пытались измерить скорость света, замедление времени даст нам результат, равный той же константе с, которую мы получили бы, не двигаясь никуда. (Маленькое уточнение: с – максимальная скорость любых взаимодействий, в том числе электромагнитных)


Первая главная идея – идея специальной теории относительности: нет никакой общей системы отсчёта. У каждого – своя. Системы отсчёта не равны. Именно в этом суть идеи: всё относительно. События, движение, процессы, взаимодействия - всё что угодно происходит и измеряется относительно чего-то. Относительно того, кто измеряет, например. Да, системы отсчёта равнозначны, в них действуют одни и те же законы, действуют одинаково, но сами системы не равны друг другу.


Вторая главная идея – идея общей теории относительности: нет никакой гравитации, это всё искривление пространства. Все гравитационные взаимодействия – следствия влияния инерционной массы на пространство рядом с ней. Нет воздействия одного тела на другое посредством гравитации, это пространство искривляется так, что одно тело "притягивает" другое (и наоборот). Наличие массы даёт геометрическое искажение пространства. Прямая линия нихрена не прямая, нам только кажется.


Это самая суть, если в двух абзацах. Теперь к ошибкам.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Первая, самая распространённая ошибка. Теория относительности (и общая и специальная) – это не теория, объясняющая причины наблюдаемых явлений. По сути – это математическая модель, набор уравнений, позволяющих просчитать то или иное наблюдаемое явление. Например, релятивистское изменение массы или времени. Уравнения основаны на наблюдениях за явлениями и лишь описывают их. Сама по себе механика явлений для ТО не доступна. Когда я спрашиваю, почему время в движущейся системе отсчета замедляется, мне в ответ приводят формулу релятивистского замедления времени. Но разве время смотрит на эту формулу, говорит «О! Чуть помедленнее, кони!» и затем изменяет свой бег? Что именно заставляет процессы замедляться? Почему это происходит?

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Теория относительности на этот вопрос ответа не даст.


Вторая по распространённости, но первая по важности ошибка. Теория описывает наблюдаемые процессы. Все эффекты, которые ей предсказываются/наблюдаются в действительности можно описать фразой «выглядит так, как будто…» и дальше соответствующее математическое выражение. Однако «выглядит как будто» и «на самом деле так» - это две большие разницы. В случае с теорией относительности данный момент вообще принципиален. Например, из уравнения релятивистского замедления времени следует, что на скорости света время просто останавливается. Для света времени нет. Фотон не знает о времени, которое затратил на свой полёт. Так утверждает теория. Но так ли это на самом деле? Если бы для фотона время не существовало само по себе, мы бы его не наблюдали. Действительно, остановка времени означает запрет на все процессы взаимодействия, ибо они происходят во времени. Фотон не поглощался бы веществом и не замедлял свою скорость в среде – ведь для него не существует времени, он «не знает» где распространяется.


Повторюсь на всякий: теория относительности отлично описывает эффекты, но не стоит распространять её дальше положенного.


Третья ошибка, связанная со второй: постулаты теории относительности справедливы для неё.

Любой постулат нужен для того, чтобы на него можно было опираться при построении теории. Как правила в игре: используя их, мы можем посмотреть, до какого итога доиграемся. В любой теории постулаты используются для того же – на основе их посмотреть, что получится в итоге. Какие математические модели, какие уравнения.

Однако как только мы меняем саму игру, глупо следовать в ней правилам старой игры. Кое-что можно, конечно, заимствовать, но тогда это будет не новая игра, а обновлённая старая. Если мы хотим новую теорию, тогда постулаты старой надо рассматривать не как незыблемые правила для новой.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

В качестве ярчайшего примера могу привести непреодолимость скорости света как следствие постулата одинаковости её в разных системах отсчёта. Мы знаем, что двигаться со скоростью выше скорости света нельзя. «Нельзя и всё тут». А иначе энергия+масса движущегося тела становится мнимой (из уравнения коэффициента Лоренца), время вообще ведёт себя хрен знает как и вся математика разваливается. Цимес кроется как раз в двух последних словах: математика разваливается. Но математика – это следствие наблюдения, закон, имитирующий явления. Это не причина для физического процесса. С другой стороны, природа даёт нам прозрачнейшие подсказки существования движения на сверхсветовых скоростях, пусть и в слегка необычном варианте.


Смотрите на звёзды. На самые дальние структуры типа квазаров, протогалактик и так далее. Всё, что мы наблюдаем, находится в радиусе примерно 13,2 млрд. св. лет от нас. Дальше мы не видим, просто не можем. Но то, что мы видим – история развития вселенной – показывает нам далёкое прошлое. То, что происходило как раз те самые 13,2 млрд. лет назад. Возникает вопрос: свет шёл к нам 13,2 млрд. лет, значит уже тогда, давным-давно, где-то там, далеко-далеко уже что-то было. Но как же большой взрыв? Он ведь произошёл в достаточно ограниченной области. Как вещество успело преодолеть за очень-очень короткое время колоссальное расстояние в 13,2 млрд. св. лет, чтобы потом начать нам светить? Значит, скорость движения этого вещества была выше скорости света?

Была. Во много-много раз больше. И для некоторого вещества она по сей день остаётся гораздо большей, чем скорость света. Мы ни за что не увидим это вещество, если не научимся перемещаться быстрее света сами. В чём секрет? Вещество перемещается вместе с расширением пространства.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

На скорость расширения пространства нет ограничения в виде максимальной скорости взаимодействий. Оценочные размеры вселенной не 13,2 млрд. св. лет, а все 49,5 (нет, уважаемые пикабушники, с вашими 49,5 см. это не связано).

Можно сказать, что сверхсветовое перемещение как вариант классического варпа был реализован нашей вселенной на самом раннем этапе развития и продолжает существовать до сих пор. Причём, чем дальше (и во времени и в пространстве) – тем быстрее будет этот варп.


Четвёртая ошибка: теория относительности небезгрешна.


Здесь имеется в виду внутренняя непротиворечивость, которая просто таки положена любой хорошей физической теории. В ТО внутренних противоречий достаточно, чтобы не воспринимать её как абсолютно верную даже в собственных рамках.

Один из примеров я уже приводила в предыдущем посте: так называемая гравитационная сингулярность. По сути, это такое явление, которое должно наблюдаться при очень-очень больших массах (но в действительности не наблюдается, хотя массы есть). Если мы берём ну очень большую массу, она искажает пространство настолько, что кривизна его по расчётам становится бесконечной. А что такое бесконечная кривизна в ТО? Бесконечное ускорение. Это значит, что любое тело за любой сколь угодно малый промежуток времени приобретает скорость выше скорости света.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

В целом обе теории относительности оказались весьма важны для развития физики и построения уже более глубоких теорий всего, так что заслуги их я ни в коей мере не умаляю. Просто будьте аккуратнее в суждениях.


Ну а напоследок предлагаю выбрать тему для следующего поста:


Почему скорость света такая, какая есть.


В чём суть теории струн (М-теории) и каково её место в физике.


Непустое «пустое» пространство – вакуум.


Применение ландшафта теории струн при проектировке гиперсветовых двигателей.


Спасибо, мы не нуждаемся в ваших услугах.


зы: баянометр поворчал на картинки, но не сильно.

Показать полностью 6
742

Физика

Физика Физика, Аристотель, Галилео, Ньютон, Квантовая физика, Теория относительности, Учебник, Альберт Эйнштейн

Аристотель сказал кучу неправильных вещей. Галилей и Ньютон все починили. Потом Эйнштейн снова все сломал. Теперь мы почти все поняли, кроме маленьких вещей, больших вещей, горячих вещей, холодных вещей, быстрых вещей, тяжелых вещей, темных вещей, турбулентности, и понятия времени.

189

Что значит m в формуле E = mc^2

Продолжение.
Часть 1
Часть 2
Часть 3

Атом водорода имеет меньшую массу, чем сумма масс отдельно взятых протона и электрона. Мы знаем это точно, иначе бы в нашей Вселенной не было бы звёзд, потому что именно благодаря этому «дефекту массы» и возможны ядерные и термоядерные реакции, однако, как может что-то иметь массу меньшую, чем сумма масс его составных частей?

Разумеется, из за этого:

Что значит m в формуле E = mc^2 Масса, Энергия, Теория относительности, Физика, Эйштейн, Длиннопост

Давайте посмотрим, что же на самом деле означает самое знаменитое уравнение в истории физики.

Это уравнение было опубликовано А. Эйнштейном 27 апреля 1905 года в работе под названием «Зависит ли инерция тела от содержащейся в нем энергии?», где заключается: « … если тело отдаёт энергию L в виде излучения, его масса уменьшается на L/c² ». Иными словами, в оригинале, уравнение имело вид:

m = L/c²

(в оригинальной работе Эйнштейи использовал для энергии обозначение L)
Русский перевод здесь, всего 3 странички, можно осилить.

Эйнштейн использовал такую запись, потому что краеугольным камнем современной физики является понимание того, что такое масса.

Мы часто слышим утверждения вроде масса – одна из форм энергии, или масса – «замороженная» энергия, или (в наихудшем виде) масса может быть преобразована в энергию. На самом деле ни одно из данных утверждений не верно на 100%.

Чтобы понять, что же именно значит E = mc², давайте рассмотрим явления, которые не укладываются в наше повседневное и обыденное представление о массе.

Вот, к примеру, одно из них: если два объекта состоят из абсолютно идентичных составных частей, данные объекты не обладают идентичной массой.

(a + b + c) ≠ (b + c + a)

Масса чего-либо созданного из более мелких составных частей не является суммой масс этих частей:

m1 ≠ ma + mb + mc
m2 ≠ ma + mb + mc

Общая масса составного объекта зависит во-первых, от того, как составные части расположены по отношению друг к другу, во-вторых – от того, как они двигаются внутри данного объекта.

Вот конкретный пример: представьте себе пару заводных механических часов, чьё строение идентично до атомной структуры. Единственная разница между ними – то, что пружина в одних часах взведена, и часы идут, а пружина вторых часов расслаблена, и часы стоят. Согласно Эйнштейну, масса тикающих часов больше, потому что шестерёнки и стрелки находятся в движении и их кинетическая энергия больше. Кроме того, пружина в этих часах заведена и имеет большую потенциальную энергию. Между движущимися деталями этих часов возникает трение, которое их слегка нагревает, и атомы, из которых состоят эти часы, двигаются более интенсивно. Тепловая энергия – это та же кинетическая энергия атомов, из которых состоят наши часы.

Так что же говорит нам уравнение E = mc²? То, что вся тепловая, кинетическая и потенциальная энергия часов добавляется к их массе. Мы просто складываем всю эту энергию, делим на скорость света в квадрате и получаем ту «лишнюю» массу, которая добавилась к идущим часам.

Так как величина скорости света в квадрате – астрономически огромное число, полученное нами значение даст прибавку порядка атто-грамм или 1×10⁻¹⁸ доли процента (0,000000000000000001%), однако эта разница в массах присутствует и может быть объективно-измерена в лабораториях.

Этот пример показывает нам, что масса – это не характеристика количества материи в объекте. В повседневной жизни мы просто не замечаем разницы.

Для того, чтобы среди физиков не возникало недопониманий, современная наука оперирует понятием «масса покоя» или «инвариантная масса», то есть – масса недвижимого объекта. Само слово «покоя» часто не произносят, но когда говорят о массе, всегда подразумевают «массу покоя», так как только о данной величине все независимые наблюдатели из любой системы отсчёта смогут договориться (по аналогии с тем, как пространственно-временные интервалы между событиями являются единственной объективной характеристикой, о которой могут договориться независимые наблюдатели).

Из классической ньютоновской механики мы знаем, что полная энергия движущегося объекта растёт, что выражается формулой кинетической энергии E = mv²/2, путём нехитрых преобразований мы можем получить понятие релятивистской массы – массы движущегося тела:

Что значит m в формуле E = mc^2 Масса, Энергия, Теория относительности, Физика, Эйштейн, Длиннопост

Таким образом, релятивистская масса является коэффициентом пропорциональности между импульсом и скоростью тела:

Что значит m в формуле E = mc^2 Масса, Энергия, Теория относительности, Физика, Эйштейн, Длиннопост

Поскольку импульс тела так же вносит свой вклад в полную энергию (и релятивистскую массу), полная версия уравнения Эйнштейна выглядит следующим образом:

Что значит m в формуле E = mc^2 Масса, Энергия, Теория относительности, Физика, Эйштейн, Длиннопост

Определённая таким образом масса является релятивистским инвариантом, то есть она одна и та же в любой системе отсчёта. Если мы согласимся считать скорость в единицах скорости света, то данную формулу в специальной теории относительности можно упросить до:

Что значит m в формуле E = mc^2 Масса, Энергия, Теория относительности, Физика, Эйштейн, Длиннопост

Как видно из приведённых формул, релятивистская масса тела растёт с увеличением скорости. Как следствие — по мере приближения к скорости света потребуется всё большая и большая сила для дальнейшего увеличения скорости. Релятивистская масса стала бы бесконечно большой при достижении этого порога, что так же означает, что до придания телу такой скорости, потребуется бесконечно большое усилие.

В общей теории относительности всё ещё больше усложняется, но для нас сегодня m в формуле E = mc² означает массу покоя. Полную же массу можно считать индикатором того, насколько сложно будет придать объекту ускорение, либо какое гравитационное воздействие будет испытывать данный объект.

Вернёмся к примерам, вот ещё один: как только вы включите фонарь, его масса немедленно начнёт уменьшаться. Свет, который исходит от фонаря, уносит энергию, которая ранее была запасена электрохимическим образом в батарее и добавлялась к полной массе фонаря. Наше солнце – в принципе, тот же фонарь, только огромных размеров. Оно теряет около 4 миллионов тонн массы каждую секунду и только его огромные размеры спасают нас от гибели в холоде и тьме, потому что эта масса – лишь 1×10⁻²¹ доля полной массы Солнца (за почти десять миллиардов лет своего существования, Солнце истратило лишь 0,07% своей массы).

Так что же означают слова, что солнце преобразует массу в энергию? Речь не идёт ни о какой алхимии. Вся энергия солнечного света – результат преобразования иной формы энергии – кинетической и потенциальной энергии частиц, из которых состоит наше Солнце. Те 4 миллиона тонн, которые теряет наше Солнце – лишь результат уменьшения потениальной и кинетической энергии частиц, из которых оно состоит.

Всё, что мы взвешиваем на весах – лишь энергия частиц, мы просто никогда этого не замечали.

Ещё пример: представьте, что вы стоите с фонариком в руке внутри закрытого ящика с зеркальными стенками, который, в свою очередь, стоит на больших весах. Уменьшится ли показание весов, если включить фонарик? Ответ – нет, не уменьшится. Хотя масса фонаря и уменьшится, масса всего ящика останется неизменной, так как энергия фотонов, которые покинули фонарик, не покинет пределы ящика, и хотя у фотонов масса покоя отсутствует, их энергия включается в массу покоя ящика.

В каждом из рассмотренных примеров целый объект имел большую массу, чем масса его составных частей, но в начале этого поста было сказано, что масса атома водорода меньше, чем сумма масс протона и электрона, из которых он состоит. Почему так?

Потому что потенциальная энергия может быть и отрицательной. Давайте обозначим потенциальную энергию протона и электрона, находящихся бесконечно далеко друг от друга за нулевую. В силу того, что они притягиваются друг к другу, чем меньше между ними расстояние, тем меньше будет их потенциальная энергия (точно так же, как потенциальная гравитационная энергия уменьшается по мере приближения к поверхности земли). Если они сблизятся до размеров атома водорода, их потенциальная энергия меньше нуля. Хотя электрон в атоме водорода и обладает ещё кинетической энергией, так как он движется вокруг протона, суммарная энергия системы протон-электрон всё равно будет отрицательной, а следовательно, согласно нашей формуле m = E/c² будет так же меньше нуля.

Именно поэтому масса атома водорода меньше, чем сумма масс его составных частей. На самом деле, масса любого атома в периодической таблице будет меньше, чем сумма масс протонов, нейтронов и электронов, из которых они состоят.

Что значит m в формуле E = mc^2 Масса, Энергия, Теория относительности, Физика, Эйштейн, Длиннопост

То же самое касается и молекул. Молекула кислорода O₂ весит меньше, чем два отдельных его атома, так как суммарная потенциальная и кинетическая энергия этих атомов становится меньше нуля, когда они образуют химическую связь друг с другом.

А что насчёт самих протонов? Они состоят из частиц, называемых кварки, и их суммарные массы примерно в 100 раз меньше массы протона. Так откуда же у протона масса? Она «добирается» из глюонов (или, если упрощённо – потенциальной энергии кварков).

Откуда же берётся масса элементарных частиц (электронов или кварков)? По крайней мере в стандартной модели физики частиц, у них нет составных частей (поэтому они и называются элементарными). С определёной точки зрения (и точки зрения до-Эйнштейновской физики), их массы элементарны, однако, и об их массе можно судить, как о некоей форме потенциальной энергии. Например, можно рассматривать их массу, как потенциальную энергию взаимодействия электронов и кварков с полем Хиггса, а так же с электрическими полями, которые они сами же и порождают, либо, в случае с кварками – потенциальная энергия взаимодейтсвия с их глюонными полями.

Даже классический пример так называемого «преобразования массы в энергию» – аннигиляцию материи и антиматерии концептуально сводится к тому же преобразованию одного вида энергии к другому, и вам не требуется алхимия по преобразованию массы в энергию для его объяснения.

Основная идея данного поста в том, что масса – понятие виртуальное. Это всего лишь свойство, свойство, которое проявляет энергия, поэтому некорректно думать, что масса может являться мерой количества материала в том или ином объекте, на самом деле, это характеристика количества энергии, которой данный объект обладает. Значение именно этой характеристики мы получаем, когда взвешиваем тот или иной объект.

Показать полностью 5
77

Специальная теория относительности. Часть 3 Лирическое отступление про скорость света

Продолжение. Часть 1, часть 2.


В первой части своего повествования, я упомянул как аксиому тот факт, что скорость света постоянна и не зависит от системы отсчёта, однако, не рассказал, зачем вообще нашей вселенной понадобилось ограничивать максимальную скорость передвижения. Данный пост я хочу посвятить исключительно ответу на вопрос


ЗАЧЕМ ВСЕЛЕННОЙ СКОРОСТЬ СВЕТА И ПОЧЕМУ СВЕТ ЗДЕСЬ НИ ПРИ ЧЁМ?


Имеет ли скорость света какое-либо отношение собственно к свету? Что же делает скорость света такой «специальной», почему мы наблюдаем такой «Вселенский» заговор, препятствующий всем фотонам (да что там фотонам – чему угодно!) перемещаться быстрее, чем предельные 299 тыс. км/с?


Ответ — данное утверждение ложно. Вернее оно перевёрнуто с ног на голову. Вселенная не устроена так, чтобы поддерживать скорость света постоянной, в действительности пространству-времени наплевать на свет, оно и сейчас расширяется быстрее скорости света и при этом ещё и продолжает ускоряться. Вселенское ограничение скорости имеет более глубокие корни.


В предыдущем посте я уже затронул причинность при рассказе о пространственно-временных интервалах. Причинно-следственные связи — это единственное, о чём могут договориться любые наблюдатели, находящиеся в любой системе отсчёта.

Но почему у причинности имеется максимальная скорость? И почему эта скорость случайно совпадает со скоростью света в вакууме?


Давайте разбираться, и начнём мы издалека, с 1632 года, когда Галилео Галилей предстал перед судом Святой Инквизиции за его поддержку в своей книге идей Коперника о гелиоцентрической системе мироустройства. Однако, кроме всего прочего, в своей книге Галилей так же упомянул «принцип относительности», который его словами звучал примерно так:

Специальная теория относительности. Часть 3 Лирическое отступление про скорость света Скорость света, Теория относительности, Научпоп, Физика, Длиннопост

Галилео заявлял, что не только нет никакого особенного места, но и нет никакой особенной скорости, которая могла бы повлиять на исход «механического эксперимента» в системе, которая движется прямолинейно и без ускорения. Это одно из великих предвидений Галилея было позднее кодифицировано другим гигантом — Исааком Ньютоном в своих «законах».


Перенесёмся на 200 лет позднее для того, чтобы встретить ещё одного героя нашего рассказа – Джеймса Кларка Максвелла, который умудрился вплести эти законы в 4 уравнения, элегантно описывающие весь феномен электромагнетизма.


К концу 19 века у нас были законы Ньютона, уравнения Максвелла, ещё несколько теорий, и общее ощущение того, что физика закончилась и вселенная познана... кроме двух маленьких проблемок — первые намёки на квантовую природу Вселенной и небольшую сумятицу, которые уравнения Максвелла внесли в Галилееву относительность. Вообще, и Ньютонова механика негласно опиралась на предположение, что скорость света бесконечно велика, а если бы это было действительно так, то это повлекло бы весьма серьёзные осложнения, однако, давайте разберёмся с уравнениями Максвелла, вот они:

Специальная теория относительности. Часть 3 Лирическое отступление про скорость света Скорость света, Теория относительности, Научпоп, Физика, Длиннопост

Эти уравнения настолько значимы, что отлиты в бронзе на его памятнике. Не пугайтесь, примерный смысл этих уравнений выражается следующим образом:


1. Электрический заряд является источником магнитной индукции (теорема Гаусса).

2. Магнитный заряд отсутствует (теорема Гаусса для магнитной индукции)

3. Изменение магнитной индукции порождает вихревое электрическое поле (закон индукции Фарадея)

4. Электрический ток и изменение электрической индукции порождают вихревое магнитное поле (закон Ампера - Максвелла).


Тот перевёрнутый треугольник называется "набла" - это просто индикатор особой операции, чуть сложнее, чем операторы + или —.


Но будем проще. Позовём наших друзей, Алису и Бориса, которые путешествуют на железнодорожной платформе. При этом Алиса ещё катается на скейте... и она электрическая, нам ведь нужно что-то электрически-заряженное, чтобы генерировать магнитное поле. Выглядит это как-то так:

Специальная теория относительности. Часть 3 Лирическое отступление про скорость света Скорость света, Теория относительности, Научпоп, Физика, Длиннопост

Перемещаясь по платформе, Алиса генерирует магнитное поле, и мы, зная уравнения Максвелла, можем посчитать силу данного поля, зная полную скорость Алисы (v1 + v2). Мы так же можем прямо измерить эту силу при помощи физического эксперимента.


Борис — кот учёный и тоже умеет считать. Наблюдая за перемещениями Алисы со скоростью v1 он так же посчитает силу магнитного поля... и что-то не сходится. Очевидно же, что сила магнитного поля, которое генерирует Алиса, одна и та же. Мы измеряем не само поле, а его эффект — силу Лоренца — зависимый от скорости баланс между электрическим и магнитными полями. Оба поля работа работают, чтобы создать эту силу (полная сила электромагнитного поля на движущийся со скоростью v заряд q, в которую вносит свой вклад как электрическое Е, так и магнитное B поля:


F = q(E + [v × B])


Причём, сила эта не зависит от системы отсчёта. Это наводит нас на мысль о том, что электромагнитная сила каким-то образом связывает скорость и пространство-время. Как же нам выявить эту связь? Борису и нам нужна какое-нибудь волшебное преобразование, позволяющее переводить уравнения Максвелла из одной системы отсчёта в другую.


Таким примером могло бы служить Галилеево преобразование, которое просто говорит о том, что скорости складываются, а пространство и время не зависят от скорости. То же самое преобразование использует Ньютоновская механика, и мы только что применили их для преобразования уравнений Максвелла к скорости Алисы.


x' = x – vt


Но внезапно оказалось, что к уравнениям Максвелла нельзя применить Галилеево преобразование таким образом, чтобы они выдавали непротиворечивые результаты, иными словами они НЕ ИНВАРИАНТНЫ!


Вроде бы они и выдавали правильные значения для низких скоростей, но приводили в полный хаос векторные составляющие полей, а для высоких скоростей эти значения... нет, просто забудьте о высоких скоростях! Физика совсем поломалась!


После преобразований, линии напряжённости магнитного поля будут выглядеть как-то так:

Специальная теория относительности. Часть 3 Лирическое отступление про скорость света Скорость света, Теория относительности, Научпоп, Физика, Длиннопост

Так что же, Максвелл был неправ? Нет, как выяснилось, неправ был Галилей.


Преобразования, на которых работала Ньютоновская механика, были неправильными. Единственные работающие преобразования, были Лоренцевы (о них я рассказывал в первой части), но до сего момента они были чуть больше, чем некая математическая абстракция для преобразования поворота в четырёхмерном пространстве (к слову, к современному виду их привёл французский математик Анри Пуанкаре за 5 лет до Эйнштейна в 1900 года, который об этой работе не знал и сделал то же самое лишь в 1905).


Лоренцевы преобразования были известны задолго до Эйнштейна. Кому интересно узнать больше, на Википедии есть хорошая статья про то, как их можно вывести самостоятельно в домашних условиях.


Вкратце, история сводится к следующим логическим выкладкам:


Давайте честно признаем, что сложение скоростей (v1 + v2) не работает! Необходимо другое преобразование!


Законы физики работают неизменно, вне зависимости от положения, ориентации или скорости. Нам абсолютно не важно, где находится Алиса, в каком направлении, и с какой скоростью она движется. Это должно быть так — Земля вертится вокруг своей оси, вращается вокруг Солнца, Солнце вращается вокруг центра Млечного пути, наше положение, ориентация и скорость меняются кардинальным образом, в зависимости от нашей точки зрения, но наши физические эксперименты выдают одни и те же результаты, несмотря на это.


Теперь давайте сделаем ещё одно смелое предположение — что Вселенная устроена логично!


Добавим так же требование, что нам постоянно необходимо делать преобразования между разными системами отсчёта туда и обратно и получать непротиворечивые результаты — мы должны иметь возможность пройти путь преобразований при переходе из в системы отсчёта Алисы к системе отсчёта Бориса, затем – в нашу систему отсчёта, откуда мы их наблюдаем, а затем повторить весь путь назад к Алисе и получить те же результаты, с которых мы начали, при этом изменяя лишь один параметр — скорость.


И наконец, добавим ко всему этому щепотку алгебры — получим преобразования Лоренца. Единственное преобразование, которое отвечает всем нашим требованиям!


Эйнштейн заподозрил, что поскольку данные преобразования столь хорошо справляются сзадачей, возможно, они описывают некие фундаментальные законы самой природы пространства-времени, природы нашей реальности.


Однако, в формуле преобразования Лоренца присутствует некая константа c, значение которой нам неизвестно.

Специальная теория относительности. Часть 3 Лирическое отступление про скорость света Скорость света, Теория относительности, Научпоп, Физика, Длиннопост

Физический смысл этой константы – вселенский скоростной предел. Почему? Потому что без неё константы, преобразования Лоренца бы попросту не работали, данная константа — необходимый элемент формулы преобразования, без которого обойтись невозможно. Преобразования Галилея — это лишь частный случай преобразований Лоренца, гдс c = ∞. И действительно, с точки зрения симметрии и относительности, константа c действительно могла бы быть бесконечной.


При помощи преобразований Лоренца, наконец, позволили получить инвариантные версии уравнений Максвелла (согласованное значение для магнитного поля Алисы, вне зависимости от системы отсчёта: нашей, Бориса, либо её собственной), без них, мы бы не смоли дать описания законам электромагнетизма — это стало ещё одним подтверждением того, что данные преобразования корректно описывают окружающую нас действительность.


Однако, не любое значение константы с нам подойдёт. Данное значение должно быть комбинацией значений фундаментальных констант в уравнениях Максвелла, иными словами, для того, чтобы электрические законы и законы магнетизма работали, нам так же необходимо ограничение — совершенно определённое значение константы c в формуле преобразования Лоренца.


Так что же это за значение? Да можно просто найти его комбинируя результаты физических экспериментов с электромагнитными полями, а затем — применять к этим значениям преобразования Лоренца туда и обратно с разными значениями с. Когда после преобразования из одной системы отсчёта в другую и обратно результаты совпадут с исходными, это и будет требуемым нам значением. Но подождите... ВНЕЗАПНО оказывается, что значение, которое мы нашли, в точности совпадает с измеренной скоростью распространения электромагнитных волн — скоростью света.


Ещё со времён Ньютона мы знаем, что масса обременяет движение, если же у чего-либо отсутствует масса, то нет и никаких препятствий двигаться настолько быстро, насколько это вообще возможно. Фотоны, гравитационные волны, глюоны — всё, что не имеет массы движется в нашей Вселенной с максимально-возможной скоростью. Соответственно, и для передачи информации (взаимодействия) между двумя уголками Вселенной, максимальной скоростью будет являться скорость распространения электромагнитных волн в вакууме.


Иными словами, скорость света, это максимальная скорость распространения причинно-следственных связей — скорость причинности.


Взгляните на рисунок — это трёхмерное представление уже знакомой нам диаграммы Минковского. К нашему настоящему моменту (красная стрелка показывает наблюдателя) из прошлого сужается воронка — наш «световой конус прошлого». На наше текущее настоящее может повлиять только событие, которое попадает в рамки данного конуса — этот конус — наш «горизонт событий». В будущее воронка расходится и включает в себя все события, на которые мы в состоянии повлиять из настоящего момента. Если событие находится за пределами нашего светового конуса, то причинно-следственной связи между такими событиями быть не может.

Специальная теория относительности. Часть 3 Лирическое отступление про скорость света Скорость света, Теория относительности, Научпоп, Физика, Длиннопост

Интерпретация Эйнштейном ФИЗИЧЕСКОГО СМЫСЛА преобразований Лоренца и дала нам Специальную Теорию Относительности, установив фундаментальную связь между пространством и временем.


Так что бы было, если бы не было этого Вселенского ограничения скорости? Если мы оставим значение c = ∞ (сейчас речь о константе c в преобразованиях, а не о скорости света), то не было бы и массы, так как на создание какой-либо массы потребовалось бы бесконечное количество энергии (E = mc²), во вселенной существовали бы только безмассовые частицы, перемещающиеся на бесконечной скорости.


Существование самого пространства-времени было бы невозможным – с бесконечным замедлением времени и сокращением расстояний до нуля, между событиями отсутствовали бы причинно-следственные связи (вернее, любое бесконечно-удалённое и бесконечно-давнее событие могло бы повлиять на любое событие в бесконечном будущем и наоборот), был бы вселенский хаос — безвременной танец безмассовых частиц в вечном «здесь и сейчас».


Разумеется, мы не могли бы существовать в подобном парадоксе. Для возникновения нашей Вселенной, ей просто необходимо было ограничить максимальную скорость причинно-следственных связей, иначе она попросту не могла бы возникнуть и существовать .


В следующей части мы поговорим об эквивалентности массы и энергии и об истинном смысле формулы E = mc².

Показать полностью 6
64

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца

В ходе ряда обсуждений в комментариях здесь, я встречал довольно дикие представления и заблуждения о теории относительности, поэтому подумал, что стоит кратко изложить основные её положения, и постараться при этом избежать по возможности формул и заумных терминов, чтобы не отпугнуть пытливые умы от этой темы.


Сразу оговорюсь, что данный пост не ставит перед собой целью изложить, разжевать и объяснить всё (всего не знал даже Эйнштейн). Моей целью по большей части является пробуждение интереса к этой теме.


С определённой точки зрения, можно сказать, что физика это наука о движении. Она изучает движения планет и звёзд, движение электронов и протонов, движение молекул вещества и свойства, которые проявляет материя в результате этого движения. Роль теории относительности в этом всём - изучение того, как данное движение наблюдается с разных точек зрения. Есть, строго говоря, две теории относительности - специальная и общая. Разница лишь в том, что в специальной теории рассматривается лишь ограниченный (специальный) набор таких точек зрения.


Возьмём, например, Луну. Мы находимся на Земле, и нам кажется, что Луна движется по дуге от горизонта до горизонта.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Если же посмотреть со стороны, но не сильно удаляясь от Земли, то мы увидим, как Луна вращается вокруг Земли.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Если мы посмотрим со стороны Солнца, то окажется, что Луна движется по спирали:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Так есть ли какая-нибудь одна, самая правильная точка зрения? Одна из целей специальной теории относительности (СТО) является поиск ответа на данный вопрос.


На самом деле вопросов всего 2:

1) Что МЕНЯЕТСЯ, когда изменяется точка зрения?

2) Что НЕ ИЗМЕНЯЕТСЯ, когда это происходит?


Как уже было показано на примере орбиты Луны, в зависимости от выбора точки зрения, картинка, которую мы можем наблюдать, будет весьма разной, поэтому ответ на первый вопрос кажется очевидным. Что же касается второго вопроса – давайте разбираться.


Если мы будем наблюдать достаточно долго, то заметим, что вне зависимости от выбранной нами точки зрения, относительное расстояние между Землёй и Луной остаётся неизменным. Ага! Значит, это расстояние – фундаментальное свойство системы Земля-Луна, а не артефакт нашей точки зрения, откуда бы мы не проводили наблюдения, расстояние между Землёй и Луной всегда будет одним и тем же!


Этот пример показывает одну из основных задач теории относительности – поиск истины, того, что не меняется при смене точки зрения, поиск универсальных фактов, которые остаются неизменными при любых обстоятельствах.


Определившись с целью, теперь необходимо подобрать подходящий «инструмент» – способ описания движения и изменений, которые происходят при смене точки зрения (или отсчёта, как принято говорить), поэтому начать предлагаю с пространственно-временных диаграмм.


Хотя теория относительности и изучает по большей части движение, давайте начнём с неподвижных объектов


Все наверное в курсе, как применить координатную сетку для нахождения координат собаки по отношению к дому. Мы можем определить смещение по обеим осям от дома и найти координаты (14;17):

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Однако, эти координаты – не универсальный факт. В зависимости от того, как мы наложим координатную сетку, данные координаты могут существенно измениться:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Думаю, понятно, что от смены начала координат и ориентации (смены точки отсчёта) мы можем добиться того, чтобы у нашей собачки были абсолютно любые координаты, какие захотим. Таким образом, мы говорим, что ПОЛОЖЕНИЕ В ПРОСТРАНСТВЕ ОТНОСИТЕЛЬНО.


Давайте выпустим вторую собачку и рассмотрим расстояние между ними. Очевидно, что как бы мы не изменяли точку отсчёта и ориентацию системы координат, расстояние между ними никак не изменится. Иными словами РАССТОЯНИЯ АБСОЛЮТНЫ.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Сами того не ведая, мы только что произвели 2 преобразования: трансляцию и поворот:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Однако, если нам будет позволено растягивать или сжимать шкалу, по которой мы производим измерения, то внезапно окажется, что число, выражающее расстояние между объектами так же может измениться:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Так никуда не годится! Нам нужно что-то для сравнения, эталон длины, с которым можно сравнить дистанцию между собачками, чтобы уже точно знать, какое между ними расстояние. Наиболее очевидный способ измерить расстояние – это измерить его в попугаях:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Когда мы сообщаем свои координаты, мы обязательно должны сообщить так же единицу измерения – тот эталон, с чем необходимо сравнивать (градусы, метры, попугаи, световые годы). Однако, какую бы единицу измерения мы не применили, очевидно, что измеренная в этих единицах дистанция будет всегда сохраняться неизменной.


Теперь, когда у нас появилось что-то для сравнения, мы можем сказать следующее ОТНОШЕНИЕ МЕЖДУ ДЛИНАМИ АБСОЛЮТНО.


Далее, по ходу изложения, я не буду употреблять какие-либо конкретные единицы измерения, так как очевидно, что это не принципиально. То же самое будет касаться единиц времени: это по вашему желанию могут быть секунды, годы или века.


Вернёмся к движению – чтобы показать график движения мы будем применять диаграммы, где по горизонтальной оси откладывается расстояние (обозначено x), а по вертикальной – временные интервалы (обозначено t).


Так, диаграмма покоя относительно начала координат и диаграмма движения будут выглядеть следующим образом:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

К этому стоит немного адаптироваться, так как обычно принято отображать шкалу времени по горизонтали. На диаграмме не показано перемещение собачки в двух измерениях, мы наблюдаем только одно пространственное измерение и одно временное.


Собственно, мы только что заново изобрели диаграмму пространства-времени, которую в 1908 году предложил немецкий математик Герман Минковский, причём, наша собачка отображена в двумерном представлении так называемого «пространства Минковского».


Предположим, мы задались целью, проследить, как перемещается наша собачка (пусть будет Алиса) по нашему двору. Каждый момент времени мы отмечаем её положение и строим, таким образом, её мировую линию, где в каждый момент времени у нашей Алисы есть временная координата t и пространственная координата x.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Мы использовали только одно пространственное измерение (x) исключительно для упрощения и наглядности, так как для двух измерений нам бы пришлось использовать уже трёхмерный график. К сожалению, для того, чтобы построить мировую линию в трёхмерном пространстве, нам понадобилось бы самим находиться в 4-м пространственном измерении, что пока невозможно.


Следует просто иметь в виду, что полные координаты объекта в нашем, четырёхмерном пространстве-времени записываются при помощи 4-х координат (t;x;y;z). Думаю, это тоже очевидно любому, кто хоть раз назначал встречу – мы должны договориться о времени (t) и о месте её проведения (x;y;z).


Давайте посмотрим на друга Алисы – Бориса, который убегает от неё со скоростью примерно 1 м/с. Как мы уже выяснили, дистанция не зависит от точки отсчёта, при этом, дистанция  между ними в каждый момент времени сохраняется при переходе от точки отсчёта Алисы к точке отсчёта Бориса:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

И вот мы подходим, наконец, к одному из фундаментальных принципов теории относительности – отсутствию предпочтительной системы отсчёта.


Действительно, давайте взглянем на эти графики ещё раз. Имея только эту информацию перед глазами, можем ли мы сказать о том, кто из наших питомцев находится в движении, а кто – стоит на месте? При отсутствии иных фактов с уверенностью можно сказать лишь одно – расстояние между ними увеличивается каждый момент времени.


Но если мы и дальше хотим работать с диаграммами пространства-времени, нам, наверное, понадобится какое-либо иное преобразование, отличное от трансляции и поворота, так как ни трансляция, ни поворот не смогут трансформировать левую диаграмму – в правую, хотя нам очевидно, что обе диаграммы показывают одну и ту же ситуацию. Нам нужно преобразование, которое сохраняло бы не только пространственные дистанции между объектами, но и временные интервалы.


Давайте попробуем преобразовать точку зрения Алисы в точку зрения Бориса. На таких малых скоростях, мы можем это сделать интуитивно при помощи трансформации сдвига (взять каждую точку на диаграммы Алисы и сдвинуть влево, чтобы координаты Бориса оставались бы неизменными.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Однако здесь нам следует остановиться и вспомнить второй постулат специальной теории относительности, который гласит:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Получается, вместе со сдвигом нам необходимо ещё сжимать или растягивать мировые линии таким образом, чтобы скорость света была неизменной в любой трансформации.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

На помощь нам приходят преобразования имени голландского физика Хендрика Лоренца.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Оранжевой пунктирной линией показана мировая линия луча света, скорость которого сохраняется вне зависимости от выбора точки отсчёта. В формуле мы видим букву v, которая обозначает скорость, а это значит, что скорость движения объекта сильно изменяет саму координатную сетку, в которой "живёт" движущийся объект.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Поскольку скорость света является фундаментальной константой, которая всегда одна и та же, на пространственно-временных диаграммах принято по пространственной оси х откладывать шкалу в масштабе световых единиц длины (световая секунда, минута, год), иными словами – расстояние, которое свет проходит за указанную единицу времени.


Таким образом, мировая линия луча света на диаграммах, построенных по такому принципу, всегда находится под углом 45 градусов к базовым осям.

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Визуально преобразование можно представить как сжатие диаграммы вдоль одной мировой световой линии и одновременное растяжение вдоль перпендикулярной. На анимации ниже видно, как происходит трансформация точки зрения Алисы (красная мировая линия) в точку зрения Бориса (зелёная мировая линия) и обратно, если предположить, что скорость, на которой они удаляются друг от друга со скоростью в 50% скорости света:

Специальная теория относительности. Часть 1 Диаграммы Минковского и преобразования Лоренца Теория относительности, Физика, Научпоп, Гифка, Длиннопост

Диаграммы Минковского позволяют визуализировать и интуитивно разбирать сложные концепции специальной теории относительности и бесценны для её понимания.


А о том, что со всем этим делать дальше, я напишу в следующем посте.

Показать полностью 18
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: