171

Леонид Зотов - Вращение планеты Земля

Для чего необходимо изучать вращение Земли? Какие проблемы помогает изучать и решать эта информация? Всегда ли Полярная звезда служила ориентиром на север? Сдвигается ли ось вращения Земли? Как процессы влияют на осевое вращение Земли? Зачем изучать вращение Марса? Как астрономические факторы могут повлиять на климатические изменения и гравитационное поле Земли?

Рассказывает Леонид Зотов, кандидат физико-математических наук, старший научный сотрудник Лаборатории Гравиметрии Государственного астрономического института имени П.К. Штернберга.

Найдены возможные дубликаты

Отредактировал Stern137 8 месяцев назад
+7
Иллюстрация к комментарию
+2

Недавно доказали, что земля плоская. Опять за рыбу деньги?

раскрыть ветку 1
-1

Дык, ясен пень что плоская! Если бы она была круглая и вращалась, то предметы на экваторе имели бы меньший вес из-за воздействия на них центробежного ускорения! :)

+1

Очень занимательно, продолжение давайте.

+1

Спасибо, действительно интересно. Мне субъективно показалось, что абзацы не связанны: как будто "додумайте сами". Ось свернула в другую сторону из-за воздействия человека на климат и теперь Великобританию придавит льдом так, что после по сантиметру в год твёрдые породы будут отпухать обратно, так что берегите природу, ибо у нас есть много способов наблюдать за вашим поведением, я правильно услышал? =)) Но без шуток, пожалуйста, продолжайте!

0

You spin me right round, baby

Right round like a record, baby

Right round round round

You spin me right round, baby

Right round like a record, baby

Right round round round

0
Тема интересная. Рассказчик не зашёл.
раскрыть ветку 8
+3

Это учёный, а не профессиональный спикер. Могли бы и не придираться

раскрыть ветку 5
0

Вот Станислав просто прелесть) и ученый,

и спикер в одном флаконе)

раскрыть ветку 4
+1
Для лл краткое содержание, пжлст
раскрыть ветку 1
0

Я тоже все ещё жду

-1

Пойду надену шапочку из фольги))

Похожие посты
238

Знали, что светятся не только газы?

На фотографии представлены газоразрядные ампулы. Фокус в том, что газы закачаны в ампулы под низким давлением, а ампулы с веществами вообще под вакуумом! Именно такие условия позволяют им светится при наведении на них электромагнитного поля. И это явление называется газовым разрядом. Суть поста не в объяснении самого явления, про которое можно почитать в Википедии, а в демонстрации самих результатов работы. Просто полюбуйтесь на эти уникальные «спектры» элементов! Это их натуральные цвета за исключением фтора, так как фтор перемешан с азотом в целях безопасности и долговечности ампулы, так что фиолетовый оттенок это скорее всего азот! Мы вообще не были уверены, что такой фокус пройдёт с некоторыми веществами, просто никогда не видели газоразрядных трубок с серой и фосфором, но всё сработало. Поэтому существует подозрение, что можно расширить список светящихся элементов, ну хотя бы на сурьму!

Знали, что светятся не только газы? Химия, Физика, Наука, Периодическая система, Таблица Менделеева, Благородные газы, Эксперимент, Опыт, Химические элементы, Длиннопост
Знали, что светятся не только газы? Химия, Физика, Наука, Периодическая система, Таблица Менделеева, Благородные газы, Эксперимент, Опыт, Химические элементы, Длиннопост
Знали, что светятся не только газы? Химия, Физика, Наука, Периодическая система, Таблица Менделеева, Благородные газы, Эксперимент, Опыт, Химические элементы, Длиннопост
Показать полностью 2
84

Как черная дыра разорвала звезду на спагетти

В СМИ активно растиражировали новость о том, что астрономы смогли увидеть как черная дыра пожирает звезду, предварительно разорвав её на спагетти. В новом видео пулковский астроном Кирилл Масленников расскажет, что астрономы увидели на самом деле, что выдумали художники и что такое «событие приливного разрушения».

С помощью телескопов Европейской южной обсерватории (ESO) и других научных учреждений мира астрономы зафиксировали редкое явление: вспышку света от звезды, разрываемой на части сверхмассивной черной дырой. Это явление, называемое событием приливного разрушения – на сегодняшний день самая близкая к нам вспышка такого происхождения; событие, вызвавшее ее, произошло на расстоянии более 215 миллионов световых лет от Земли.


Спагеттификация — при приближении к черной дыре материя подвергается сильнейшему гравитационному давлению. Когда тело оказывается слишком близко к источнику мощного гравитационного поля оно оказывается растянуто и приобретает длинную тонкую форму, как спагетти. Термин был придуман Стивеном Хокингом в книге "Краткая история времени", хотя сам эффект был описан задолго до него.


Астрономы сталкиваются с трудностямя при исследовании вспышек, сопровождающих процесс спагеттификации, так как они часто загораживаются от нас завесой пыли и обломков. Лишь теперь удалось исследователям пролить свет на происхождение этой завесы.


“Мы обнаружили, что, когда черная дыра поглощает звезду, могут происходить мощные выбросы вещества в направлении от черной дыры, которые и создают помехи при наблюдениях”, -- объясняет Саманта Оутс (Samantha Oates), также сотрудница Бирмингемского университета. Это происходит из-за того, что энергия, высвобождаемая в процессе поглощения черной дырой звездного вещества, отбрасывает часть его фрагментов вовне.


Астрономы наблюдали событие приливного разрушения AT2019qiz в спиральной галактике в созвездии Эридана на протяжении шести месяцев. “Из-за того, что мы поймали это явление на ранней его стадии, мы сумели увидеть, как из окрестностей черной дыры истекает поток вещества со скоростью до 10 000 км/c, который и образует завесу из пыли и осколочного материала”, -- говорит Кейт Алекзандер, эйнштейновский стипендиат NASA в Северо-западном университете США.

Как черная дыра разорвала звезду на спагетти Наука, Космос, Черная дыра, Видео, Длиннопост, Астрономия, Фильмы

На этой иллюстрации – звезда (на переднем плане) подвергается спагеттификации в процессе всасывания её сверхмассивной черной дырой (на заднем плане) в ходе «события приливного разрушения». В новом исследовании, выполненном при помощи Очень Большого телескопа и Телескопа новой технологии ESO, группа астрономов обнаружила, что, когда черная дыра пожирает звезду, может произойти мощный выброс материи звезды в окружающее пространство.


Релиз на сайте Европейской Южной Обсерватории, опубликованный Кириллом Масленниковым:

https://www.eso.org/public/russia/news/eso2018/

Показать полностью 1
136

Активные вулканы Ио создают на спутнике серную атмосферу

Атмосфера спутника Юпитера Ио состоит в основном из диоксида серы (SO₂). До недавних пор было неизвестно, что является основным источником, восполняющим серную атмосферу Ио: активные вулканы или залежи замороженного диоксида серы, испаряемые солнечным светом.

Активные вулканы Ио создают на спутнике серную атмосферу Солнечная система, Астрономия, Наука, Видео

Наблюдения, проведенные с помощью радиотелескопа ALMA в Чили, подтвердили, что основным источником атмосферы Ио является вулканическая деятельность. На поверхности Ио находятся примерно 400 активных вулканов.

Источник

475

Самодельная метеостанция для мониторинга погоды

Казалось бы, причем тут исследования космоса? Но далее все по-порядку :)

Мониторинг погоды с помощью самодельного оборудования оказался довольно любопытным занятием...


Идея создания автоматизированной обсерватории с удаленным управлением упёрлась в необходимость получать текущие данные состояния погоды в точке установки астрономического оборудования, вот этого:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Четыре года назад познакомился с микроконтроллерами Arduino (AVR), они оказались очень удобными для прототипирования различных устройств, которые потом можно будет сделать на более серьезных МК. Для обучения работы с Arduino решил собрать первое устройство - метеостанцию. Состояла она из двух блоков - внешнего, который висел за окном и раз в 5 минут передавал показания, и внутреннего, который принимал показания по радиоканалу и отправлял их в сеть на удаленный сервер. На внешнем блоке даже сделал солнечную панель, как помню купил по акции шесть садовых фонариков по 39 рублей, выдернул из них солнечные панели. Собрал из них одну большую, она заряжала внутренние АКБ (обычные ААА аккумуляторы). Такого симбиоза хватало на полгода бесперебойной работы метеостанции, потом аккумуляторы все-таки приходилось заряжать нормально.

Спустя год работы метеостанции, я ее отключил и разобрал. Сделана она была из подручных материалов, вот как она выглядела спустя год работы (внешний блок):

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Самодельный блок с анемометром, датчиком освещенности на фоторезисторе и датчиком DHT22 - температуры и влажности.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Блок с МК, и аккумуляторами спустя год - резиновые заглушки сильно потрескались.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Ну а внутри этого блока находится вот что:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Корпус утеплял в 2-3 слоя, проклеивал. Не знаю помогло это или нет, но АКБ, которые там стояли, до сих пор держат заряд и работают исправно. Целый год работала Arduino и не было ни одного сбоя или зависания - ее не приходилось перезагружать. Разброс температур был от +45 на Солнце, до -32 зимой.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Анемометр можно было бы сделать из шариковой мышки, но я такую не нашел. Сделал из небольшого двигателя, убрал все лишнее и прорезал сбоку отверстие для отпопары. На штоке якоря убрал обмотку, поставил самодельный диск с прорезью. Ну и DHT22 датчик:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Одно из моих увлечений - астрономия, и в этом году я построил астрономическую будку с удалённым управлением (часть 1, часть 2, часть 3). И для автоматизации процесса съемки очень важно получать и обрабатывать погодные условия прямо здесь и прямо сейчас. Поэтому решил строить новую метеостанцию, опять на Arduino (понравилась мне она), но уже более серьезную.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сперва сделал на RJ-45 розетках возможность подключения модулей, но потом переделал на жесткую пайку. Все-таки так будет надёжнее, учитывая прошлый опыт. Соединения могут давать сбои.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все детали метеостанции напечатал на 3D принтере, получилось прям как заводское исполнение.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Метеостанция после недели тестов и отладки программного обеспечения установлена на свое место - на астрономическую обсерваторию.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сейчас она измеряет и передает на удаленный сервер показания - температуру, влажность, точку росы, освещенность, интенсивность УФ-излучения, скорость и направление ветра. Заказал еще ИК-пирометр, для датчика облачности. Измерение уровня осадков делать не стал, так как актуально только в теплое время года.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все данные можно смотреть через веб-интерфейс: просматривать текущие метеоусловия, а также статистику по предыдущим дням: https://meteo.miksoft.pro/

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

В планах - "допиливание" frontend \ backend метеостанции, сделать возможность выгрузки данных. Также сейчас метеостанция подключена и к проекту "Народный мониторинг".

Конечно, я понимаю, что для работы настоящей метеостанции должны быть выполнены большое количество условий (чтобы ее показания котировались), датчики должны быть сертифицированы, и явно быть дороже и точнее. Но сейчас, для работы удаленной астрономической обсерватории, мне этого более чем достаточно - перед запуском планировщика обсерватории я могу посмотреть текущую метеосводку. Теперь я могу быть уверенным, что в случае наступления неблагоприятных метеоусловий во время съемки (облака или осадки) - контроллер обсерватории сам припаркует телескоп и закроет крышу.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Буквально вчера получил посылку из Китая - ИК пирометр, который будет работать в паре с другим датчиком и мониторить облачность. Так что в ближайшие выходные буду добавлять новый датчик в метеостанцию.


Что дальше? Может быть стоит как-то развить этот мини-проект, сделать еще одну, но автономную, с солнечной панелью, АКБ и передачей данных по GSM?


Посты про строительство обсерватории смотрите в моем профиле.


Адрес метеостанции: https://meteo.miksoft.pro/

Мой телеграмм канал: https://t.me/nearspace (@nearspace)
Показать полностью 13
118

Сверхпроводимость при комнатной температуре, антибиотик из яда. Самые интересные новости науки за неделю

Еженедельная подборка новостей из мира науки. В этом выпуске больше информации об орудиях труда беспозвоночных; как ядовитые осы помогают создавать антибиотики; какое вещество стало сверхпроводником при комнатной температуре; что такое спагеттификация и зачем это черной дыре; как испытают вторую российскую вакцину от коронавируса и как физики смогли записать и переместить свет?

Содержание ролика:

00:30 Инструменты у беспозвоночных

02:57 Ученые рассматривают яд ос в качестве антибиотика

05:11 Сверхпроводник получили при комнатной температуре

07:20 Черная дыра спагеттифицировала неосторожную звезду

09:18 Россия зарегистрировала вторую вакцину от коронавируса

10:30 Физики смогли записать и переместить свет


(все ссылки на пруфы и исследования под роликом на ютубе. Текстовая версия ниже)


Яд ос в качестве антибиотика

Под прицел новой работы попал яд осы из Азии - Веспулы. Он содержит пептид мастопаран-Л. Для человека он не слишком опасен в малых дозах, но вызывает разрушение эритроцитов, воспаление и иногда даже анафилактический шок у слишком уязвимых людей.

Но мастопаран-Л также обладает бактериальной токсичностью, что может стать отправной точкой для разработки нового антибиотика. Вот только нельзя же одновременно и лечить, и калечить. Ученые отыскали в мастопаране-Л участок, который отвечает за вред человеческим клеткам и заменили его. Причем заменили на участок, вредящий бактериям, взяв его из базы сотен антимикробных пептидов. В дальнейших экспериментах на мышах, зараженных смертельными штаммами кишечной палочки и золотистого стафилококка, выяснилось, что при лечении модифицированным мастопараном 80% мышей выживают, а если давать мастопаран-Л, то они выживают хуже и получают серьезные побочные эффекты.


Ученые рассчитывают, что модифицируя новый мастопаран, они смогут разработать новый антибиотик. Также вероятны в дальнейшем эксперименты со змеиным, скорпионьим и другими животными ядами.


Сверхпроводник получили при комнатной температуре

Формула успеха включает смесь водорода, углерода и серы, которая была использована для синтеза углеродсодержащего гидрида серы органического происхождения в исследовательской камере высокого давления, называемом ячейкой с алмазной наковальней. Этот углеродистый гидрид серы продемонстрировал сверхпроводимость при температуре около 14,5 ° C и давлении около 2,67 миллиона атмосфер.


Черная дыра спагеттифицировала неосторожную звезду

Событие, которое в прошлом году зафиксировала ESO  при помощи Очень большого телескопа и телескопа новой технологии, произошло на расстоянии в 215 миллионов световых лет от Земли в галактике в созвездии Эриадна. Астрономы зарегистрировали яркую вспышку и направили туда свои инструменты. Возникают такие вспышки и истечения вещества от того, что черная дыра высвобождает много энергии в процессе поглощения звезды, и эта энергия отбрасывает часть вещества со скоростью до 10 тысяч километров в секунду, плюс создает помехи в виде из пыли и осколков. Астрономы увидели, как после вспышки потоки вещества стали образовывать вуаль вокруг этих объектов. Звезда была массой с наше солнце, а черная дыра в миллион раз массивнее. К тому же это самое близкое к земле событие подобного рода, которое удалось пронаблюдать.


Россия зарегистрировала вторую вакцину от коронавируса

Не успели мы распробовать первую зарегистрированную российскую аденовирусную вакцину от короновируса от центра Гамалеи, как Новосибирский центр Вектор зарегистрировал вторую вакцину, на этот раз эпитопную.

Роспотреб заявляет, что все необходимые клинические испытания вакциной ЭпиВакКорона пройдены успешно. однако данных о них в открытом доступе нет. Как и в случае с первой вакциной. Пока что говорят, что побочных эффектов особых нет, правда нет и данных о защитных титрах антител, то есть об эффективности вакцины.


Физики смогли записать и переместить свет

Оказалось, что свет действительно можно переместить, пока что вот на целых 1,25 миллиметра. Физики смогли накопить свет, а точнее сохранить его состояние, световое возбуждение в ансамбле холодных атомов, это облака охлажденных почти до абсолютного нуля атомов рубидия. Часто их используют для получения конденсата Бозе-Эйнштейна. На эти атомы записывались значения светового возбуждения.

Таким образом в ансамбле холодных атомов реализовалась квантовая световая память, и это в целом не нечто новое. А вот то, что это облако смогли переместить, вместе с накопленным светом - это впервые.

При этом свойства системы почти не изменились. Это первая попытка контролируемого перемещения сохраненного света.

Показать полностью
152

Во Вселенной слишком много золота и никто не знает, откуда оно взялось

Во Вселенной слишком много золота и никто не знает, откуда оно взялось Астрономия, Астрофизика, Золото, Сверхновая, Копипаста, Длиннопост

Впечатление художника о слиянии двух нейтронных звёзд. Авторы и права: University of Warwick/Mark Garlick.

Вот в чём проблема: золото – это элемент, а это значит, что вы не можете получить его благодаря обычным химическим реакциям, хотя алхимики пытались сделать это веками. Для получения блестящего металла, вам нужно связать 79 протонов и 118 нейтронов вместе, чтобы сформировать единое атомное ядро. Это интенсивная реакция ядерного синтеза. Но такой интенсивный синтез не происходит достаточно часто, по крайней мере, поблизости, чтобы создать гигантский кладезь золота, который мы находим на Земле и в других местах Солнечной системы.

Новое исследование показало, что наиболее распространённый вариант происхождения золота – столкновения нейтронных звёзд – тоже не может объяснить его изобилие. Так откуда же золото? Есть и другие варианты, в том числе сверхновые. К сожалению, новое исследование показало, что даже такие странные явления не могут объяснить количество золота во Вселенной.

Столкновения нейтронных звёзд создают золото, на короткое время объединяя протоны и нейтроны в атомные ядра, а затем извергая эти тяжёлые ядра в космос.

“Обычные сверхновые не могут объяснить наличие всего золота во Вселенной, потому что звёзды, достаточно массивные, чтобы сплавить золото, становятся чёрными дырами при взрыве”, – сказала Чиаки Кобаяши, астрофизик из Университета Хартфордшира в Соединенном Королевстве, автор нового исследования.

И в случае обычной сверхновой всё золото поглощается чёрной дырой.

А что насчёт странных сверхновых? Этот тип взрыва звезды, так называемая магнитовращательная сверхновая, является “очень редкой и очень быстро вращающейся сверхновой.

Во время магнитовращательной сверхновой умирающая звезда вращается так быстро и подвергается воздействию таких сильных магнитных полей, что при взрыве выворачивается наизнанку. Погибая, звезда запускает в космос раскалённые добела струи вещества. А поскольку звезда вывернута наизнанку, её струи забиты ядрами золота. Звёзды, которые вообще сплавляют золото, встречаются редко. Звёзды, которые сплавляют золото, а затем выбрасывают его в космос, встречаются ещё реже.

Во Вселенной слишком много золота и никто не знает, откуда оно взялось Астрономия, Астрофизика, Золото, Сверхновая, Копипаста, Длиннопост

Художественная иллюстрация сверхновой. Авторы и права: NASA / CXC / M. Weiss / University of California, Berkeley / N. Smith et al / Lick Observatory / J. Bloom & C. Hansen.

Но даже нейтронные звёзды плюс магнитовращательные сверхновые звёзды вместе не могут объяснить золотое изобилие Земли, как выяснили Кобаяши и её коллеги.

“В этом вопросе есть два пункта”, – сказала она. “Первый: слияний нейтронных звёзд недостаточно. Второй: даже со вторым источником мы всё ещё не можем объяснить наблюдаемое количество золота”.

По её словам, прошлые исследования подтвердили, что столкновения нейтронных звёзд вызывают золотой дождь. Но эти исследования не учитывали редкость этих столкновений. Трудно точно оценить, как часто крошечные нейтронные звёзды – сами по себе сверхплотные остатки древних сверхновых – сталкиваются друг с другом. Это происходит очень редко: учёные видели, как это происходило только однажды. Кобаяши и её соавторы обнаружили, что даже приблизительные оценки показывают, что они не сталкиваются достаточно часто, чтобы произвести всё золото, обнаруженное в Солнечной системе.

“Эта статья не первая, в которой предполагается, что столкновений нейтронных звёзд недостаточно для объяснения изобилия золота”, – сказал Ян Родерер, астрофизик из Мичиганского университета, который ищет следы редких элементов в далеких звёздах.

Но новая статья Кобаяши и её коллег, опубликованная 15 сентября в The Astrophysical Journal, имеет одно большое преимущество: она чрезвычайно точная. Исследователи собрали огромное количество данных и включили их в надёжные модели эволюции галактики и производства новых химических элементов.

“В документе есть ссылки на 341 другую публикацию, что примерно в три раза больше, чем в типичных статьях в The Astrophysical Journal в наши дни”, – сказал Родерер.

По его словам, собрать все эти данные – это “титанический труд”.

Используя этот подход, авторы смогли объяснить образование атомов углерода (шесть протонов и шесть нейтронов) и урана (92 протона и 146 нейтронов). По словам Родерера, это впечатляющий диапазон, охватывающий элементы, которые обычно игнорируются в подобных исследованиях.

Возможно, столкновения нейтронных звёзд приносят больше золота, чем предполагают существующие модели. В любом случае астрофизикам предстоит проделать ещё много работы, прежде чем они смогут объяснить, откуда взялось это украшение.

Источник: universetoday.ru

Показать полностью 1
63

Астрономы стали свидетелями «казни» звезды черной дырой

Полученные результаты помогут лучше разобраться в физике сверхмассивных черных дыр и в поведении вещества в крайне сильном гравитационном поле, окружающем их.

Благодаря телескопам Европейской южной обсерватории (ESO) и другим инструментам астрономам удалось зафиксировать редкое явление: вспышку света от звезды, разрываемой на части сверхмассивной черной дырой. Пойманное событие, называемое актом приливного разрушения, является самым близким к нам среди себе подобных – его источник расположен на расстоянии примерно 215 миллионов световых лет от Земли. Исследование, описывающее захватывающее открытие, представлено в журнале Monthly Notices of the Royal Astronomical Society. (Ссылка, к сожалению, не работает)

)«Идея о «засасывании» черной дырой близкой к ней звезды звучит, как научно-фантастический сюжет. Но именно это и происходит при приливном разрушении светила. Однако, такие события, при которых «всасываемая» черной дырой звезда подвергается разрушительной деформации под названием спагеттификация, очень редки и не всегда доступны подробному изучению», – рассказывает Мэтт Николл, ведущий автор исследования из Эдинбургского университета (Великобритания).

Астрономы стали свидетелями «казни» звезды черной дырой Астрономия, Астрофизика, Черная дыра, Звезда, Видео, Длиннопост, Копипаста, Сверхмассивная черная дыра

Приливное разрушение звезды сверхмассивной черной дырой в представлении художника. Credit: ESO/M. Kornmesser

С целью детально разобраться в том, что происходит, когда «космический монстр» пожирает звезду, группа исследователей направила Очень Большой телескоп (VLT) и Телескоп новой технологии (NTT) ESO на вспышку света, произошедшую в прошлом году в окрестности сверхмассивной черной дыры.

Теоретически астрономы знают, что в таких случаях должно происходить.

«Когда «невезучая» звезда проходит слишком близко к сверхмассивной черной дыре, расположенной в центре какой-нибудь галактики, колоссальное гравитационное притяжение разрывает ее на потоки вещества. В процессе этой спагеттификации тонкие пряди звездного материала устремляются к черной дыре, создавая яркие вспышки, регистрируемые нами», – объяснил Томас Веверс, соавтор исследования из Института астрономии Кембриджского университета (Великобритания).

Хотя наблюдающиеся вспышки мощные и яркие, до последнего времени астрономы сталкивались с большими трудностями при их исследовании, так как они часто закрыты от нас завесой пыли. Лишь теперь исследователям удалось пролить свет на ее происхождение.

«Мы обнаружили, что, когда черная дыра поглощает звезду, могут происходить мощные выбросы вещества в направлении от черной дыры, которые и создают помехи при наблюдениях. Это происходит из-за того, что энергия, высвобождаемая в процессе поглощения черной дырой звездного вещества, отбрасывает часть его фрагментов наружу», – добавила Саманта Оутс, соавтор исследования из Бирмингемского университета. (Великобритания).

Открытие стало возможным лишь потому, что изучавшееся группой событие приливного разрушения AT2019qiz было обнаружено спустя очень короткое время после разрыва звезды на части.

«Из-за того, что мы поймали это явление на ранней его стадии, мы сумели увидеть, как из окрестностей черной дыры истекает поток вещества со скоростью до 10 тысяч километров в секунду, который и образует завесу из пыли и осколочного материала. Уникальная возможность «заглянуть за занавес» впервые указала на происхождение экранирующего материала и позволила в реальном времени проследить за тем, как он окружает гравитационного монстра», – отметила Кейт Алекзандер, соавтор исследования из Северо-западного университета (США).

Группа вела наблюдения события AT2019qiz в спиральной галактике в созвездии Эридана на протяжении шести месяцев; за это время яркость вспышки сначала возрастала, а затем стала затухать. Своевременные и обширные наблюдения в ультрафиолетовом, оптическом, рентгеновском и радио-диапазонах впервые выявили прямую связь между истечением вещества из звезды и яркой вспышкой в момент ее поглощения черной дырой.

«Наблюдения показали, что масса этой звезды была примерно такой же, как и у Солнца, и что звезда потеряла примерно половину этой массы под воздействием черной дыры, более, чем в миллион раз более массивной», – заключил Мэтт Николл.

Астрономы стали свидетелями «казни» звезды черной дырой Астрономия, Астрофизика, Черная дыра, Звезда, Видео, Длиннопост, Копипаста, Сверхмассивная черная дыра

Художественное представление Чрезвычайно Большого Телескопа ESO. Credit: ESO

Полученные результаты помогут лучше разобраться в физике сверхмассивных черных дыр и в поведении вещества в крайне сильном гравитационном поле, окружающем их. Чрезвычайно Большой телескоп ESO (ELT), начало работы которого планируется в текущем десятилетии, позволит регистрировать все более слабые и быстротекущие события приливного разрушения и решать все более сложные проблемы физики черных дыр.

Источник: in-space.ru

Показать полностью 1 2
176

Исследователи из NIST предложили методику прямого гравитационного наблюдения частиц темной материи

Суть метода заключается в использовании огромного массива свободно колеблющихся маятников длиной около 1 мм. Частицы темной материи, пролетающие сквозь массив, будут вызывать систематические колебания маятников, которые можно будет отличить от хаотических колебаний, вызванных температурными флуктуациями и другими условиями среды.

Гипотетический детектор будет чувствителен к частицам с массами в примерном интервале от 20 микрограммов до нескольких миллиграммов.

Источник

Показать полностью
327

Впервые получена сверхпроводимость при комнатной температуре (но при давлении порядка 2.5 млн атмосфер)

Исследователи из Рочестерского университета провели фотохимический синтез водорода, углерода и серы в алмазной наковальне и получили углеродсодержащий гидрид серы, обладающий свойством сверхпроводимости при температуре 14.5 °C и давлении порядка 2.5 млн атмосфер.

Впервые получена сверхпроводимость при комнатной температуре (но при давлении порядка 2.5 млн атмосфер) Физика, Наука, Сверхпроводники, Видео

Короткая видео-презентация

Источник

203

Евразийский Океан — от Москвы до Баку и Стамбула

Стандартным вариантом взаимодействия воды и льда является привычная нам картинка: внизу любого водоёма располагается более плотная и более тёплая вода, в то время, как сверху плавает более лёгкий и холодный лёд. Однако такая привычная нам картинка может нарушаться а то и переворачиваться с ног на голову, если и ледник, и окружающая его вода имеют громадные размеры, сравнимые с размером островов, гор, а то — и отдельных небольших континентов.

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Голубая Река, текущая в Гренландии поверх ледника Петерманн.


Тогда вода может растапливаться и течь поверх ледников, либо же копиться за ледяными стенами и дамбами, потом прорываясь разрушительными наводнениями, как это происходило на северо-западе нынешних США, гда ледниковые озёра Миссула и Колумбия с периодичностью в 40-80 лет затапливали добрую половину сегодняшнего штата Вашингтон.


Однако, даже сила тех ледниковых, но регулярных потопов меркнет перед теми событиями, которые происходили в период перехода от последнего оледенения к нынешней тёплой эпохе голоцена.


Начало голоцена воистину стало «временем катастроф», когда уже во многом исторические народы и общности внезапно попадали «под раздачу» и получали на орехи от тающего льда и внезапно освободившейся от его оков воды. Которая часто оказывалась совсем не там, где её хотели видеть древние люди конца мезолита и начала неолита, в период 10-6 тысяч лет тому назад.


В момент последнего ледникового максимума, произошедшего в период 28-20 тысяч лет тому назад, вся территория севера Евразии и Северной Америки была закрыта практически сплошным ледниковым щитом, часть которого представляла из себя континентальный, а часть — шельфовый ледник.

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Карта оледенения последнего ледового максимума приводится по книге признанного авторитета в области палеогляциологии — Михаила Григорьевича Гросвальда «Оледенение Русского Севера и Северо-Востока в эпоху последнего великого похолодания». Синим раскрашена площадь, которую занимал шельфовый, континентальный и горно-покровный ледниковый комплекс северного полушария, шриховкой (1) — свободная от льда поверхость Мирового Океана, штриховкой (2) — континентальные ледниковые озёра.


Как видите, в районе времени 28-20 тысяч лет тому назад площади евразийских ледниковых озёр, образованных за счёт запертого стока Оби, Енисея и Иртыша, были громадны, а в районе нынешней Западно-Сибирской равнины запруженный сток этих рек даже образовал громадное Западно-Сибирское ледниковое озеро.


В отличии от ледниковых озёр Северной Америки, которые за счёт прорыва непрочных ледяных стен на краю ледника и периодического сброса накопленной воды в широтном направлении, Западно-Сибирское ледниковое озеро было лишено такой возможности — никакого давление воды в основании ледяной стены вдоль южного побережья Северного Ледовитого океана не хватало, чтобы пробить несколько сот километров ледяного панциря, да ещё и поднимавшегося в районе побережья до высоты в 2000 метров.


В итоге к середине последнего ледникового максимума объём накопленного стока в Западно-Сибирском ледниковом озере стал настолько велик, что избыточная вода из него прошла через Тургайскую долину на Туранскую низменность, в центре которой сегодня располагается Аральское море.

Свободный объём Аральского моря был очень быстро исчерпан, после чего ледниковая вода через Сарыкамышскую впадину, в центре которой сегодня находится остаточное горько-солёное Сарыкамышкое озеро, заполнив её до отказа, потекло по ныне высохшему руслу Узбой, которое и вывело воду ледникового озера в Каспий:

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Сегодня бывшее русло Узбоя наполняет только дождевая вода.

Однако, к концу последнего ледникового максимума уже стало не хватать и объёма существующей впадины Каспия. Через Кумо-Манычскую впадину воды из Каспия попали в Азовское море, тогда скорее представлявшее собой болотистую местность в низовьях Дона и начали наполнять пресной водой впадину Чёрного моря:

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

В нынешнем виде Кумо-Манычский проход тоже маловоден, а остатком прошлой роскоши вплоть до начала преобразования Кумо-Манычской впадины в ХХ веке, вылившейся в строительство оросительных каналов и водохранилищ, являлось горько-солёное озеро Маныч-Гудило, которое тоже оказалось немного «не в сюртуке» для своих современных, весьма скромных размеров:

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Обрывистый берег озера Маныч-Гудило и его сегодняшний уровень воды.

Дальше Чёрного моря в ледниковую эпоху водам Западно-Сибирского ледникового озера было течь некуда: в то время пролив Дарданеллы к югу от Мраморного моря ещё представлял собой единую горную систему и тогдашнее пресноводное озеро на месте нынешнего Чёрного моря не сообщалось со Средиземным морем.


Итогом такого затопления ледниковой водой стал значительный подъём уровня внутренних бессточных бассейнов: Каспийское море с его начальных -140 метров от уровня Мирового Океана поднялось за счёт ледниковой воды до уровня +50 метров (Хвалынский бассейн), а пресноводное Чёрное море (Новоэвксинский бассейн) поднялось с начальных -100 метров до -50 метров от уровня Мирового Океана.


Возможно, развивайся оледенение и дальше, Каспийское и Чёрное море поднялись бы и намного выше, но около 15 000 лет назад постепенное, но постоянное повышение температур начало-таки плавить общеевразийский ледник.


Впрочем, как я сказал в прошлой части рассказа о последнем оледенении — до сих пор единого мнения о крайней южной границе пан-евразийского ледника так и нет, что и определяет суть дискуссий палеогляциологов («Был ли МКАД большим островом?»;) о возможных границах «великого плейстоценового потопа».


Так, например, до сих пор не решён вопрос о запирании стока Лены, что определяет прошлое Берингии и примыкавшей к ней обширной территории Чукотки и Колымы.

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Данная, «классическая» вплоть до начала 1990-х годов реконструкция максимума последнего оледенения, например, ставила под вопрос даже запирание русла Енисея, которое сейчас мыслится практически 100% вероятным.


Однако, начиная с 1990-х, массив новых фактических данных, которые начали поступать в том числе и из наименее доступных регионов русского крайнего севера, начали расшатывать классическую модель оледенения и даже накапливать данные, ужесточающие модель Гросвальда, отличающуюся от классической модели в более «жёсткую» сторону.


Так, в 1994 году в результате полярных экспедиций российского учёного Томирдиаро были открыты остатки ледяной дамбы в районе полуострова Таймыр и существующего устья Лены:

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Чёрным цветом показаны остатки ледяной дамбы у устья Лены и на прилегающих территориях по состоянию на сегодняшний день.


Учитывая эти новые данные, в 2000-х годах возникли несколько реконструкций состояния времён последнего ледникового максимума, которые оказались гораздо более катастрофическими, нежели даже построения Гросвальда. Эти реконструкции рисуют для максимума последнего оледенения гораздо более апокалипсическую картину, в которой и в самом деле «Москва— это остров» (наряду с Уралом и с Великим Новгородом), а затопленными оказываются не только Астрахань и Ростов-на-Дону, но и Киев, и Воронеж — тогда якобы под водой оказалось всё на территории центральной Евразии, что лежало ниже +200 метров от современного уровня Мирового Океана. Масса пресной воды на евразийском континенте в рамках таких реконструкций оказывается просто громадной — речь может идти о объёмах пресной воды, составляющих около трети объёма нынешнего ледового панциря Антарктиды (не менее 10 000 000 км3). Однако, как я уже написал, до сих пор точный объём такого гипотетического Евразийского Океана так и не определён и вокруг этого вопроса и идёт сейчас основная научная дискуссия.


В целом точно также выглядит неопределённой и точная дата прорыва всех этих масс накопленной пресной воды в Мировой Океан.


Понятно, что за концом последнего ледникового максимума (около 20 тысяч лет тому назад) вплоть до столь же холодного позднего дриаса (12,5-11,5 тысяч лет тому назад) находится около семи с половиной тысяч лет более-менее тёплого периода, первой тёплой фазой которого стало так называемое мейендорфское потепление, начавшееся около 14 500 лет тому назад.

Судя по всему, именно во время мейендорфского потепления и произошёл первый сброс холодной пресной воды из Евразийского Океана в Северный Ледовитый.


И вот тут у нас возникает интересный вопрос: является ли сброс пресной холодной воды в океанические воды северного полушария фактором, тормозящим потепление — или же ускоряющим дальнейшие события фактором?


Первая картинка, приведенная в заглавии текста, показывает нам «неправильную» картинку: вода, текущая по сплошному ледовому покрову.


Столь же «неправильна» с точки зрения обыденного здравого смысла картинка ледниковой циркуляции воды в северном полушарии в момент наступления ледникового периода: холодная вода Северного Ледовитого океана течёт поверх тёплой воды из Атантики, которую приносит с собой теплое течение Гольфстрим. В общем, ситуация получается обратной ситуации с бытовым чайником, который закипает именно за счёт быстрого подъёма теплой, нагретой воды к поверхности (рекомендую как-нибудь постараться закипятить воду бытовым кипятильником, расположенным на поверхности воды в кастрюле).


С чем это связано?

Всё дело в том, что вода в Атлантическом Океане не только более тёплая, но ещё и более солёная, в силу чего даже сейчас севернее определённой точки (сегодня это пролив Фрама) атлантическая вода как бы «ныряет» под лёгкую, значительно опреснённую воду Северного Ледовитого океана:

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Текущая картинка солёностей Северного Ледовитого океана.

Солёная вода всегда более плотная, чем пресная при одинаковой температуре. Так, повышение солёности воды на один промилле (%o) вызывает повышение её плотности на 0,7 кг/м3, а повышение температуры от 0 °C до 20 °C уменьшает её плотность на 1,6 кг/м3. То есть, условно говоря, «чуть больше двух промилле» меньшей солёности воды всегда можно сменять на «двадцать градусов» подъёма её температуры.


В результате взаимодействия двух этих разнонаправленных процессов циркуляция океанических течений в северном полушарии находится в двух вариантах квази-устойчивого равновесия, характерных для ледникового и тёплого периодов:

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Ледниковая, «перевёрнутая» циркуляция. Холодная, но пресная вода Арктики отсекает Гольфстрим от Северного Ледовитого океана, заставляя его сбрасывать тепло в средних широтах.

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Современная циркуляция. Гольфстрим доходит до берегов Гренландии и Шпицбергена, передавая тепло атмосфере в этих высоких широтах.


В результате вышеизложенного становится понятен и механизм входа и выхода северного полушария в период оледенения. При начале оледенения, которое вызывается внешними климатическими факторами (например, снижением солнечной активности) происходит «запирание» Гольфстрима плавучими льдами, которые резко снижают передачу тепла атмосфере в высоких широтах. Нет тепла — нет испарения влаги и, как следствие, в Северном Ледовитом океане начинается процесс опреснения его приповерхностных слоёв, как и за счёт отсутствия испарения, так и за счёт пока ещё продолжающегося стока евразийских рек в Северный Ледовитый океан.

Тут же в процесс включается и альбедо снега и льда — солнечная энергия просто отражается от белой поверхности, улетая назад в космос и не нагревая Арктику.

По мере развития оледенения сток северных рек всё более перекрывается и, в результате медленных процессов за счёт перемешивания воды и за счёт постепенного накопления громадных количеств пресной воды на континентах — солёность Мирового Океана растёт и понемногу подтягивает к себе солёность Северного Ледовитого океана.


В конце-концов их солёности на конец ледникового периода практически выравниваются — и Гольфстрим наконец-то прорывается в высокие широты, где уже может растопить лёд и вызвать потепление в северных широтах.


А вот сброс пресной воды из Евразийского Океана должен временно останавливать этот процесс, так как снова опресняет Северный Ледовитый океан и заставляет Гольфстрим снова нырять в его глубины. Что мы и видим на протяжении периода 15 000-12 500 лет тому назад: температуру на Земле буквально «колбасит», когда каждый следующий прорыв ледниковой дамбы в Евразии вызывает очередное оледенение, но общий процесс потепления снова начинается по истечении 500-1000 лет. Ну и, конечно же, дополняет опреснение Северного Ледовитого океана и таяние самого ледника — из-за рельефа Евразии, наклонённого в сторону севера, вся растаявшая из льда вода тоже неизбежно попадает в Северный Ледовитый океан.


После мейендорфского потепления следует древнейший дриас (похолодание), который сменяется бёллингским потеплением, после чего снова следует короткое похолодание — древний дриас, сменяющееся снова аллёрдским потеплением, после чего следует последний ледовый удар позднего дриаса, после чего климат окончательно переходит в тёплый голоцен.

К концу позднего дриаса евразийский ледовый щит уже окончательно разрушен и вся пресная вода из Евразийского Океана (до 10 000 000 км3) спущена в Мировой Океан. Но ещё один удар похолодания приходит с североамериканского континента: там сложилась аналогичная ситуация, где отступающий понемногу ледник образовал громадную бессточную котловину, тоже закрытую с севера огромной ледовой стеной, расположенной на месте нынешнего Гудзонова залива и северной части Канады.


Тут, в отличии от Евразии, реки текут не с юга на север, а скорее — на восток и на запад, в силу чего ледник запирал только часть стока, который к тому же, по образу и подобию ледникового озера Миссула, часто прорывался в виде периодических катастрофических наводнений в Тихий и в Атлантический океан.


В результате этого процесса основная масса ледниковой воды скопилась в достаточно небольшом по сравнению с Евразией озере Агассис, которое отступало вместе с ледником на север и имело в себе на пике своего размера «всего лишь» около 163 000 км3, но что примерно соответствует объёму сегодняшнего, весьма немаленького Каспийского моря.

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Общая площадь, занимаемая озером Агассис в различные времена ледового периода, включала в себя территорию от Великих Озёр на юге и вплоть до Большого Медвежьего озера на севере.

Евразийский Океан — от Москвы до Баку и Стамбула Евразия, Ледниковый период, Наука, Сейсмология, Прошлое, Земля, Длиннопост

Озеро Агассис перед окончательным прорывом ледовой дамбы, ограждавшей озеро от будущего Гудзонова залива.


Последний, самый катастрофический прорыв озера Агассис в Гудзонов Залив случился около 8 500 лет тому назад. В конце-концов, на фоне продолжающегося потепления начала голоцена, ледяная дамба в Северной Америке не выдержала, как это случилось и в Евразии за семь тысяч лет до этого — и воды «последнего бронтозавра» ледникового периода, озера Агассис, рухнули в Мировой Океан.


Однако это не смогло остановить глобального потепления — прорыв Агассиса задержал голоцен всего на 200 лет, в то время, как Евразийский Океан, судя по всему, боролся с потеплением целых 5000 лет.


Так и закончилась история последнего льда на планете Земля.


Оригинал

Показать полностью 11
26

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная»

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная» Космос, Вселенная, Астрономия, Черная дыра, Фракталы, Наука, Теория, Горизонт событий, Видео, Длиннопост

Чёрные дыры притягательны не только в буквальном смысле (ещё бы при такой гравитации!), они захватывают воображение фантастов, кинематографистов и, естественно, ученых. Смесь опасности и необъяснимости этих космических объектов порождает огромное множество теорий на их счет. И если вопрос о реальности их существования в наше время уже снят (потому, что снята первая фотография чёрной дыры), то вопросов об их природе и свойствах остается очень много.


В разных теориях чёрные дыры могут оказываться связанными друг с другом через кротовые норы, порождать наши дочерние вселенные, иметь электрический заряд, вращаться или быть стационарными, парить в вакууме или быть плотно окруженными материей.


Поскольку изучение чёрных дыр это процесс, по большей части, чисто теоретический, то и сами теории можно строить практически на любой основе.


Один из самых свежих взглядов на возможную сущность чёрных дыр совсем недавно представил в своем исследовании астрофизик Пол Саттер (Paul Sutter). Его чисто теоретический, основанный на математических расчетах, подход позволяет обосновать тип сверхпроводящих чёрных дыр, которые будучи электрически заряженными, окружены определенным видом пространства, известным как "антидеситтеровское пространство".


Этот тип пространства интересен и сам по себе, потому что предполагает отрицательную геометрическую кривизну, что делает это пространство похожим на седло. Но не менее интересно, что такая совокупность исходных предположений по расчетам Саттера должна приводить к существованию внутри такой чёрной дыры фрактальной вселенной.


Логика Саттера основана на следующем построении. Заряженные чёрные дыры во многом аналогичны вращающимся чёрным дырам, существование которых однозначно доказано. Поэтому изучая заряженные дыры, математика которых даже проще, можно основываться на том, что известно о вращающихся чёрных дырах.


Ученые выяснили, что когда последние становятся относительно холодными, то вокруг них возникает "дымка" квантовых полей. Эта дымка липнет к поверхности чёрной дыры, притягиваемая неумолимой гравитацией, но выталкивается наружу наэлектризованным отталкиванием той же самой чёрной дыры. Такая дымка квантовых полей, постоянно колеблющихся на поверхности чёрной дыры, создает сверхпроводящий слой.


Всю свою последующую математическую модель Саттер на известных свойствах сверхпроводников. Обычно частицы в реальных сверхпроводниках могут колебаться, поддерживая колебания волн взад и вперед, создавая эффект, известный как колебания Джозефсона. А глубоко внутри этих чёрных дыр само пространство колеблется взад и вперед, что позволяет строить самые фантастические предположения относительно их внутренней природы.


«Исследователи обнаружили, что самые внутренние области сверхпроводящей черной дыры могут представлять собой расширяющуюся Вселенную в гротескной миниатюре, место, где пространство может растягиваться и деформироваться с разной скоростью в разных направлениях», - поясняет Саттер.


Кроме того, в зависимости от температуры чёрной дыры, некоторые из этих областей пространства могут вызвать новый цикл вибраций, которые затем создают новый участок расширяющегося пространства, который в свою очередь запускает новый цикл вибраций, которые затем создают новый участок расширения пространства, и так далее, и так далее во все меньших масштабах.


Это сформировало бы миниатюрную фрактальную вселенную, бесконечно повторяющуюся от большей до меньшей. Совершенно невозможно представить, как бы выглядело путешествие через такое пространство, но это определенно было бы необычно.


В центре этого причудливого фрактального хаотического беспорядка должна находиться сингулярность: точка с бесконечной плотностью, место, где находится всё, что составляло материю, когда-то упавшую в черную дыру.


К сожалению, даже используя свои математические методы сверхзаряженной сверхпроводимости, исследователи не могут описать, что происходит в сингулярности. Вся известная физика рушится, и для ее полного описания требуются новые теории гравитации.

Никто не знает, что может обнаружиться в центре сверхпроводящей чёрной дыры. Но, учитывая как обычный, не связанный с наукой зритель, залипает на видах фракталов, большинству путешествие к такому центру понравилось бы.


Смотрите также анонсы новых тем на нашем ютуб-канале
Показать полностью 1
197

Астрофизики опять получили Нобелевскую премию. За исследования черных дыр

Астрономы всего мира находятся в приподнятом настроении, ведь уже шестая Нобелевская премия по физике вручается за открытия в области астрофизики. В этом году премию получают: Роджер Пенроуз "за открытие того, что образование черной дыры является надежным предсказанием общей теории относительности", и Рейнхард Генцель вместе с Андреа Гез "за открытие сверхмассивного компактного объекта в центре нашей галактики".


Подробнее, почему премию присудили только сейчас и в чем заслуга номинантов рассказывает Кирилл Масленников, астроном Пулковской обсерватории.

Британский физик-математик и философ науки Роджер Пенроуз открыл, что образование черных дыр является следствием общей теории теории относительности.


Немецкий ученый-астрофизик Рейнхард Гензель (Институт внеземной физики общества Макса Планка) и американский астроном и доктор философии Андреа Гез (профессор кафедры физики и астрономии в Калифорнийском университете) обнаружили, что невидимый и чрезвычайно тяжелый объект управляет орбитами звезд в центре нашей галактики. Они пришли к выводу, что единственным объяснением этому может быть сверхмассивная черная дыра.


66

Как млекопитающим регенерировать, а графену улучшить квантовые вычисления. Дайджест новостей науки за неделю

Каждый понедельник делаем подборку из самых интересных новостей науки и рассказываем о них подробнее. Смотрите видео или включайте фоном как подкаст.

В этом выпуске мы рассказываем как изменились мозги млекопитающих и птиц через 300 миллионов лет эволюции; где обнаружена вода в жидком состоянии на Марсе; что нужно для регенерации кожи млекопитающих; как личинки мух помогут от сельскохозяйственных болезней и как графен улучшил болометры для квантовых измерений?

Содержание ролика:

00:37 Эволюция мозга млекопитающих и птиц

03:16 Озера на Марсе

05:53 Регенерация кожи

07:35 Личинки мух могут бороться с сельскохозяйственными болезнями

09:19 Графен улучшил свойства болометров для квантовых измерений


(все ссылки на пруфы и исследования под роликом на ютубе)

356

Научные железяки: разбираем анализатор энергии электронов

Если пройтись по научным станциям на синхротроне, то на многих из них можно заметить общие элементы: вакуумные камеры, трубы, фольга, куча проводов и разбросанные инструменты.


Но сейчас нас интересуют вон те блестящие полусферы. Кое-где они "голые", но во многих местах прикрыты фольгой, как и другие вакуумные камеры.

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Небольшое отступление:

Фольга в вакуумной технике используется для теплоизоляции при прогреве вакуумных камер. Стальная камера обматывается снаружи нагревательным элементом, например проводом с высоким сопротивлением, и прогревается до 120С в течении нескольких часов (обычно от 12-ти часов до пары суток). Чтобы прогрев был более равномерный, снаружи "наматывается" несколько слоев обычной алюминиевой фольги. Она служит теплоизолятором и удерживает горячий воздух возле стенок камер. При нагреве с внутренней поверхности камеры испаряется адсорбированная вода. После охлаждения до комнатной температуры в камере можно получить вакуум на несколько порядков выше, чем без прогрева. Для вакуума до 10e-7 мбар можно и не греться, но всё, что лучше, требует прогрева. По-английски процесс называют bake-out - отжиг или прогрев.


Беглый взгляд на обмотанные фольгой камеры и трубы позволяет определить, какие части оборудования работают под высоким вакуумом. Теперь вы сможете легко находить высоковакуумное оборудование на фотографиях из любой лаборатории планеты.

Вернемся к загадочным "грибам".


Это - полусферический (кто бы мог подумать!) анализатор энергии электронов:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Тут надо зайти издалека.

Есть несколько методов исследования вещества, при которых из подопытного образца вылетают электроны разной энергии. Например, если на любой материал посветить, как в нашем случае, ультрафиолетовым или рентгеновским лучом, то из материала полетят "выбитые" излучением электроны (кстати, за объяснение этого эффекта, называемого "фотоэффект", Эйнштейн получил Нобелевскую премию, а не за теорию относительности). И не только они, там есть еще куча вторичных процессов, в результате которых вылетают электроны других энергий и даже вторичное излучение. Но сегодня нас интересуют только электроны.


Точно зная, какая часть электронов какой энергией обладает (т.е. зная энергетический спектр электронов), можно не просто определить химический состав, но и определить типы связей, отслеживать химические реакции и т.д. Например, по положению пиков на спектре можно определить тип соединения:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Такой способ изучения вещества называется фотоэлектронной спектроскопией. К названию еще добавляют тип излучения. В нашем случае это рентгеновская фотоэлектронная спектроскопия (X-Ray Photoelectron Spectroscopy - XPS). Результатом такого измерения является энергетический спект электронов. Примерно, как на картинке ниже (картинка из Интернета):

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Тут по вертикали отложено количество отсчетов (количество электронов), а по горизонтали - их энергия связи (а если смотреть слева направо, то кинетическая энергия) в электрон-вольтах. Но в волшебный мир спектроскопии мы погрузимся в другой статье, а сейчас вернемся к железякам.


Как этот самый спектр получить? Нужно как-то умудриться померить энергию (ну или скорость) каждого электрона, который вылетает из образца. Тут применен широко распрострнненный подход: разницу в одной величине, которую сложно измерить (в нашем случае энергия) нужно однозначно преобразовать в разницу в другой величине, которую померять намного проще (в нашем случае - в координату, т.е в расстояние, которое мы померяем линейкой).


Если электрон (заряжен отрицательно) будет лететь между двумя заряженными пластинами, то он будет отклоняться в сторону положительно заряженной (этим занимается сила Лоренца). Причем, отклоняющая сила заряженных пластин не зависит от скорости электрона - она одинаково поворачивает и быстрые и медленные электроны. Это означает, что быстрые электроны полетят по бОльшей дуге, чем медленные. В качестве аналогии можно представить наклонную плоскость, по которой поперек склона катают шарики (рисунок а). Шарик с большей начальной скоростью прокатится дальше, чем медленный шарик. Измерив расстояния, на которое прокатился шарик, можно вычислить его начальную скорость. Только вместо шариков у нас электроны, а вместо гравитации - электрическое поле.

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Чтобы электроны не ударялись в нижнюю пластину, ее можно согнуть дугой (рисунок б). Верхнюю пластину при этом тоже придется завернуть - нам нужно, чтобы электрическое поле между пластинами было равномерное, т.е. расстояние между ними везде должно быть одинаковым.

В самом низу мы поставим экран с люминофором, в который будут ударятся электроны и создавать светящиеся точки, прямо как в старых телевизорах. Медленные электроны будут давать точки в верхней части экрана. Чем быстрее электрон, тем ниже будет точка на экране. Линейкой можно не измерять - сейчас ставят камеру и подсчитывают яркость и положение пикселей на изображении.

После изгибания пластин у нас получился цилиндрический спектрометр.

Теперь представьте, что электроны летят не только в плоскости рисунка, но и под углом к нему. Чтобы они не задевали внутреннюю пластину, ее нужно закруглить и в перпендикулярном направлении, т.е. использовать не цилиндр, а полусферу. Кроме этого, мы не хотим, чтобы в наш спектрометр залетали какие попало электроны с разных направлений, поэтому перед входом мы поставим устройство со сложным названием "апертура". А по простому - дырка (да-да, я в курсе, что дырки в медицине, а в технике отверстия). А перед апертурой мы поставим настоящий объектив, почти как на фотоаппарате, только электростатический, а не стеклянный. Вот такая штука получилась в итоге (картинка из Википедии):

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

На картинке выше все электроны прилетают в одну точку, потому что у них одинаковая энергия. Задача объектива - собрать электроны, летящие под небольшим расходящимся углом и сфокусировать их в точку на экране. Напряжение на полусферах выбирается так, чтобы электроны с определенной кинетической энергией, называемой pass energy, прилетели ровно в середину экрана. Электроны с другой энергией попадут в другую область экрана, и, измерив отклонение с помощью камеры, можно будет вычислить их начальную энергию.


Теперь вооружимся гаечными ключами и шестигранниками и приступим к разборке:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Этот старичок очень даже заслуженный. На его счету открытие в 2001 году эффекта Рашбы на поверхности магнитных металлов (O. Krupin - Rashba effect at magnetic metal surfaces. Physical Review B), от которого даже журнал Nature был в шоке.


Анализатор уже отстыкован от вакуумной камеры и лежит на столе. В нижней части из выкуумной трубы торчит "хобот" электростатических линз. В верхней - видна задняя панель видеокамеры. В центре - оранжево-коричневая ручка, которая вращает диск с набором апертур. Еще видны три электрических разъема.


Кладём его "хоботом" вниз и откручиваем 36 болтов М10:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Это вовсе не та полусфера, на которую подается потенциал, а корпус вакуумной камеры. Спектрометр работает в высоком вакууме, иначе электроны быстро рассеются на молекулах газа и либо вообще не долетят до экрана, либо прилетят не в то его место, куда положено.


Вон тот торчащий вверх маленький фланец с окошком находится как раз напротив линз и апертуры. Через него можно посмотреть глазом на образец и прицелится для точной настройки держателя.


Снимаем крышку:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Медная выкуумная прокладка остается на крышке и тут её не видно.  Зато у нас тут снова какая-то кастрюля, а не полусфера.


Во всех наших рассуждениях выше мы использовали электрическое поле и ни разу не упомянули магнитное. А оно тоже входит в силу Лоренца и поворачивает летящие электроны. Причем, тем сильнее, чем быстрее электрон. В общем, оно нам сильно мешает в такой красивой конструкции спектрометра.


Так вот: эта кастрюля - магнитный экран. Она сделана из "мю-металла" - вида пермаллоя. Это магнитомягкий сплав никеля, железа и меди с очень большой магнитной проницаемостью (она обозначается греческой буквой мю - μ - отсюда и название). Кожух из такого материала значительно ослабляет внешние магнитные поля, и ничто неучтенное электроны не поворачивает.


Откручиваем красивые болтики из медь-бериллиевого сплава и снимаем магнитный экран:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

И, внезапно, под ним еще одна кастрюля - магнитный экран. Да еще и на 36-ти мелких болтиках, а не на 12-ти, как предыдущая. Тут мои нервы не выдержали и я пошел пить кофе.


В правой части фотографии видна "крышка" магнитного экрана от первой "кастрюли". Она экранирует магнитное поле со стороны линз и создает почти полностью закрытый объем. Но магнитное поле Земли, ослабленное даже первым экраном в 10-20 раз, всё равно вносит значительные искажения в работу спектрометра. Его нужно ослабить еще во столько же раз. Для этого и установлен второй магнитный экран. Вообще, двойное магнитное экранирование - это стандартный подход во многих измерительных системах. Такое решение позволяет ослабить внешние поля в 100 и более раз - с 50 микротесла естественного поля Земли до примерно 0,5 мкТ. А если экран правильно отожжен и по нему никогда не стучали, то и до 0,1 мкТ. Тут еще нужно не забывать, что и без естественного поля вокруг спектрометра полно стальных деталей, электромоторов и кабелей.


Снимаем и второй магнитный экран:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Уже интересней. Эта блестящая алюминиевая деталь и есть внешняя полусфера. Точнее, полусфера выполнена на её внутренней стороне, а это мы видим наружную сторону, на которой сделаны проточки для уменьшения веса. В принципе, можно было и не протачивать, а оставить целый цилиндр. Также видны провода, идущие от разъемов и кое-какая механизация:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Откручиваем еще четыре болта, спрятанных в опорах, и отстыковываем спектрометр от корпуса и магнитной защиты. Вот он на столе:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Справа - колонна электростатических линз.

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Хорошо видны изолирующие проставки между металлическими цилиндрами. Каждый цилиндр подключен проводом к блоку управления, который управляет потенциалом, изменяя параметры оптики.


Вот картинка, иллюстрирующая принцип работы электростатической линзы:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Это просто металлические трубки с разным потенциалом. В зазорах между трубками линии электрического поля искривляются к оси, и электрон (или любая другая заряженная частица) отклоняется. Изменяя потенциал на каждой трубке можно изменять параметры оптики. Тут важно запомнить, что линзы - это не сами трубки, а промежутки между ними. В нашем случае у нас шесть зазоров - оптика несколько более сложная, чам на картинке.


На самом деле система линз отвечает не только за фокусировку/увеличение, но и за изменение скорости электронов.


Когда выше мы рассматривали принцип работы анализатора, то указали, что центральная траектория соответствует электронам определенной энергии (называемой pass energy). Для того, чтобы получить спектр с высоким разрешением, эта центральная энергия выбирается небольшой и составляет, обычно, от 10 до 50 электрон-вольт. Это означает, что электроны, которые летят быстрее или медленнее, просто не попадут на люминофор, так как ударятся во внешнюю или во внутреннюю полусферу соответственно. До люминофора долетают только электроны, чья энергия отличается от энергии центральной траектории не больше, чем на 10%.


А теперь представим, что мы хотим снять с высоким разрешением спектр энергии электронов от 150 до 1000 эВ. Мы можем выставить нашу центральную энергию на 50эВ и не изменять её. А с помощью линз замедлять все электроны на 100 эВ. Таким образом у нас по центральной траектории полетят те электроны, чья начальная энергия (до замедления) была 150 эВ, и мы получим кусочек спектра для энергий от 145 до 155 эВ (начальная энергия ± 10% от pass energy ). Теперь можно замедлять на 110 эВ и снять спектр для энергий от 155 до 165 эВ. Таким образом  управляя торможением электронов можно просканировать весь диапазон интересующих нас энергий и соединить их в общий спектр. Всё это делается автоматически, пользователь только указывает интересующие его параметры спектра.


На самом деле электроны в системе линз не только замедляются, но и ускоряются. Фокусировка выполняется на бОльшей энергии, а торможение происходит уже перед входом в полусферы.

Ниже приведены графики кинетической энергии электронов вдоль их траектории внутри спектрометра для двух разных режимов работы оптики:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Мы видим, что на входе в первую линзу энергии электронов одинаковые. В самом конце пути они тоже одинаковые, однако координаты электрона вдоль всего пути и на экране будут разные для этих режимов:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Тут видно, насколько сильно могут меняться настройки оптики.


Вернемся к нашему спектрометру:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Слева в круглом окне немного виден люминофор, на котором и будут светиться точки. В центре находится диск, к которому прикреплена пластина с отверстиями разного размера. Её край виден выше и правее. Вращая диск той самой ручкой, которую мы видели снаружи, можно расположить напротив линз апертуру нужного размера. Левее к диску пружиной прижимается ролик, который фиксирует диск в определенном положении и не позволяет ему свободно вращаться.


Пришло время отстыковать внешнюю полусферу и заглянуть внутрь:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Слева - внутренняя полусфера, справа - внешняя. Как вы заметили, это не совсем-то и полусферы, а какие-то концентрические ступеньки. Но это не так уж и важно - при мелком шаге ступенек достаточно того, чтобы их огибающая была сферой. Поле на небольшом удалении будет равномерным, а изготовить такие ступеньки намного проще, чем вытачивать полусферу.


Поверхность выглядит почти черной - она покрыта углеродным напылением. Дело в том, что те электроны, которые не долетают до экрана, а врезаются в полусферы, выбивают из поверхности вторичные электроны.  А вот они уже вполне могут долететь и засветить экран в любых местах, испортив измерение. Для исправления ситуации на металлические поверхности наносят углеродное покрытие, которое снижает коэффициент вторичной электронной эмиссии.

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Выше полусферы видна поворотная пластинка с набором щелей разной ширины (от 0,2 до 4 мм). Она дублирует точно такую же пластинку на обратной стороне и прикреплена к тому же поворотному диску. Ниже мы видим то место, в которое попадают электроны. И тут стоит очень хитрое устройство - микроканальная пластина:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Дело в том, что один электрон вызывает очень слабое свечение люминофора, поэтому его надо как-то размножить. Вместо массива фотоэлектронных умножителей используется пластина с наклонными микроканалами, покрытыми материалом с высоким коэффициентом выхода вторичных электронов:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

На верхнюю и нижнюю поверхность пластины нанесены электроды, к которым прикладывается напряжение для ускорения вторичных электронов. Одиночный электрон, пролетевший через анализатор, попадает в один из каналов и вызывает лавину вторичных электронов. А под пластиной уже стоит люминофорный экран, в котором эти вторичные электроны вызывают яркое свечение. Коэффициент умножения электронов (до десяти тысяч) регулируется напряжением на электродах. Разрешение получаемого изображения - порядка 50 точек на миллиметр.


Вот и всё устройство анализатора. Ну, кроме блоков управления и софта, конечно. Еще нужно упомянуть, что в объективе установлены отклоняющие пластины, с помощью которых можно немного сдвигать центральную траекторию. Но в этот раз линзы мы не разбирали, поэтому фото пластин не покажу.

Вот так апертура выглядит при взгляде сквозь линзы:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

А вот так это выглядит в работе при взгляде на исследуемый образец окно вакуумной камеры:

Научные железяки: разбираем анализатор энергии электронов Наука, Картинки, Длиннопост, Физика, Электроны, Анализатор

Большой конус слева - это элемент первой линзы анализатора (тут анализатор другой модели, и форма линзы другая). В центре - круглый диск диаметром 8 мм. Это - исследуемый образец. На него светит луч рентгеновского излучения из синхротрона и выбивает электроны. Но камера, как и глаз, в рентгеновском диапазоне не видит, поэтому и яркого пятна на образце не видно. А вот если туда поместить кусочек, к примеру, иттрий-алюминиевого граната, легированного церием, (Ce:YAG - красивые желтые "стёклышки"), то на нем будет яркое светящееся пятно в том месте, куда попадает рентгеновский луч.


На сегодня всё, а нам еще собирать анализатор обратно и проверять его работу.

Если есть вопросы - смело задавайте в комментариях.

Показать полностью 23
345

Пара слов о плазме, ч. 9. Ветер в поле

Жизнь пресна, когда в ней нет конференций по физике плазмы и термоядерному синтезу.

Если ты физик-плазмист, конечно. Ни обсудить науку, ни послушать неожиданные комменты на свою работу, ни выпить вина на берегу Атлантики. А ещё не выйдет послушать доклады о плазме в космосе. Даже если ты никаким боком не относишься к астрофизике, там всегда интересно посмотреть на самые красивые картинки всей конференции.

Что-нибудь вот такого плана [1]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Если что, на этой картинке — плотность тока в токовом слое при магнитном пересоединении. Что значат все эти слова, при чём тут астрофизика, ветер и поле — сейчас расскажу.

Большую часть времени Солнце — это такой большой постоянный магнит с северным полюсом с одной стороны, южным полюсом — с другой, и мелкой лохматостью в пятнах и вспышках. Вот так это выглядит на картинке, нарисованной по данным с телескопов [2]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Или вот, схематичная картинка — без подробностей, как в учебнике физики. Большую часть времени поле такое, как в 2010 и 2017 годах [3]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Фокусы начинаются, когда вспоминаешь, что Солнце крутится. И эти картинки в школьных учебниках уже не покажут (18+, safe for work).

Солнце ежесекундно выбрасывает пару мегатонн горячей плазмы. Горячая плазма привязана к магнитному полю — частицы могут скользить вдоль него, но почти не могут сдвинуться поперёк. Там, где в магнитном поле больше энергии, чем в заряженных частицах, плазма летит туда, куда её заставляет лететь магнитное поле. Так получаются корональные петли. Вот они [4]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Но магнитное поле Солнца ослабевает с высотой, а плазма летит. В какой-то момент она отрывается, улетает и становится солнечным ветром, летящим со скоростью в несколько сотен километров в секунду. В нём давление плазмы больше давления магнитного поля, и уже поле летит туда, куда хочет плазма.

И вот плазма несёт к Земле магнитную силовую линию, привязанную к какой-то точке на Солнце. А Солнце за две недели уже повернулось противоположной стороной. В итоге ветер загибает силовые линии вот в такие спиральки [5]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Но магнитное поле не может быть само по себе, для его существования нужны какие-то токи. Солнечная система оказывается здоровенной динамо-машиной. Эти токи разгоняются на границе между силовыми линиями, идущими от Солнца, и линиями, которые к нему возвращаются. Эта граница наклонена вместе с магнитными полюсами Солнца. Солнечный ветер запоминает этот наклон Солнца и уносит его с собой. А значит, если сейчас этот токовый слой сверху от Земли, то через две недели он окажется снизу. И вот так выглядит вся эта токовая спиралька размером во всю Солнечную систему, называемая спиралью Паркера [6]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Сверху от токового слоя магнитное поле солнечного ветра направлено от Солнца и налетает на Землю, будучи направленным с юга на север. А через две недели, снизу от слоя — уже с севера на юг.

У Земли же магнитное поле не меняется, а значит, две недели в месяц солнечный ветер вмазывает в магнитосферу Земли магнитное поле, которое направлено не туда.

А значит, и здесь должна получиться динамо-машина, которая разгонит вокруг земли слой тока. Токовый слой разделит земные силовые линии, идущие с юга на север, и солнечные, идущие с севера на юг. Вот здесь он, обозначен крестиком, где магнитосфера Земли продавлена солнечным ветром [7]:

Пара слов о плазме, ч. 9. Ветер в поле Физика, Плазма, Космос, Солнце, Магнитное поле, Наука, Солнечный ветер, Гифка, Видео, Длиннопост

Слой тонок и неустойчив, ток в нём распадается на тонкие струйки и затухает. Именно это нарисовано на заглавной картинке. Ток затухает — силовые линии ветра и магнитосферы разрываются, и обрывок линии от Солнца перезамыкается на обрывок силовой линии Земли и улетает дальше. Силовые линии стремятся стать короче — тут их можно представить длинными резинками.

И вот эти огромные космические рогатки стреляют солнечным ветром над нашими головами.

По-моему, это просто красиво.


Ps. Если кто хочет увидеть одного из победителей конкурса на самое красивое плазменное видео с европейской конференции 2018 года — вот оно:

Pps. Пост навеян тем, что европейское космическое агентство выложило в открытый доступ сырые данные с зонда Solar Orbiter, летающего вокруг Солнца. Но в них, конечно, куда больше подробностей.

Иллюстрации взяты отсюда:

[1] https://phys.org/news/2015-06-mastering-magnetic-reconnectio...

[2] https://svs.gsfc.nasa.gov/12329

[3] https://insider.si.edu/2017/07/3d-simulations-reveals-sun-fl...

[4] https://www.sciencealert.com/physicists-have-measured-the-ce...

[5] http://old.inspirehep.net/record/1605710/plots

[6] https://en.wikipedia.org/wiki/Interplanetary_magnetic_field

[7] http://space.rice.edu/IMAGE/livefrom/sunearth.html

Показать полностью 5 1
144

Памяти Олега Васильевича Верходанова

Памяти Олега Васильевича Верходанова Рисунок, Рисунок карандашом, Астрофизика, Астроном, Олег Верходанов, Астрономия, Учусь рисовать

5 апреля не стало Олега Васильевича Верходанова ..
Я только только познакомилась с его лекциями, которые всегда были наполнены множеством новых фактов и очень тонким юмором.

"Кто смотрел Чужого поднимите руки?"
"Реликтовое излучение это самое красивое, что есть в этом мире"
"Интерстеллар это фильм о формуле.."

мои любимые лекции:
1. Реликтовое излучение как основной космологический тест https://youtu.be/oHxyY1bu8J8
2. Одиноки ли мы во вселенной https://youtu.be/HSdZC3vl6Dk

605

Под полюсами Марса найдена вода

С помощью спец радара MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) (Марсианский продвинутый радар для подповерхностного и ионосферного сканирования) учёные обнаружили несколько подземных водоёмов под ледяными покровами Марса.
Подземные озёра раскинулись на площади около 75000 км2. Самое большое центральное озеро имеет длину около 30 км.
По предварительным данным (+с точки зрения локальных температур) озёра являются очень солёными, с уровнями солей превышающими морской в ~20 раз.
https://www.nature.com/articles/s41550-020-1200-6
https://www.nature.com/articles/d41586-020-02751-1
Вода обозначена синим.

Под полюсами Марса найдена вода Марс, Вода, Наука, Астрономия, Открытие, Текст
75

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы

Миссия IMAP поможет исследователям лучше понять границу гелиосферы, своего рода магнитного пузыря, окружающего и защищающего Солнечную систему. В этой области постоянный поток частиц от Солнца, называемый солнечным ветром, сталкивается с материалом из остальной части Млечного Пути. Это столкновение ограничивает количество вредного космического излучения, входящего в гелиосферу. IMAP займется сбором и анализом частиц, которые преодолевают защитный рубеж.

«Солнце много делает для нашей защиты. IMAP имеет решающее значение для расширения нашего понимания того, как работает этот «космический фильтр», – сказал Деннис Андручик, заместитель помощника директора NASA по научным миссиям.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

Другая цель миссии – больше узнать о генерации космических лучей в гелиосфере. Местные космические лучи, а также поступившие из Галактики и из-за ее пределов воздействуют на космонавтов, могут нанести ущерб технологическим системам и кроме этого играют свою роль в существовании самой жизни во Вселенной.


Космический аппарат будет располагаться на расстоянии около 1,5 миллиона километров от Земли в первой точке Лагранжа (L1). Это позволит зонду максимально использовать инструменты для мониторинга взаимодействия солнечного ветра и межзвездной среды во внешней Солнечной системе.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

На зонде будут размещены 10 научных инструментов, предоставляемых международными исследовательскими организациями и университетами. Полетит он на Falcon 9 в октябре 2024 года. Общая сумма запуска составила примерно $109,4 млн., включая обслуживание запуска и другие связанные с миссией расходы."

Показать полностью 1
429

Принцип Паули: один из важнейших принципов в понимании природы вещества

Порой кажется странным, почему атомы и молекулы ведут себя определенным образом. Например, почему мы не можем проходить сквозь стены, но инфракрасное излучение через них проходит. Все может объяснить один принцип — принцип исключения Паули.

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

©Wikipedia

Принцип исключения Паули утверждает, что два электрона (или два любых других фермиона) не могут иметь одинаковое квантово-механическое состояние в одном атоме или одной молекуле. Другими словами, ни одна пара электронов в атоме не может иметь одинаковые электронные квантовые числа.


Этот принцип был предложен австрийским физиком Вольфгангом Паули в 1925 году для описания поведения электронов. В 1940-м он расширил принцип до всех фермионов в своей теореме о связи спина со статистикой. Бозоны — частицы с целым числом спинов — не следуют принципу исключения. Таким образом, идентичные бозоны могут занимать одно и то же квантовое состояние (как, например, фотоны в лазерах). Принцип исключения Паули применим только к частицам с полуцелым спином.


О спине проще всего думать как о вращении частицы вокруг собственной оси. Конечно, это сильное упрощение — и в реальности невозможно сказать наверняка, вращается ли на самом деле нечто столь малого размера вроде электрона. В общем говоря, спин подчиняется тем же математическим законам момента импульса, что и все вращающиеся объекты в классической физике. Здесь есть два важных момента, о которых стоит помнить: скорость вращения и направление оси, вокруг которой частица вращается (верхний или нижний спин).

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

Вольфганг Паули во время лекции / © W. Dieckvoss

Когда в 1922 году Отто Штерн и Уолтер Герлах открыли спин, их эксперименты показали, что присущий момент импульса, или спин, частицы вроде электрона квантовался, то есть мог принимать только определенные дискретные значения. Спин композитных частиц, таких как протоны, нейтроны и атомные ядра, — просто сумма спинов и орбитального момента импульса частиц, из которых они состоят, а значит, они подчиняются тем же условиям квантования. Таким образом, спин — это абсолютно квантово-механическое свойство частицы и оно не может быть объяснено классической физикой.


Позже выяснилось, что есть две подкатегории частиц: частицы с целым спином, известные сегодня как бозоны — среди которых фотоны, глюоны, W- и Z-бозоны, — а также гипотетические гравитоны и частицы с полуцелым спином: фермионы, включающие в себя электроны, нейтрино, мюоны и кварки, из которых состоят композитные частицы типа протонов и нейтронов. Различие между бозонами и фермионами можно описать тем, что у первых есть симметричные волновые функции, а у фермионов волновые функции асимметричны. Концепция частицы с полуцелым спином — очередной пример парадоксальной природы субатомных частиц: грубо говоря, фермиону нужно обернуться вокруг своей оси дважды, прежде чем он примет прежнее положение.


Важность этого различия для квантовой теории состоит в том, что волны вероятности бозонов «переворачиваются» — или инвертируются, — прежде чем успевают интерферировать друг с другом, что, по сути, и ведет к их «стадному» характеру и коллективному поведению в лазерах, сверхтекучих жидкостях и сверхпроводниках. Фермионы, однако, не переворачивают свои волны вероятности, что, помимо прочего, приводит к «асоциальному» характеру. Так и получается, что в квантовой механике складывать спины частиц нужно очень аккуратно и при помощи специальных правил вдобавок к моменту импульса.

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

Атом углерода. На первом энергетическом уровне (оболочке первого уровня) расположено два электрона. На втором — уже четыре / © AWS

Все вышеописанное и подводит нас к одному из важнейших принципов в квантовой механике — принципу исключения Паули. Как было сказано выше, он гласит, что два идентичных фермиона не могут занимать одно и то же квантовое состояние одновременно (хотя два электрона, например, могут приобрести противоположные спины, чтобы дифференцировать свои квантовые состояния). Этот принцип можно описать так: никакие два фермиона в квантовой системе не могут обладать одинаковыми значениями всех четырех квантовых чисел в любой момент времени. Принцип исключения Паули эффективно объясняет продолжительное существование очень высокоплотных белых карликов, а также существование разных типов атомов во Вселенной, крупномасштабную стабильность вещества и ее основную массу.


Чтобы понять важность этого принципа, необходимо знать, что, согласно боровской модели атома, электроны в атоме (существующие в том же количестве, что и протоны в ядре конкретного атома, чтобы общий заряд равнялся нулю) могут занимать только конкретные дискретные орбитальные позиции вокруг ядра, что также называют оболочкой атома. Чем ближе электроны к ядру, тем сильнее электрическая сила притягивает электрон внутрь и тем больше энергии понадобится, чтобы «вырвать» его из лап ядра. На самых близких к ядру орбиталях могут поместиться всего два электрона — один с верхним спином, а один — с нижним, чтобы иметь разные квантовые состояния. Оболочка энергетическим уровнем выше может вместить уже восемь, на уровень выше — 18, на следующем уровне — 32.


Принцип исключения Паули диктует, как электроны могут расположиться внутри атома по его орбиталям. Тот факт, что два электрона не могут одновременно занимать одно и то же квантовое состояние, не дает им «нагромождаться» друг на друга, тем самым объясняя, почему материя занимает исключительно свое место и не позволяет другим материальным объектам проходить через себя, но в то же время позволяет проходить через себя свету и излучению.

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

Два атома формируют ковалентную связь. У каждого из атомов есть всего один электрон на самой дальней орбитали. Для получения более низкого энергетического состояния атомы объединяют свои электроны и образуют общую орбиталь, содержащую два электрона / © The Physics Mill

Этот принцип также объясняет существование разных атомов в периодической таблице и разнообразие мира, окружающего нас. Например, когда атом получает новый электрон, он всегда попадает на самый низкий из доступных энергетических уровней (наиболее отдаленную от ядра орбиталь). Два атома с «закрытыми» оболочками не могут осуществить химическую связь друг с другом из-за того, что электроны одного атома не находят доступных квантовых состояний, которые они могли бы занять в другом атоме. Итак, порядок электронов, а именно — электронов на самой отдаленной орбитали, также влияет на химические свойства элемента и способность атомов ко взаимодействию с другими атомами, а значит, и на то, как взаимодействуют молекулы при формировании газов, жидкостей или твердых тел, и на то, как они объединяются в живых организмах.


Принцип исключения Паули — один и самых важных принципов в квантовой физике, по большей части из-за того, что все три типа частиц, из которых состоит вся обычная материя (электроны, протоны и нейтроны), подчиняются ему. Однако интересно, что этот принцип не поддерживается никакими физическими силами, известными науке. Когда электрон входит в ион, он каким-то образом уже «знает» квантовые числа электронов, находящихся там, то есть знает, какие атомные орбитали он может занять, а какие — нет.


Источник: Naked Science.

Вам будет интересно:

10 природных явлений на Земле, которые мы не понимаем

Добро пожаловать в войд Волопаса — самое страшное место во Вселенной

Поедатели человеческой плоти: от ушных червей до цитотоксических пауков

Показать полностью 3
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: