Дубликаты не найдены

+1
8 февраля 2019 года глава Роскосмоса Дмитрий Рогозин через социальную сеть Twitter объявил о завершении сборки первого двигателя РД-171МВ, который теперь готовится к огневым испытаниям

Уже испытали?

раскрыть ветку 1
+1

Скорее всего нет.

Иллюстрация к комментарию
+1

Маск просил передать:

1) отличный батут!

2) с такой мощью, можно спутники запустить в любую точку мирового океана и на любую глубину!

3) все равно не "вау".

4) ни "теслы", ни Рипли

5) обратно не возвращается

Похожие посты
113

В двигателях ракеты "Ангара" обнаружили "опасную проблему"

В двигателях ракеты "Ангара" обнаружили "опасную проблему" Космос, Ракета, Ангара, Рд-191, Проблема, Двигатель, Техника, Энергомаш

Двигатели ракеты "Ангара" РД-191 могут при старте разрушить ее, заявили в НПО "Энергомаш" — производителе двигателей.


В преддверии Королёвских чтений по космонавтике в Москве специалисты "Энергомаша" представили тезисы своего доклада.


В нем говорится, что особенность ракет "Ангара-А5" — пакетное расположение первой и второй ступеней, то есть четыре блока первой ступени окружают блок второй.

Из-за этого возникает необходимость дросселирования — работы при пониженном давлении — и продолжительной работы двигателя центрального блока на режиме 30 процентов от номинального значения тяги.


При тяге ниже 38 процентов в двигателях "Ангары" начинаются низкочастотные колебания, которые могут "привести к возникновению резонанса и разрушению конструкции ракеты-носителя", говорится в документе.


Отмечается, что меры борьбы с этой проблемой не всегда срабатывают.


Так, для устранения этой особенности в конструкцию устройства внедрен специальный клапан, что помогает уменьшить амплитуду колебаний.


Однако, по словам специалистов, на отдельных экземплярах двигателя колебания сохраняются.

"Из чего можно сделать вывод, что эффект от использования трехпозиционного клапана может быть разным на различных экземплярах двигателя", — говорится в документе.


"Ангара" — семейство экологически чистых ракет-носителей различных классов. В него входят легкие носители "Ангара-1.2", средние "Ангара-А3", тяжелые "Ангара-А5 и ракеты повышенной грузоподъемности "Ангара-А5В". Пока состоялся только один пуск тяжелой ракеты "Ангара-А5" — в 2014 году. Второй должен был пройти в 2016-м, но его перенесли на конец 2019-го.


Ист.

Показать полностью
671

В США пристыдили «Роскосмос» за «сказки»

В США пристыдили «Роскосмос» за «сказки» Роскосмос, NASA, SpaceX, Технологии, Космос, Ракета, Двигатель

«Роскосмосу» и его партнерам вместо демонстрации видеороликов на YouTube и необоснованных обвинений в адрес американской компании SpaceX и ее главы Илона Маска следовало бы создать новую ракету, полагает редактор ArsTechnica Эрик Бергер.


Американское издание обратило внимание на заявление генерального директора российского «Центра Келдыша» (входит в «Роскосмос») Владимира Кошлакова, который, представляя в ролике, опубликованном на YouTube, облик космического аппарата с ядерной энергодвигательной установкой, заявил, что SpaceX использует старые технологии, а также опирается на помощь государства.


«Когда в вашей стране летают ракеты и корабли, созданные полвека назад, вы не можете говорить, что другие страны используют "старые технологии". Кроме того, создайте двигатель (ядерную энергоустановку — прим. «Ленты.ру») и прекратите делать видео для YouTube, и мы поверим, что он когда-нибудь появится», — пишет Бергер.


В 2014 году НАСА выбрало компании SpaceX и Boeing для строительства пилотируемых космических кораблей CST-100 (Starliner) и Dragon 2 соответственно. Общая стоимость работ по их созданию оценивается в 4,2 миллиарда долларов для Boeing и 2,6 миллиарда долларов для SpaceX.


В настоящее время SpaceX является единственной в мире компанией, успешно реализовавшей многоразовые технологии в серийной ракете. Многочисленные аналогичные советские и российские проекты никогда не получали практического воплощения.


https://lenta.ru/news/2018/12/04/roscosmos/

122

Поджигаем 2 кг ракетного топлива

Привет от хомяков!


В сегодняшнем посте покажем как горит два килограмма карамельного топлива, которое предназначалось для запуска ракет. Так же, испытаем двигатель пролежавший два года и узнаем что с ним произошло.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Мы давно планировали запуск ракет, но при пробных испытаниях выяснилось, что образцы которые раньше спокойно улетали в космос, начали взрываться без всяких на то причин!

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Топливо у нас было в составе: 1 часть сахара и 1.5 части селитры. Как выяснилось в процессе, порошок который долго отлеживался на диване перед телевизором, приобретал невероятные детонирующие свойства.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Карамельное вещество слеживалось, что в конечном итоге значительно влияло на скорость горения. Вкратце у него вышел срок годности, и он превратился в "МОНОЛИТ"

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Мы собрали все в кучу и нафаршировали ею трехлитровую банку. Правду говоря, до краев немного не хватило. Пессимист сказал бы что банка наполовину пуста, но мы та знаем как все на самом деле.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Для примера возьмем двигатель с выдержкой в два года, он там перебродил, и превратился в то, что вы сейчас увидите на своих экранах...

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Вставляем три фитиля, и наблюдаем за происходящим.....

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Как видим, старые карамельные двигатели годятся только для пускания дыма в глаза...

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост
Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

В общем, в два килограмма этого сладкого продукта мы вставляем электрозапал, данным методом мы зажигаем уже с 2006 года.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Для тех кто не в теме, этот электрозапал представляет собой лампочку с отрезанным концом, заполненную легковоспламеняющимся составом. Принцип действия простой, подаем напряжение и маленькие гномики бегут по проводам и разогревают нить накаливания, в результате чего происходит подпал.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Мы перестраховались на всякий случай, потому использовали провод длинной в 30 метром, это обезопасит некоторые присутствующие за кадром лица, и не только за кадром, и не только лица! В общем мы просто удаляемся на безопасное расстояние.


Концы проводов подключаем к центру управления полетами. Тут присутствуют удобные контакты для крепления. Сам электрозапал соединен с помощью скруток.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Когда подготовка завершена, нужно проверить целостность цепи от пульта до электрозапала.

Хорошо, что мы когда-то не поленились написать инструкцию к этому прибору, иначе пришлось бы учиться пользоваться им по-новому методом проб и ошибок. Вращаем ручку генератора и видим что синий светодиод засветился, значит все в порядке.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Теперь момент ради которого мы тут собрались. Делаем пару оборотов ручкой генератора и заряжаем накопительный конденсатор внутри белой коробки.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Время нажать красную кнопку, поехали!...

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост
Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост
Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Съемка всего процесса велась с разных ракурсов.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост
Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост
Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

В процессе горения, стекло из-за резкого перепада температуры рассыпалось на мелкие кусочки. Кто-то спросит зачем было палить селитру в банке, ведь и так понятно что она треснет.

Нам было интересно сможет ли температура горения достигнуть температур, при которых плавится стекло. За 14 секунд пока все сгорало, некоторые кусочки таки сумели под плавится, один из них вообще слипся. Температура горения была что надо.

Поджигаем 2 кг ракетного топлива Ракетное топливо, Ракета, Карамельное топливо, Hamster Time, Двигатель, Пиротехника, Хомяк, Видео, Длиннопост

Как гласит стишок, муха села на варенье, вот и все стихотворение.

Показать полностью 19 1
230

Про самый мощный ракетный двигатель

Когда речь заходит (нечасто это бывает, но всё же) про мощнейшие ракетные двигатели, то некоторые люди вспоминают про американский F-1, устанавливавшийся на "Сатурн-5", другие — про советский РД-170, крепящийся к "Энергии", а кто-то и вовсе ничего не вспомнит. И "Сатурн", и "Энергия" — это 2 сверхтяжёлые ракеты, причём первая являлась лидером по выносимой полезной нагрузке, хотя РД-170 несколько мощнее F-1.

Однако двигатель твердотопливного бокового ускорителя "Спейс Шаттла" оставляет своих конкурентов далеко позади.


Для наглядности вот вам картинка:

Про самый мощный ракетный двигатель Ракета, Space Shuttle, Шаттл, Двигатель, Гифка, Длиннопост

Краткая анатомия "Шаттла". Упрощённо вся система состоит из 4-х элементов. Топливный бак содержит топливо и окислитель для работы трёх главных (маршевых) двигателей, расположенных в нижней части орбитера — ракетоплана, в котором находится полезная нагрузка и экипаж. К баку, помимо космического корабля, крепятся два ускорителя. Длина "Шаттла" составляет 56 метров. При первом запуске топливный бак был выкрашен в белый цвет, однако в последующих пусках его красить не стали — и так сойдёт в целях снижения массы системы и экономии денег. Так он приобрёл свой фирменный оранжевый цвет.

Так вот, именно двигатель, располагающийся в боковом бустере, и является самым мощным когда-либо созданным, развивавший тягу в 12,5 меганьютон! Для 99% людей это число, вероятно, ничего не значит. Для меня тоже. Поэтому погуглив, я стал писать пост дальше.


Тяга двигателя выражается в ньютонах. Если движок выдает 1 ньютон, то он способен придать объекту массой в 1 кг ускорение в 1 м/с^2. Снова сложности, снова гуглим, что такое ускорение.

Ускорение в 1 м/с^2 означает, что за каждую секунду скорость объекта будет увеличиваться на 1 м/с. То есть взяли литровую бутылку с водой (она имеет массу как раз в 1 кг), нацепили на неё двигатель, и она через секунду будет двигаться со скоростью 1 м/с, в следующую секунду 2 м/с, ещё через секунду — 3 м/с ну и так далее.

Таким образом, один бустер способен сдвинуть с места объект массой 12500 тонн! Да и не просто сдвинуть, а ещё и увеличивать его скорость на 1 м/с каждую секунду. 2 бустера обеспечивают уже 25,5 меганьютон тяги.

Про самый мощный ракетный двигатель Ракета, Space Shuttle, Шаттл, Двигатель, Гифка, Длиннопост

126 полёт "Шаттла". Астронавты летят ремонтировать телескоп "Хаббл". Стартовая масса всей системы около 2000 тонн. Всё это с лёгкостью поднимается двумя ускорителями. Вклад маршевых двигателей орбитера в общую тягу на данном этапе незначителен — всего около 5,3 меганьютон (по ~1,8 МН на каждый двигатель).

5 двигателей (2 бустера + 3 на ракетоплане) суммарно на старте выдают невероятные 31 меганьютон тяги — это даже больше, чем у 27-двигательной Falcon Heavy. Причём более 80% тяги обеспечивают двигатели боковых ускорителей.

Про самый мощный ракетный двигатель Ракета, Space Shuttle, Шаттл, Двигатель, Гифка, Длиннопост

Сочетание в одной системе и жидкостных (собственные двигатели орбитера; на гифке по центру), и твердотопливных движков, создаёт некоторые особенности старта. Первыми запускаются двигатели космического корабля. И только когда будет получен ответ о штатной их работе, тогда включатся боковые ускорители. Такая последовательность исходит из особенностей твердотопливных двигателей — после зажигания их невозможно выключить.

Несмотря на столь мощную двигательную установку, по грузоподъёмности "Шаттл" очень серьёзно проигрывал пятому "Сатурну" и "Энергии". Первая закидывала на орбиту аж 140 тонн (5 двигателей F-1 развивали на старте 33,5 МН тяги), вторая — около 100 тонн (4 двигателя РД-170 на старте давали 28,8 МН).

"Шаттл" же вывозил около 25 тонн. Вообще, его грузоподъёмность составляла около 90 тонн. Но в эти числа входит также масса космического корабля — где-то 68 тонн. "Шаттл", в отличие от "Энергии-Бурана", не может летать без орбитера, так как он является неотъемлемой частью ракеты. А "Энергия" вполне себе могла летать без Бурана, так как являлась полностью самостоятельной системой.


Отработанные бустеры отделялись на высоте 45 километров и на парашютах спускались в океан, где их подбирала специальная поисковая группа. Затем они доставлялись на завод-изготовитель для ремонта в целях повторного использования.

Показать полностью 2
1813

Простым языком о космических двигателях

Слушайте, друзья мои, а все же космос любят? Давайте про него тогда и поговорим. О том, как именно мы бороздим просторы. Налейте чаю, получилось довольно длинно.


Как и в случае с постом про лошадиные силы лошадей, оговариваюсь сразу: я в этом вопросе всего лишь любопытствующий, не специалист. В теме разбирался путём промышленного гугления. Если на шум подтянутся профи, а пара штук точно где-то поблизости шастает, пусть смело поправляют.

Изображения взяты из поисковиков: выбирал самое наглядное и тут же его нещадно воровал.


Давайте попробуем разобраться с тем, как мы умеем передвигаться в космическом пространстве. Элементарно, на пальцах, однако с обязательными ссылками на источники, чтобы не быть как те рептилоиды.


Гипертуннели, кротовые норы, варп-драйв, подпространство, нуль-переход и прочую деритринитацию предлагаю вычеркнуть сразу. Это всё очень здорово, но к нашей суровой действительности не имеет ни малейшего отношения. Даже если вспомнить, что кротовые норы худо-бедно теоретически обосновываются, всерьёз о них поговорить можно будет лет через сто, а то и через двести. Вот тогда - заходите, с удовольствием обсудим. А пока что наука не в курсе дела.

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

Всерьёз обсуждать имеет смысл только то, что можно, пусть и с натяжками, считать применимым, либо потенциально применимым на практике. Ну и про научную обоснованность конечно же нельзя забывать.


1. Итак, во-первых давайте разберёмся, что мы имеем работающего на сегодняшний день.


1.1 Самым ординарным способом передвижения в космосе являются химические ракетные реактивные двигатели. Они несколько различаются по конструкции и по типам топлива, но суть всегда одна и та же: берём топливо, смешиваем с кислородом, поджигаем (преобразуя химическую энергию в кинетическую) и летим вперёд, выбрасывая назад газообразные продукты горения. Старый проверенный дедовский способ.

Плюс - в относительной простоте, относительной дешевизне и относительно высоком уровне проработанности.


Минус - в относительно малых скоростях и очень малой возможности манёвра. Топливо заканчивается быстро, какую скорость успел набрать в самом начале полёта, с такой и чеши себе дальше. Срок работы исчисляется секундами, иногда минутами. Ни затормозить, ни сманеврировать лишний раз нельзя. Конечно, современные аппараты не летят совсем уж "по рельсам", какой-то резерв топлива обычно есть, но всё равно возможности очень и очень ограничены.


Самый простой ХРРД:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

А вот это, например, ХРРД от Шаттла:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

1.2 Электрические ракетные реактивные двигатели. Нельзя сказать, что идея свежая, но разработки продолжаются, регулярно появляются всё более и более экзотичные новинки, которые довольно часто пускают в дело. За пять десятилетий активных экспериментов семейство ЭРД успело хорошенько разрастись вширь, на сегодняшний день существуют: ионные, плазменные, импульсные, сильноточные и термические электрические ракетные двигатели.


В качестве источников питания чаще всего используют солнечные батареи. Однако, порой, к электрическому двигателю в качестве источника питания прикручивают и ядерный реактор. Не путать с ядерными двигателями, о которых будет ниже.


Все эти двигатели, несмотря на разнообразие, всё равно в основе своей используют реактивное движение, то есть работают по принципу "а давайте чего-нибудь посильнее выкинем сзади, чтобы бодрее летелось вперёд". Отличие от химических двигателей заключается в том, что вместо банального поджигания керосина, электрический двигатель извращается с рабочим телом как-то иначе. Например, разгоняет в электрическом поле ионизированный газ или испаряет в электрическом разряде твёрдое тело.


Минус электрических двигателей в том, что развить тягу достаточную, чтобы оторваться от Земли, на сегодняшний день они не могут. То есть двигатели, говоря простым языком, слабенькие. Взлетать всё равно приходится "на химии".


Зато у них есть и неоспоримый плюс. И заключается он в экономичности, а значит - во времени работы. Если химический РД вырабатывает своё топливо за несколько минут (после чего аппарат летит по инерции, используя гравитационные манёвры), то ЭРД работают днями. И неделями. А иногда и месяцами. Да чего уж там, ионный двигатель на межпланетной станции Deep Space 1 честно отпахал три года. И ему не приходилось возвращаться на дозаправку.

Смекаете? Химический двигатель работает недолго и сразу набирает максимальную скорость. Потом - всё, ускоряться только если за счёт гравитационной пращи (манёвр вокруг какого-то крупного объекта). ЭРД же, чтобы развить такую же скорость, которую химический набрал за несколько минут, потребуется, например (условно) три месяца. А может даже год, не суть важно. Аппарат, разгонявшийся химическим двигателем, за это время успеет улететь довольно далеко. Но вот условные три месяца прошли, аппарат с ЭРД набрал ту же скорость, с которой всё это время чешет аппарат с давно потухшим химическим двигателем. Но ЭРД-то продолжает работать. Ещё через три месяца он летит уже вдвое быстрее, и прекращать свою работу не собирается. При этом он имеет свободу манёвра и в любой момент может скорректировать свой полёт. В космосе летают годами, а в перспективе - десятилетиями, там играют долговременные ставки.

А ещё ЭРД весьма компактны и экономичны, они не требуют таскать с собой дополнительную цистерну топлива. Это значит, что их можно ставить на весьма скромные спутники Земли, позволяя им перемещаться с орбиты на орбиту своим ходом, что снижает зависимость от точности выведения и от тормозящего воздействия атмосферы. Вы его, главное, от поверхности оторвите, вверх подбросьте, а там уж он сам на ионном движке куда ему надо доползёт.


Ионный двигатель:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

1.3 Ну и, наконец, последнее, что у нас сегодня есть из относительно работоспособного. Ядерный ракетный двигатель, тоже реактивный, как все предыдущие. Суть, как вы понимаете, в том же самом. Берём рабочее тело (жидкий водород - дёшево и сердито), разогреваем и выкидываем его сзади. Только вместо того, чтобы что-то поджечь, разогнать электрическим полем или испарить электрической дугой, мы греем жидкость на ядерном реакторе до газообразного состояния. Почти как паровоз.


Штука довольно спорная как по экономическим, так и по экологическим причинам. Потенциально эти двигатели могут совмещать положительные стороны химического и электрического двигателей. СССР и США разрабатывали ЯРДы начиная с середины ХХ века вплоть до испытания наземных прототипов. Разработки ведутся и сегодня.


Схема работы яррд:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

Отчётливый минус абсолютно всех типов реактивных двигателей: по космическим меркам они медленные. Со скрипом их хватает для изучения внутренних, ближайших к Земле планет (внутренними считаются планеты внутри главного пояса астероидов), но уже к Юпитеру приходится тащиться годами. Так могут летать автоматические аппараты, но таскать человека (а вместе с ним все системы жизнеобеспечения) уже представляется совершенно бестолковым занятием.

Даже за несколько человеческих жизней на подобных движках до других звёзд нам не добраться, поскольку счёт пойдёт на десятки тысяч лет. При самом оптимистичном сценарии - на тысячелетия. Sad but true.

Теперь давайте поговорим о самом интересном. О том, чего у нас нет. Этот раздел мой внутренний бюрократ требует разделить на две части: "нет и скорее всего не будет" и "нет, но очень может быть".


2. За прошедшие десятилетия было выдумано (и хотя бы частично научно обосновано) много всего интересного, что пока ещё не было реализовано. Сначала обсудим то, что с высокой долей вероятности не появится никогда по экономическим причинам, либо потому что наука ушла вперёд и концепция утратила былую свежесть.


2.1 Ядерно-импульсный двигатель на ядерных бомбах. Суть заключается в простой и логичной идее: если под хвостом у корабля взорвать бомбу, она отвесит ему такой космический пендель, что корабль скоренько куда-то полетит. Старая, ещё пятидесятых годов концепция, до сих пор являющаяся самым реалистичным и самым жизнеспособным способом межзвёздного (ну и межпланетного в частности) перелёта.


Примерно вот так это должно было выглядеть:

С точки зрения науки нет никаких причин, чтобы эта штука не работала. К сожалению, есть причины экономические. В том или ином виде идея разрабатывалась с пятидесятых годов. Довольно быстро стало понятно, что одной бомбой там не отделаться и взрывать придётся много. Много и часто. По очень оптимистичным прикидкам, лет за 120-140 можно добраться до ближайшей к нам системы (тройная α Центавра ABC), если весь этот срок ежесекундно (!) подрывать несколько ядерных зарядов. Как вы понимаете, такой запас можно собрать за довольно долгий срок и только лишь дружно напрягшись всем человечеством. А потом ещё будет проблема поднять всё это хозяйство на орбиту и там собрать, на это понадобились бы тысячи носителей несуществующего уже сверхтяжёлого класса, вроде "Энергии" или "Сатурн-5".


Подобных проектов было много, самый известный из них "Орион". Это отдельная, весьма объёмная история. Чтобы не углубляться в подробности, лучше оставлю вам тут ссылку, на Вики всё неплохо описано: https://ru.wikipedia.org/wiki/Орион_(МКА).

2.2 Прямоточный термоядерный ракетный двигатель. Он же - "межзвёздный прямоточный двигатель Бассарда". Принцип движения тот же что у остальных реактивных двигателей, описанных в первой части. Отличие заключается в том, что современные двигатели расходуют то топливо, которое везут с собой. Прямоточный же двигатель скорее напоминает воздушный реактивный двигатель тем, что рабочее тело он не везёт в канистре, а добывает снаружи, из-за борта.


В качестве рабочего тела предлагалось использовать водород, захватываемый из пространства. Сначала собирать водород предполагалось гигантской воронкой, однако довольно скоро стало очевидно, что таскать такую дуру по космосу не представляется целесообразным. Тогда пришли к решению: собирать водород с помощью электромагнитного поля диаметром в несколько тысяч километров.

Ну то есть корабль электромагнитным пылесосом собирает перед собой водород (а он там таки есть в межзвёздном пространстве), нагревает его ТЯРДом и выбрасывает сзади. Это вариант первый. Вторым вариантом было не выбрасывать водород, а использовать в качестве непосредственно топлива для ТЯРДа.


Из существенных (и очень заманчивых) плюсов - возможность идти с постоянным ускорением (читай - не болтаться внутри корабля в невесомости) и практически полная топливная автономность.


Основной минус в том, что в окрестностях нашей системы количество межзвёздного газа очень невелико. Меньше, чем в других местах. Причиной послужил относительно недавний взрыв сверхновой в окрестностях Солнца, "сдувший" потенциальное топливо.

Максимальная скорость, развиваемая подобным прямоточником, составит не более 0,119c = 35,7 тыс. км/с. Причина в том, что встречные атомы, которые он должен улавливать, будут его же и тормозить своим импульсом.

Естественно, надо понимать следующее. Это голая теория. Причём теория родом из шестидесятых годов. И несмотря на то, что теоретические работы над данной концепцией всё ещё ведутся, у неё куча слабых сторон и масса недоработок. Сегодня мы уже понимаем, что как минимум система захвата рабочего тела должна быть более совершенной. Ну и конечно же, в настоящее время такой двигатель промышленно невоспроизводим (основная проблема - всё та же система захвата, то бишь "пылесос").


Вот как-то так мог бы выглядеть корабль с ПТЯРДом:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

2.3 Фотонные двигатели. Тут я постараюсь покороче, поскольку этот концепт уже приближается к границе между действительностью и фантастикой. Он ещё вроде как по эту сторону реальности, но если ядерно-импульсный двигатель (п. 2.1) пришлось бы строить всей планетой лет сто, фотонный двигатель при нынешнем уровне развития нам просто недоступен. Никак.


Суть фотонного двигателя в том, что реактивная тяга создаётся истекающими фотонами света (они имеют импульс). Если упрощать, то это сверхмощный фонарик, отталкивающийся собственным лучом. Теоретически, в отличии от всех упомянутых выше тошнотиков, такой двигатель мог бы приблизиться к скорости света.


Придумано два типа фотонных двигателей: аннигиляционный и двигатель на магнитных монополях.


Для работы аннигиляционного фотонного двигателя требуется антивещество. Возможно (!), при его взаимодействии с обыкновенным веществом будет происходить реакция, почти полностью превращающая их в излучение. Беда в том, что антивещество - самая дорогая субстанция на Земле, примерной стоимостью 62,5 триллиона долларов за грамм. Высокая стоимость вызвана серьёзной нехваткой запасов антивещества. Цитирую Вики: "В 2010 году физикам впервые удалось кратковременно поймать в «ловушку» атомы антивещества. Для этого учёные охлаждали облако, содержащее около 30 тысяч антипротонов, до температуры 200 кельвинов (минус 73,15 градуса Цельсия), и облако из 2 миллионов позитронов до температуры 40 кельвинов (минус 233,15 градуса Цельсия). Физики охлаждали антивещество в ловушке Пеннинга, встроенной внутрь ловушки Иоффе — Питчарда. В общей сложности было поймано 38 атомов, которые удерживались 172 миллисекунды." Как вы догадываетесь, для полёта этого, мягко говоря, недостаточно.


Схема работы аннигиляционного фотонного двигателя:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

С фотонным двигателем на магнитных монополях тоже засада. Монополи - гипотетические элементарные частицы, которые чем дальше, тем более гипотетическими становятся. Их упорно ищут, применяя Большой адронный коллайдер (такой большой и такой адронный!) к различным предметам, но эффекта пока что никакого. То бишь полный ноль. Более того, некоторые современные теории вообще не предполагают существования в природе магнитных монополей. Очень печально, потому что добывать и хранить их могло бы быть проще, чем антивещество. А могло бы и не быть. Это - передний край науки, где происходит самое интересное, а потому никто пока ни в чём не уверен.

3. Вот и пришло время для самого вкусного! Кто дочитал, тот - молодец. Наконец-то мы дошли до двигателей, которые во-первых должны реально работать, во-вторых не требуют для своего создания предварительного порабощения всей планеты.

3.1 Солнечный (световой) парус. Красивая и даже в каком-то смысле романтичная идея начала (!) ХХ века, понемногу претворяющаяся в жизнь. Автор - советский физик Фридрих Цаандер, предположивший возможность такого способа перемещения в 1920 году.

Парус использует давление фотонов света стороннего источника (вместо того чтобы светить самому, как это предполагается в фотонном двигателе), например - звезды или лазера.

В качестве основного двигателя парус пока не был использован ни разу, однако испытания ведутся многими странами. Первым аппаратом, развернувшим парус, стал российский "Прогресс" в 1993 году. Однако это было испытание самого процесса разворачивания, движение при этом не совершалось. Первым аппаратом, использовавшим парус по прямому назначению, стал японский IKAROS в 2010 году.


Главный плюс - парусу не требуется топливо. Главный минус - парусу нужен свет.

Давление света Солнца к границам Солнечной системы уменьшается до ничтожных величин, по этой причине использование такого двигателя (а точнее - движителя) будет иметь свои особенности. Между внутренними планетами, скорее всего, перемещаться можно будет вполне эффективно. А вот для перелётов к границам системы, вероятно, разгоняться придётся от самого Солнца (где давление света максимально), в определённый момент сворачивая парус, чтобы он не начинал выполнять роль солнечного тормоза и не мешал маневрировать.


Относительно свежая идея, не опробованная пока что на практике - светить в парус удаляющегося корабля лазером. Если вывести такой лазер на орбиту (чтобы не мешала атмосфера Земли), если поставить их много, если подобрать источник питания, способный долговременно давать требуемую мощность, ну и наконец, если хорошенько прицелиться, то вполне реально отправить некий аппарат даже к соседним звёздам.


Сегодняшние лазеры не позволяют отправить к соседней звезде ничего серьёзнее нескольких граммов. Сегодняшняя электроника не позволяет запихнуть в эти граммы хотя бы камеру и передающее устройство. Сегодняшняя политическая обстановка не позволяет устанавливать на орбите сверхмощные лазеры, потому что если их развернуть вниз, получится орбитальная боевая платформа, которую можно на кого-нибудь нацелить.

Но. Лазерные технологии развиваются, электроника развивается. Даже сами разгонные лазеры можно ставить не на орбите, а на обратной стороне Луны - оттуда они не будут угрожать Земле, зато в случае инопланетного вторжения сможем отстреливаться :). Шутки-шутками, но тема действительно очень и очень любопытная.


В 2016 году группа состоятельных ребят, включающая Юрия Мильнера и Марка Цукерберга, скинулись на общую сумму в 100 000 000$ на развитие этой вот идеи с разгонными лазерами и отправкой микроаппаратов к многострадальной α Центавра ABC. Вряд ли они всерьёз рассчитывают отбить свои вложения, поэтому огромное спасибо за бескорыстный вклад в науку. Впрочем, нельзя также исключать, что им просто нужен предлог для строительства гигантского лазера.

Проект называется "Breakthrough Starshot", ведут его очень титулованные граждане, в том числе Хоккинг, Перлмуттер и Рис. Рассчитывают достичь 1/5 скорости света и, соответственно, лет за двадцать "допихать" лазером аппарат (а точнее - стаю мелких аппаратов) до соседней системы. В июне 2017 года состоялся успешный вывод на низкую околоземную орбиту первых рабочих прототипов нанозондов — чипов размером 3,5 на 3,5 см и весом около 1 грамма, несущих на себе солнечную панель, микропроцессор, датчик и систему связи.


Небольшой парус, развёрнутый на стенде в лаборатории NASA (учёные мужики в правом верхнем углу для масштаба):

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

3.2 Электрический парус. Не путать с солнечным! Тоже парус, только вместо фотонов света он улавливает солнечный ветер - поток ионизированных частиц. Совсем новьё, финская идея 2006 года. В 2013 году в университете Хельсинки создан первый рабочий прототип.


Двигатель состоит из сети длинных тонких алюминиевых тросов с положительным потенциалом и электронной пушки. Электронная пушка создает луч электронов, направленный против движения космического корабля, из-за чего тросы приобретают положительный заряд. Создаётся электрическое поле, тормозящее ионы солнечного ветра. Ударяясь на средней скорости порядка 468 км/с, они передают свой импульс парусу и приводят в движение космический корабль.

Точные характеристики окончательно не ясны, все ждут ходовых испытаний. В целом выглядит весьма перспективно, хотя понятно, что для того чтобы набрать пристойную скорость, общая длина этих вот усов должна составлять хотя бы 2000 километров, при толщине 25 – 50 мкм.


Если сравнивать с солнечным, то главное преимущество подобного паруса в возможности двигаться по направлению к источнику направленных частиц (а не только от него). Кроме того, такой парус проще в производстве и удобнее в эксплуатации: длинный тонкий ус развернуть куда легче, чем натягивать сплошное полотно. Очевидно также, что он куда меньше боится постороннего космического мусора. Но вот сила разгона будет раз в 200 меньше чем у солнечного паруса аналогичной площади.


Художественное изображение электрического паруса:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

3.3 Термоядерные ракетные двигатели. Гигантский межпланетный пылесос, описанный в пункте 2.2, по сути своей - частный случай такого двигателя. Но тот проект всё-таки фантастичен. А вот если отбросить всю экзотику с прямоточностью и сбором пролетающего мимо водорода, тогда становится похоже на правду.


На сегодняшний день мы имеем научное обоснование двух типов ТЯРДов: импульсный и на основе реактора с магнитным удержанием плазмы.


Суть импульсного ТЯРДа в том, что управляемая термоядерная реакция происходит в импульсном режиме, при периодическом ионно-пучковом обжатии и разогреве топливных «таблеток». Получается что-то отдалённо напоминающее проект из пункта 2.1, когда под кораблём предлагалось взрывать ядерные бомбы. Только там предполагалось использование энергии распада ядер, а в обсуждаемом проекте речь идёт о синтезе.


ТЯРД с магнитным удержанием плазмы выходит несколько компактнее. Термоядерное топливо (предварительно нагретая плазма из смеси топливных компонентов) подаётся в магнитную ловушку реактора, где происходит постоянная управляемая реакция термоядерного синтеза. Плазма, полученная в ходе термоядерного горения, направляется магнитными направляющими в сопло и создаёт реактивную тягу.

Любопытное дополнение с Вики: "Путём впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел (например больших планет) где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 тыс. сек до 4 млн. сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 сек."


Единственное внятное изображение ТЯРДа с магнитным удержанием, которое мне удалось найти на просторах:

Простым языком о космических двигателях Космос, Космический полёт, Двигатель, Ракета, Перемещение в космосе, Космический корабль, Текст, Видео, Длиннопост

Рабочих образцов термоядерных двигателей (да и реакторов) на сегодняшний день не существует. Однако разработки ведутся весьма широко. С высокой долей вероятности именно эти двигатели - наше будущее. С точки зрения науки нет никаких причин для того, чтобы их нельзя было бы создать. Причём говорить тут можно не о каком-то гипотетическом будущем, а о вполне достижимом. При оптимистичном сценарии появления первых ТЯРДов можно ждать уже на нашем веку. Вероятно, именно с этими двигателями мы станем осваивать Солнечную систему.

Ну, пожалуй что, that's all, folks! Кажется, это всё что есть более-менее обоснованного, о чём сегодня можно рассуждать всерьёз.

P.S.: Ах да! Предвижу вопросы насчёт EM Drive, он же "чудо-микроволновка". Тема весьма популярная в прессе, но не особенно популярная в научной среде. Либо в этом, либо в соседнем сообществе месяц-два назад наталкивался на новость о том, что его могли испытывать на американском орбитальном беспилотнике X-37B, что, естественно, лютая дичь. Нет таких двигателей. Есть предположительно зафиксированный эффект, который никто не может объяснить.

Первоначально о зафиксированном эффекте объявил британец Роджер Шойер в начале двухтысячных. Позже, в 2012 году, китайские исследователи сообщили, что у них тоже что-то получилось. В 2015 году несколько исследователей NASA из Космического центра им. Джонсона объявили, что смогли получить заявленный эффект в условиях вакуума (подчёркиваю - не космоса, а именно вакуума).

Однако упомянутые исследователи - скорее всё-таки энтузиасты. Серьёзные институты пока что не рассматривали эту тему по-настоящему. А причина проста - нет внятного научного объяснения принципа действия такого двигателя. Более того, он нарушает закон сохранения импульса, который пока что никто не отменял.

Даже если допустить, что эффект имеет место быть (а такая вероятность действительно есть, это нельзя отрицать), ни о каком двигателе сегодня речи идти не может. Этот эффект настолько мал, что его и зафиксировать-то трудно, не то что использовать.

То есть даже если окажется, что человечество действительно случайно нащупало что-то принципиально новое и перспективное, прежде чем куда-то эту вундервафлю привинчивать, предстоит долго разбираться, почему же шайтан-машина всё-таки работает.

P.P.S.: Заканчивая оформление поста, обнаружил, что на эту тему уже писали девять месяцев назад. Спасибо баянометру, что он прочихался хотя бы в этот момент. Расстроился поначалу. Но потом увидел что посты сильно разные и перестал расстраиваться.

Ссылки на источники - ниже. Если какой-то из них нельзя, трите смело.

Первоначально вдохновился роликами Егорова, очень уж здорово вещает.

Данные взяты из открытых источников, фотографии из подборки поисковика.

1. https://www.nasa.gov/centers/glenn/technology/warp/warp.html

2. http://homepages.mcs.vuw.ac.nz/~visser/general.shtml#why-wor...

3. https://ru.wikipedia.org/wiki/Химический_ракетный_двигатель

4. https://ru.wikipedia.org/wiki/Электрический_ракетный_двигате...

5. https://ru.wikipedia.org/wiki/Ядерная_электродвигательная_ус...

6. http://www.cosmoworld.ru/spaceencyclopedia/publications/inde...

7. http://www.proatom.ru/modules.php?name=News&file=article...

8. https://dawn.jpl.nasa.gov/news/news-detail.html?id=2626

9. https://ru.wikipedia.org/wiki/Ионный_двигатель

10. https://ru.wikipedia.org/wiki/Плазменный_ракетный_двигатель

11. https://ru.wikipedia.org/wiki/Электрический_ракетный_двигате...

12. http://n-t.ru/tp/ts/kd3.htm

13. https://ru.wikipedia.org/wiki/Ядерный_ракетный_двигатель

14. http://sci-lib.com/article872.html

15. https://ru.wikipedia.org/wiki/Ядерная_энергодвигательная_уст...

16. http://alfven.princeton.edu/publications/choueiri-sciam-2009

17. https://hi-news.ru/space/10-radiacionnyx-incidentov-epoxi-ko...

18. https://ru.wikipedia.org/wiki/Орион_(МКА)

19. http://dicelords.народ.ru/rockets/rocket3c2.html

20. https://ru.wikipedia.org/wiki/Фотонный_двигатель

21. https://ru.wikipedia.org/wiki/Антивещество

22. http://livefromcern-archive.web.cern.ch/livefromcern-archive...

23. https://lenta.ru/news/2010/11/18/antimatter/

24. https://ru.wikipedia.org/wiki/Магнитный_монополь

25. https://ru.wikipedia.org/wiki/Солнечный_парус

26. https://geektimes.ru/post/291579/

27. https://ru.wikipedia.org/wiki/Breakthrough_Starshot

28. http://breakthroughinitiatives.org/News/12

29. https://ru.wikipedia.org/wiki/IKAROS

30. http://www.computerra.ru/49312/sozdan-prototip-elektrichesko...

31. https://ru.wikipedia.org/wiki/Термоядерный_ракетный_двигател...

32. http://ufn.ru/ru/articles/1988/4/b/

Показать полностью 9 1
216

Тяга к звездам

Космические двигатели сегодня и завтра: настоящие реактивные монстры и перспективные технологии будущего.

Освоение космоса – возможно, самая сложная из технологических задач, когда-либо стоявших перед человечеством. Проблем с ней не перечесть, но первая из них, конечно, проблема запуска космических аппаратов с Земли и их передвижения в космосе. И хотя современные реактивные двигатели являются настоящими шедеврами технологий, соединяющими самые последние достижения в области химии, физики, материаловедения и множества других областей, их эффективность, тяга и расход топлива, увы, не позволяют всерьез говорить об освоении даже Солнечной системы, не говоря уж об огромных пространствах Вселенной. Будущее требует принципиально новых решений.



Реактивно!


Принцип работы реактивного двигателя настолько прост, что в элементарном виде его собирают даже школьники в кружках юных техников. Однако настоящий, мощный ракетный реактивный двигатель – продукт колоссальной сложности, в полной мере производство которого до сих пор освоили лишь три страны мира – СССР (Россия), США и Китай.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Схема работы пульсирующего воздушно-реактивного двигателя

В отличие от привычных всем двигателей внутреннего сгорания, в реактивных нет ни цилиндров, ни поршней, создающих вращательное движение. В основе их действия лежит закон сохранения импульса, который вытекает из Третьего закона Ньютона: «Сила действия равна силе противодействия». Тяга создается мощным потоком частиц, выбрасываемых в ходе сгорания топлива. Вылетая в одну сторону, эти частицы придают ракете или космическому аппарату ускорение, направленное в противоположную сторону. Чем больше масса и ускорение потока частиц – тем больше создаваемая ими реактивная тяга.


В традиционном реактивном двигателе, первые из которых были разработаны еще до Второй мировой войны, поток частиц представляет собой раскаленный газ, продукт реакции топлива и окислителя. Эта плазма, вырывающаяся из сопел реактивного двигателя, может образовываться из твердого или жидкого топлива – соответственно, химические двигатели различают твердотопливные и жидкостные.



Вначале было твердое топливо


Исторически первым видом реактивных двигателей стали твердотопливные. Первые из них появились еще в древнем Китае, где использовались для запуска фейерверков, а со Средних веков они встречаются и в Европе, где с их помощью доставляли заряды для бомбардировки крепостей противника. Главной хитростью при этом было поддержание горения, не переходящего во взрыв, который моментально высвободил бы энергию топлива и разрушил ракету. Поэтому для заряда использовался «модифицированный» порох с пониженным содержанием нитрата и серы, но повышенным количеством угля. Такая смесь горит очень мощно и быстро, но – при должной осторожности – не взрывается.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Принципиальная схема твердотопливного ракетного двигателя

В современных твердотопливных двигателях, разумеется, смеси используются намного более эффективные – например, такая: перхлорат аммония (окислитель, около 70% по весу), алюминий (основное топливо, 16%), оксид железа (катализатор, 0,4%), полимеры и эпоксиды (обеспечивают контакт топлива и окислителя и равномерность горения, около 14%). Используется и сложная конфигурация расположения твердых компонентов, в форме многоконечной звезды, при которой достигается большая площадь поверхности контакта топлива с окислителем и, следовательно, высокая скорость сгорания.


Твердотопливные двигатели дешевы, просты и безопасны, однако однажды запущенный процесс горения уже невозможно ни остановить, ни контролировать. Поэтому сегодня их чаще используют не для космических, а, скажем, для межконтинентальных баллистических ракет (МБР), работающих по принципу «выстрелил – и забыл». В космических же носителях обычно устанавливаются двигатели жидкостные.



Жидкое топливо: старт космической эры


Первые жидкостные реактивные двигатели (ЖРД) стали появляться в 1920-х годах, благодаря работам знаменитого физика Роберта Годдарда, в честь которого сегодня назван один из крупнейших исследовательских центров NASA. Годдарду удалось решить целый ряд проблем, связанных с конструированием и использованием таких двигателей, включая накачку топлива и охлаждение, а главное – создать принципиальную схему такого двигателя.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Схема проста до гениальности: жидкое топливо (Годдард использовал бензин) и жидкий окислитель (кислород) помещаются в раздельные баки, откуда с помощью специальных насосов по раздельным каналам подаются в камеру сгорания. Здесь происходит реакция, раскаленные продукты которой на большой скорости вылетают из сопла, создавая тягу.


Конечно, в реальности современный ЖРД – система куда более сложная, нежели эта принципиальная схема Годдарда. Достаточно сказать, что в качестве топлива и окислителя в них используются сжиженные газы, которые необходимо держать при низкой температуре и моментально нагревать перед подачей в камеру сгорания. Для этого найдены весьма изощренные технические решения – например, в соплах некоторых двигателей высверливаются каналы, по которым топливо течет, нагреваясь от раскаленного сопла. Такая технология настолько сложна, что ни американские, ни китайские двигателестроители ее до сих пор не освоили.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост
Математика шаттлов
Сами американские космические корабли Space Shuttle, недавно «списанные в запас», весили около 75 тонн. Внешний топливный бак для каждого из них (пустой) добавлял еще 35 тонн. Приплюсуем сюда еще пару твердотопливных ускорителей по 83 тонны каждый. Это только вес нетто – теперь нам понадобится топливо: около 100 тонн жидкого водорода и 616 тонн окислителя – жидкого кислорода. Итого мы получим порядка 2000 тонн веса – все для того, чтобы вывести на орбиту 75-тонный корабль, а точнее – полезный груз, масса которого может достигать около 25 тонн. При этом вся колоссальная масса топлива сгорает в считанные минуты: при запуске твердотопливные двигатели работают около 2 минут, а включающиеся затем три основных двигателя корабля – еще 8 минут. Выглядит не слишком эффективно.

Многим хороши химические реактивные двигатели: тяга их остается непревзойденной и уже позволила человечеству высадить своих представителей на Луне, а также отправить космические аппараты к дальним пределам Солнечной системы. Однако есть у них одно существенное ограничение. Вспомним про Второй закон Ньютона – чтобы создать достаточное ускорение, требуется либо увеличить скорость истечения реактивного потока, которая ограничена энергией реакции окисления, либо увеличить массу сжигаемого топлива.


Разумеется, химики непрерывно бьются над созданием все более эффективно сгорающего топлива и все более агрессивных окислителей, но процесс это сложный и уже практически достиг потолка своих возможностей. Увеличивать же массу еще сложнее: для разгона дополнительного топлива требуется еще больше топлива – количество его растет логарифмически. Для свободного космического полета требуются новые решения.



Ядерные-термоядерные


Для полноценного освоения пределов Солнечной системы химические двигатели недостаточно мощны и эффективны. Однако нагревать и разгонять газ для реактивного движения можно не только за счет окисления. Эту же роль может играть и куда более экономная реакция – ядерная. Необходимое для такого двигателя топливо будет измеряться уже не сотнями тонн, а сотнями килограммов. Энергия, выделяемая при радиоактивном распаде тяжелых ядер, будет нагревать рабочее тело – а дальше работает уже знакомая нам схема реактивного движения. Более того, рабочим телом может служить чистый водород, самый низкомолекулярный газ, способный обеспечить максимальную удельную тягу.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Первые ядерные двигатели появились в космосе достаточно давно – в виде РИТЭ­Гов, радиоизотопных термоэлектрических генераторов. Суть их работы проста: распад радиоактивного топлива конвертируется в тепловую и/или электрическую энергию. Плутониевые РИТЭГи питают многие космические аппараты – дальние зонды, не требующие огромной тяги и добирающиеся до своей цели годами. На такой силовой установке работают двигатели зондов Voyager, Cassini, New Horizons. РИТЭГ служит дополнением солнечных батарей для марсохода Curiosity.


Однако обеспечить высокую тягу РИТЭГи неспособны, и, говоря о разработке ядерных ракетных двигателей всерьез, придется подойти к проблеме совсем с другой стороны – выводить в космос полноценные ядерные реакторы. Несмотря на то, что первый подобный аппарат – SNAP – был американским, технологическое лидерство в этой области до сих пор сохраняется за нашей страной. Разработкой космических двигателей, энергию которым поставлял бы контролируемый ядерный распад в реакторе, занимался еще Сергей Королев. В 1960-х в СССР испытывалась подобная силовая установка «Ромашка», в 1970-х сверхсекретные аппараты с ядерной установкой «Бук» проходили испытания в космосе. В конце 1980-х урановый реактор «Топаз» благополучно проработал на орбите около года.


Работы по созданию космических двигателей с ядерной силовой установкой продолжаются сегодня и в России, и в США. Простейшие расчеты показывают, что лишь они сделают по-настоящему доступными ближайшие планеты и тела Солнечной системы. А когда человечество, наконец, обуздает термоядерную энергию, реакторы станут еще в несколько раз более эффективны.



Ионы: топливо по граммам


Однако и этим спектр возможных решений не исчерпывается. Создавать реактивную тягу можно с помощью, фактически, любого источника энергии – РИТЭГа, солнечной батареи или просто аккумулятора. Создаваемое им электростатическое поле ионизирует газ, разгоняя полученные ионы до очень высоких скоростей, недоступных для классических реактивных двигателей. Магнитное поле формирует из них направленный поток, толкающий аппарат все дальше вперед. Истекающая из сопла ионного двигателя холодная плазма совсем непохожа на адские печи химических реакций, однако эффективность его работы просто поразительна.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Испытания ионного двигателя зонда Deep Space 1, работающего на ксеноне

Рабочим телом такого электрического двигателя может служить водород или легкий инертный газ, обычно ксенон или аргон, – с подобными решениями экспериментировал еще Роберт Годдард. И хотя для создания серьезной тяги мощности их недостаточно, они могут работать буквально годами, расходуя топливо считанными граммами, и за большие промежутки времени разгоняют не слишком большие аппараты до очень приличных скоростей.


Скажем, ионный двигатель используется в качестве основного на дальнем зонде Dawn, который ведет исследования Главного пояса астероидов, и на японском аппарате Hayabusa, который доставил на Землю образцы вещества с астероида Итокава. Впрочем, как правило, их используют в качестве двигателей коррекции и ориентации для поддержания орбиты спутников – а вскоре ионный двигатель VASIMR может заработать и на МКС.



Суперсила антивещества


И теоретические расчеты, и практические эксперименты показывают, что античастицы, встречаясь с частицами обычной материи, аннигилируют, высвобождая неслыханную энергию. Килограмм антивещества и килограмм вещества выделят энергии на 43 мегатонны в тротиловом эквиваленте – почти столько же, сколько при взрыве легендарной 26-тонной «Царь-бомбы». Превращение массы в энергию происходит почти стопроцентное, в 1000 раз эффективнее ядерной реакции и в 300 раз – термоядерной.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Перспективы это сулит огромные – ра­счеты показывают, что перелет к Марсу благодаря подобным двигателям может занять уже не год, а всего месяц – так что ученые достаточно серьезно рассматривают возможности их использования в будущем, когда они позволят нам передвигаться не только в пределах Солнечной системы, но и добраться до соседних звезд.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Межзвездный прямоточный двигатель Бассарда – концепция ракетного двигателя для межзвездных полетов, предложенная в 1960 году физиком Робертом Бассардом. Основой концепции является захват вещества межзвездной среды (водорода и пыли) идущим на высокой скорости космическим кораблем и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля.

Казалось бы, можно заняться разработкой? К сожалению, прежде придется решить целый ряд технологических задач, которые пока выглядят совершенно неподъемными. Первая из них – крошечные количества антивещества, доступные нам. Пока его получают лишь считанными античастицами и при огромных затратах. Антиматерия является самой дорогой субстанцией в мире – в ценах 1999 года производство одного грамма антиводорода обойдется более чем в 60 трлн долларов. А для межзвездных путешествий получать его понадобится тоннами.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

По счастью, перспективы в этой области достаточно радужные: по оценке некоторых специалистов, от создания настоящего двигателя на антивеществе нас отделяют буквально десятилетия. В 2000 году в NАSA объявили о проекте по разработке пока небольшого двигателя, для работы которого требуется совсем крошечное количество античастиц – для перелета к тому же Марсу достаточно будет 10 граммов антипротонов.


Проектируемый двигатель на антивеществе будет включать три ключевых компонента. Электромагнитная тороидальная камера позволит хранить топливо. Система подачи будет сталкивать частицы с античастицами. Электромагнитное сопло обеспечит выброс энергии в нужном направлении, создавая тягу для космического корабля.



Сминая пространство-время


Единственный известный двигатель подобного типа установлен на крейсере USS Enterprise из культового сериала «Звездный путь»: пока что подобная технология относится лишь к жанру научной фантастики. Однако теоретически лишь такой подход способен обеспечить человечеству перемещение со сверхсветовой скоростью, а вместе с ним – подлинную свободу передвижения по всем неоглядным просторам Вселенной.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Например, выкладки эйнштейновских теорий нарушаться не будут: движение так и останется досветовым, моментальным станет лишь перемещение. Сразу – из одной точки пространства – в другую. Куда угодно. Более того, именно из Общей теории относительности вытекает сам принцип «пространственно-временного двигателя» (ПВД).


Вспомним, что, согласно ОТО, гравитация является геометрическим аспектом пространства-времени: чем больше масса объекта – тем сильнее искажается его прямолинейный континуум в его окрестностях. Именно этот аспект гравитации позволяет (в теории) манипулировать пространством-временем. Космический корабль, в котором имеется фантастическое устройство, способное создавать направленное гравитационное поле достаточной мощности, сумеет «сминать» пространство перед собой, перепрыгивая в нужную точку.

Тяга к звездам Наука, Космос, Ракета, Двигатель, Длиннопост

Физик из NASA Гарольд Уайт (Harold White) занят будущим: он работает над футуристическим проектом космического корабля с варп-двигателем, способным сминать пространство-время. А пока будущее не наступило, Уайт и художник-моделлер Майк Окуда (Mike Okuda) создали модели того, как будут выглядеть эти фантастические крейсеры.

К сожалению, расчеты показывают, что энергии для таких манипуляций понадобится невероятно много. Нужного количества не даст даже слияние вещества и антивещества – точнее говоря, для этого его понадобится столько, что мы вряд ли сможем загрузить такое «топливо» даже в USS Enterprise. Быть может, в будущем эту энергию удастся каким-то образом получать из самых мощных объектов известных нам – сверхмассивных черных дыр. А быть может, сами они послужат «червоточинами», нырнув в которые космический корабль сумеет вынырнуть где-то в совершенно иной части Вселенной. Но это уже совсем другая история.



Источник

Показать полностью 10
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: