362

Исчезла одна из самых ярких звезд во Вселенной

Куда-то подевалась сверхмассивная звезда, располагавшаяся в карликовой галактике Кинмана (Kinman Dwarf galaxy - PHL 293B). Эту далекую галактику, до которой 75 миллионов световых лет, видно в созвездии Водолея. Но уже без звезды, за которой долгое время наблюдали Эндрю Аллан (Andrew Allan) из колледжа святой Троицы (School of Physics, Trinity College Dublin, Ireland) и его коллеги из Европейской южной обсерватории (European Southern Observatory - ESO). Они и заявили о пропаже, сообщив подробности в журнале Monthly Notices of the Royal Astronomical Society.

Пропавшая звезда – так называемая яркая голубая переменная (luminous blue variable) - светила очень ярко. В 3 миллиона раз ярче Солнца. Была массивнее его, как минимум, в 100 раз. Поэтому и была видна в оптические телескопы с чудовищного расстояния. Столь яркие и мощные звезды – большая редкость во Вселенной. Астрономы очень ими интересуются. Интересовались и в ESO - точно знали, что с 2001 года по 2011 голубой гигант был на месте, сиял, как положено. Необходимость вновь взглянуть на удивительную звезду возникла в августе 2019 года. Взглянули, но не увидели ее. Присмотрелись внимательнее, наведя на карликовую галактику «Очень большой телескоп» (Very Large Telescope). Не помогло. Искомой звезды там не было. Астрономы обратились к архивным снимкам, сделанным между 2011 и 2016 годами – в том числе и орбитальным телескопом «Хаббл». И определили, что «яркая голубая переменная» исчезла из галактики Кинмана еще в 2011 году. Как украли.

Аллан и его коллеги пока теряются в догадках. И не исключают того, что случилось небывалое: гигантская звезда – одна из ярчайших во Вселенной – превратилась в черную дыру. Превратилась сразу. Коллапсировала, но не взорвалась перед этим, став сначала сверхновой, как положено звездам подобного вида.- Если звезда и в самом деле превратилась в черную дыру напрямую, то мы стали первыми свидетелями подобного явления, - говорит Аллан. – Ведь обычно жизнь гигантских звезд заканчивается иначе – взрывами сверхновых.

Возможен и другой вариант: звезда все-таки взорвалась, но ее загородило образовавшееся облако пыли. Правда, в таком случае какое-то свечение все равно должно было бы остаться. А его не видно. Поэтому фантастический сценарий с прямым превращением в черную дыры считается более вероятным.

Понять, как и куда из галактики исчезла целая звезда, возможно, получится через пять лет, когда в ESO заработает «Чрезвычайно Большой телескоп» (ELT) достаточно мощный, чтобы наблюдать за отдельными звездами в отдаленных галактических скоплениях.


https://www.samara.kp.ru/daily/27150/4245840/?from=twall

https://academic.oup.com/mnras/article/496/2/1902/5863970

Исчезла одна из самых ярких звезд во Вселенной Астрономия, Наука, Космос, Вселенная, Звезда, Черная дыра, Длиннопост
Исчезла одна из самых ярких звезд во Вселенной Астрономия, Наука, Космос, Вселенная, Звезда, Черная дыра, Длиннопост

Найдены дубликаты

+74

Отключили за неуплату. В местном филиале галактического офиса объявление 532 года висело. Да видимо никто не чухнулся.

Иллюстрация к комментарию
раскрыть ветку 3
+1

В подвале без света, в запертой комнате с табличкой "осторожно, леопард!".

+1
Что за фильм?
раскрыть ветку 1
+6
Автостопом по галактике
+35

Где-то в далекой-предалекой галактике прошел госприемку очередной звездный разрушитель...

раскрыть ветку 8
+12

Звёздный разрушитель даже скачущую по его поверхности лошадь не может разрушить. А уж звезду...

раскрыть ветку 1
+1

Ну значит снова кто-то покопался в архиве храма жыдаев грязными ситхскими лапами.

+4

или заправился флот некронов.

+3

Он Star Destroyer, тоесть, строго говоря, Космический Эсминец. Там есть ещё крейсеры и линкоры.

А звезду расфигачил Молот Валькаров.

раскрыть ветку 1
0

Вот вечно придет кэп имперского флота и устроит кроссовер... В последних ЗВ тоже какая-то НЁХ звезды разрушала.

+3

А я из названия вообще подумал, что что-то случилось с Лолитой Милявской

0
Причем давным-давно...
0
Это же звезда белых ходоков, а их победили, вот и звезды не стало...
+18
Последнее изображение в этом посте Солнце, но не описываемый в тексте объект;
интереснее было бы видеть изображения той галактики здесь на те даты, к которым аппелирует ТС с отметкой той самой переменной звезды
Посылать к гоше и яше не надо, с таким же успехом каждый может искать инфу в сети, но тогда и пост-копипасту низкокачественную клепать смысла нет
раскрыть ветку 6
+12

Достаточно зайти по первой ссылке. Крестиком помечен тот самый голубой сверхгигант, который исчез. Снимок был сделан в 2010 году..

Иллюстрация к комментарию
раскрыть ветку 3
+2
Этот уже было описано у Питера Гамильтона. "Звезда Пандоры". Я бы не стал туда лететь.
0

Я правильно понимаю, что каллапсировала она 75 млн. Лет назад, а свет перестал до нас доходить только сейчас?

раскрыть ветку 1
-13
Изображение за 75 ахулеардов световых лет? Айфончек пока не способен на такое.
раскрыть ветку 1
+9

Анападвор

ещё комментарии
+8
"Мы стали первыми свидетелями подобного явления".
Узнали об этом событии спустя 9 лет.
Иллюстрация к комментарию
раскрыть ветку 4
+3

Вполне вероятно, что году в 2012 она и шарахнула, как SN, вот только учитывая то, что 8 лет назад не было такого количества мониторинговых программ, как сейчас, это событие никто и не заметил.

А вот сейчас, понятное дело, взрыв такой херни достаточно быстро заметят.

раскрыть ветку 3
+1

шарахнула миллионы лет назад, а не в 2012 м

раскрыть ветку 2
+8

Я не брал . А ты ?

раскрыть ветку 1
0
Темнишь?)
+6

Никакого космоса нет, это лампочки на сфере, вот и перегорела просто)

раскрыть ветку 1
+4

Светодиоды! Двадцать первый век на дворе

+17

Сфера Дайсона

раскрыть ветку 17
+11

Дело закрыто

раскрыть ветку 1
+1

Take your fucking upvote, monster

+7

ну ладно красный карлик. а тут голубой сверхгигант. норм там сферка

+6

Да может просто кто-то подзаправился от звезды да погасил.

раскрыть ветку 2
0

Или батарейки сели.

-1
Дженова или Сефирот куда-то направились.
+2

Тогда бы резко не исчезла. Ее не могли же построить за земной год.

раскрыть ветку 7
+7

А вы знаете технологию постройки? Может она по плану за 30 минут собирается?

раскрыть ветку 1
+1

Снизу и сверху строили половинки, а потом соединили просто, а то есть одна звезда с попемеремнным свечением - палятся, а эти под чёрную дыру замаскировали процесс

раскрыть ветку 4
+1
Где купить пылесос от Дайсона, я примерно представляю. А где взять сферу Дайсона, не подскажете? Я бы из неё себе зарядку для телефона сделал, глядишь, он до вечера доживать будет
0

блииин зашел чтоб это написать) лови+

0
Звезда слишком юольшая.
Кольцо Нивена, вид с ребра)
+4

То есть вот так холоп и чёрная дыра? А солнце так может? Если да то это стало бы шикарной концовкой 2020.

раскрыть ветку 7
+5

не может

раскрыть ветку 6
+2

Спасибо одной фобией меньше

раскрыть ветку 5
+2

Не "стали первыми свидетелями подобного явления", а проебали это редчайшее явление.

+2

И где-то хихикает один некронский царь...

+6

Мне кажется причина - темная энергия

Иллюстрация к комментарию
ещё комментарии
+3
По факту, если она и исчезла, то еще 75 млн лет назад. Новость мальца устарела)
раскрыть ветку 1
+2
сколько еще будут писать сей очевидный факт, который здесь не к месту?
+1

Да не волнуйтесь, просто вселенная сужаться начала 😂😂 скоро и до нас дойдет.

+1
Я думал, что Киркоров умер.
0
Так она если взорвалась то давно уже
0
Закрыли её сферой Дайсона, очевидно же ну
0

на месте где находилась эта звезда.

эта новость была бояном еще 75 млн лет назад

0

Неподалёку случайно не был замечен цыганский табор?

0

Возможно вспышка была, просто её незаметили. Если не заметили пропажу, могли и вспышку не заметить.

0

Звезды пропадали и раньше

Пропавшие звезды.

0
Хах, лучше б предположили сферу Дайсона
0

Умер ещё один контрактор

0

Некроны еще одну звезду выжрали для своих перемещений

0

Испытание Молота Валькаров прошло успешно

0

Началось!

0

Для ЛЛ. Что стало с Курициным?

-1

Ее планета нибиру заслонила )))

-4
Она утонула
-1

самое стремное, что по факту вселенная вокруг может уже не существовать туеву хучу лет, но мы пока об этом еще не знаем :\

-3

возможно кто-то отправил сигнал о ее нахождении в космос

раскрыть ветку 2
+1

Заклинание из темного леса?

раскрыть ветку 1
+1

ага

-18

Очередные ученые сделали поспешный сенсационный вывыд основанный на очередном глюке оборудования.


Блин само существование черных дыр это лишь предположение основанное на том, что теория гравитации верна.

Лет через 100 выяснят, что это какие-нибудь мю-волны отражаются в какой-нибудь херне, а черные дыры.

раскрыть ветку 1
+17

То есть вот это вот прошло мимо тебя?

Иллюстрация к комментарию
ещё комментарии
Похожие посты
303

Солнечная система

Большинство людей думают, что это есть Солнце и 9 планет. Кто-то при этом вспоминает еще и о Луне. Находятся, правда, их уже не так много, желающие поселить в Солнечную систему все 12 зодиакальных созвездий и Большую Медведицу. Давайте сегодня разберемся, что же это такое - «Солнечная система».

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Много миллиардов лет назад эти места выглядели немного иначе. Здесь было облако межзвездного газа и пыли (возможно — остаток какой-то уже погасшей звезды), которые медленно уплотнялись под действием собственной гравитации, сжимались, в этом образовании наметился некий центральный сгусток, который стал разогреваться и однажды (это для краткости — обычно такие процессы растягиваются на миллионы лет и звезды не загораются в одночасье) вспыхнул звездой. Окружающие его газ и пыль продолжали стремиться к молодой звезде под действием сил тяготения, но излучение исходящее от звезды препятствовало сгущению остатков материи подобно ветру дующему в разные стороны. На какое-то время установилось равновесие и остатки пыли и газа продолжали собираться в комочки на почтительном расстоянии от своей звезды — они не падали на нее, но и не улетали прочь. Причем более тяжелые фракции этого газопылевого строительного материала оседали поближе к центральной звезде, а легкие газы (преимущественно Водород и Гелий) нашли свое равновесие поодаль. За следующий миллиард лет, или за промежуток времени того же порядка, из расслоившейся по молекулярной массе материи сформировались планеты — маленькие, но плотные вблизи Солнца (так называемые "Планеты земной группы"); и водородно-гелиевые гиганты типа Юпитера и Сатурна — несколько подальше от светила. Вот так, если рассказывать предельно упрощенно, и сформировалось то, что называется Солнечной системой — Солнце и вращающиеся вокруг него планеты. Да только это не все, есть еще много интересного в этой системе, но прежде затронем другой аспект — аспект постижения всего этого человечеством.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

С тех пор, как раскаленные поверхности каменных шаров остыли, прошло еще 4 или 5 миллиардов лет и на одном из таких шаров случилось нечто необычное, не совсем привычное для небесных тел явление — там завелись существа, считающие себя разумными — о-как замахнулись! Но как бы то не было, и кто бы кем себя не считал, а примерно 50 тысяч лет назад человеки уже со знанием дела всматривались в небосвод и их немного начинали волновать те из светящихся точек, что упорно не хотели оставаться на своих местах и кочевали от созвездия Мамонта к созвездию Кабана.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Около 10 тысяч лет назад, и практически повсеместно — в Египте и Элладе, Вавилоне и Персии, в Индии и Китае (возможно и на Американском континенте) этому начали находить объяснение. Люди сходились во мнении — это Боги, бессмертные Боги, а кто же еще может позволить себе перемещаться среди неподвижных звезд? — только Боги! Так думали почти все, но была в каждой из перечисленных стран, особая разновидность жителей — жрецы — эти никогда просто так не делились своими истинными представлениями о строении Мироздания с простым малограмотным людом, да и со знатью — царями, военачальниками — тоже не делились. Они с легкостью предсказывали как положение на небе всех известных тогда блуждающих светил, так и Солнечные, Лунные затмения, что давало им реальную власть над теми же царями и военачальниками — жрецов слушались все. А кто не слушался — тот отправлялся на небеса слушаться великих Богов, блуждающих по созвездиям.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Каким образом, на основании каких теорий и базируясь на какой картине мира древние жрецы делали свои вычисления, так и осталось тайной, которую они унесли к своим богам, но где-то за 500 лет до нашей эры у жрецов появился достойный конкурент — класс ученых — философы, математики и метафизики — все они пытались разгадать конструкцию небесных механизмов опираясь на наблюдения и логику, и к началу нашей эры в мире — опять же во многих странах почти синхронно — зародилась, ожила догадка о безграничном пространстве, мегаскоплениях галактик, в одной из которых среди миллиардов и миллиардов подобных светил с огромной скоростью летит том, что наше дневное светило окруженное спутниками-планетами обращающимися вокруг оного по круговым орбитам и среди них одна — Гея — наш космических дом — с нее и взираем мы в бескрайнюю даль, пытаясь разгадать ее назначение... И это окрыляло, поднимало человека ввысь, ближе к богам — поняв это человек становился богом...

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Были и другие точки зрения. Существовавшая в древней Греции наравне с другими моделями Геоцентрическая Модель Мира Аристотеля (а также Гиппарха и Птолемея) в средние века оказалась очень идеологически удобной и на много столетий астрономы и астрологи расселили известные им планеты по деферентам и эпициклам, что бы более прогматичным образом объяснить петлеобразные движения светил (планетные движения моделировались большими и малыми колесами установленными одно на другом и вращающиеся с разной скоростью), но главное — Земля, как творение господне, а вместе с ним и человек были водворены в Центр Мира — и это для переродившихся жрецов было архиважно — нечего простым смертным знать, что мы — не есть Пуп Вселенной, а просто песчинка в бескрайнем космическом океане, у которого и центра-то нет никакого...

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Тем не менее, предвычисление положения планет оставалось задачей практически важной — астрологи должны были вовремя предопределять начало и конец войн, вовремя менять засидевшихся на троне персон и делалось все это при помощи небесных знамений. При этом конструкция из дифферентов и эпициклов уже не давала требуемой точности и приходилось, для компенсации расхождения вычисленных и реальных положений блуждающих светил вводить все новый рычаги и колеса и к XVI веку в небесной канцелярии накопилось до семи десятков самых разных шестеренок. Управляться с такой сложной машиной становилось немыслимо трудно — система мира рушилась, но не сдавалась по идеологическим мотивам.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Спасать положение начал польский астроном и математик Николай Коперник. Он не сам это придумал, но изучив многочисленные работы учеников Пифагорейской школы он пришел к выводу, что все эти сложные механизмы из десятков колес и покачивающихся перекладин — безбожное заблуждение, и доработав теории учеников Пифагора выдвинул (1503 год) свою гипотезу — в центре мира сияет Солнце, вокруг него по круговым орбитам, не опираясь ни на что движутся планеты, в их числе наша Земля. И только одно светило послушно обращается вокруг Земли — Луна — наш единственный спутник.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Думаете, все эти заржавевшие и грохочущие шестерни разом рухнули в бездну? Нет! Еще более столетия в ходу были и деференты, и эпициклы, и остальные небесно-механические запчасти. И не только по причине того, что наукой тогда занималась церковь, но и потому, что даже реалистичная конструкция Коперника давала значительные ошибки. Их исправил во многом только Иоганн Кеплер определив орбиты планет не кругами, а эллипсами, и так же тремя своими законами описав характер движения планет по своим орбитам. Но это произошло лишь в 1618 году и с тех пор наше базовое представление о строении Солнечной системы не менялось, а лишь дополнялось новыми пунктами и деталями.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Что же мы имели к началу XVII века? Примерно то же самое, что и на протяжении всех предшествующих веков и тысячелетий: Солнце — ярчайшее небесное светило, обходящее небосвод ровно за год (собственно, так и появился в нашем летоисчислении год), Луна — второе по яркости и меняющее свой лик ото дня ко дню светило, оно замыкает свой небесный круг за месяц и именно благодаря Луне мы имеем в своей календарной системе такую временную единицу. Далее — пять ярких и блуждающих светил, оказавшихся огромными шарами, светящимися отраженным (как и Луна) солнечным светом, медленно совершали свои движения с разной скоростью — Меркурий — Бог торговли и обмана — этот был, как и положено, шустрее всех; Венера — богиня Любви и Красоты (и это чистая правда — оторвать взор от сияния в сумеречных небесах "Вечерней Звезды" очень трудно, невозможно) — она хоть и отстает от Меркурия, но тоже очень быстра; Марс — Бог Войны — отличается заметной кровавой, вызывающей окраской, и движется уже медленно, и слава богу — очевидно, что у древних, придумавших эти параллели, быстрее зажигались чувства любви, чем месть и обида. Две последних из известных тогда планет — Юпитер и Сатурн — откровенно едва ползут и за жизнь человеческую делают лишь несколько оборотов. В XVII веке к этому хороводу небесных объектов добавилась лишь Земля, но для человечества это было очень важным событием в процессе осмысления своего положения во Вселенной — это положение стало рядовым, ничем не выделенным, Впрочем, как я не раз говорил уже сегодня, ничего в мире не случается в один день и мирилась общественность с потерей своего центрально-космического положения довольно долго.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

В самом начале XVII века произошло еще одно важно событие в астрономии — итальянец Галилео Галилей создал первый в истории телескоп и применил его в наблюдениях. Результаты были революционны — действительно, планеты оказались подобны Земле — на Луне обнаружились горы, Венера меняла фазы, а Юпитер оказался окруженным свитой из 4-х спутников, что свидетельствовало об относительности любого и предполагаемых центров во Вселенной. Таким образом в составе Солнечной системы начали прибавляться новые небесные жители, в данном случае таковыми оказались спутники Юпитера (Ио, Европа, Ганимед, Каллисто), но главное — человечество стало зорче, и это открыло новые возможности в изучении окружающего мира, а в частности, с помощью точных оптических приборов стало возможным измерение параллаксов и получение представления о расстояниях до планет — далеко ли они от нас находятся — раньше об этом можно было только догадываться.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Будет не лишним упомянуть о размерах планетных орбит. С момента вселения Земли на третий уровень в порядке исчисления от Солнца, в астрономии появилась очень важная и удобная единица измерения расстояний — одна астрономическая единица — среднее расстояние от Земли до Солнца. Радиусы других планетных орбит различались очень значительно, например Меркурий в среднем был ближе к Солнцу чем Земля в два с половиной раза, а Сатурн — в 10 раз дальше. И по этому поводу просто необходимо вспомнить об одном интересном математическом наблюдении. С древнейших времен человечество пыталось не только получить информацию об окружающем мире, не только узнать что и как, но понять почему — осознать, разобраться в причинах и закономерностях. Так же и с размерами планетных орбит — многие астрономы не только пытались измерить их размеры, но и понять, по какому закону и подчиняясь каким правилам они сложились именно такими. В второй половине XVIII задача поддалась двум очередным немецким Иоганнам — Иогану Тициусу и Иоганну Боде. Суть наблюдения вот в чем: Давайте выпишем в ряд такие числа:


0, 3, 6, 12, 24, 48, 96


это (если не брать во внимание первое число) — обычная геометрическая прогрессия с первым членом равным тройке и коэффициентом равным двум (каждый следующий член прогрессии, после этой тройки, в два раза больше предыдущего). Теперь прибавим к каждому члену нашей прогрессии число 4. Получим:


4, 7, 10, 16, 28, 52, 100


далее правило Тициуса-Боде (его назвали в честь этих двух астрономов-математиков) предлагает поделить каждый член прогрессии на 10, но и без этого уже видно, что получившийся ряд чисел кратен радиусам планетных орбит. Посмотрите сами:


4 ( 0,4) — радиус орбиты Меркурия

7 ( 0,7) — радиус орбиты Венеры

10 ( 1,0) — радиус орбиты Земли

16 ( 1,6) — радиус орбиты Марса

28 ( 2,8) — ...

52 ( 5,2) — радиус орбиты Юпитера

100 (10,0) — радиус орбиты Сатурна


Правило работало довольно точно, расстояния совпадали с точностью до 1/10 астрономических единиц и лишь одно звено в цепочке чисел выдавало эмпирическую природу этой закономерности, ведь на орбите с радиусом в 2,8 астрономической единицы нет никакой планеты! А раз так, и правило оказалось не абсолютным, ему в свое время (1766-1772) не придали большого значения.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

В 1781 году английский музыкант (по профессии) и астроном (по увлечению) Уильям Гершель исследовал небо в самодельный телескоп и обнаружил, как ему показалось, доселе неизвестную туманность — слабое, чуть зеленоватое пятно маячило где-то среди звезд созвездия Тельца. От ночи к ночи оно немного смещалось и Гершель принял его за комету, о чем и сообщил в Английское Королевское Общество. Вскоре, по результатам наблюдений других астрономов и вычислению орбиты вновь открытого небесного тела, оказалось, что Гершель обнаружил планету, далекую и огромную — сравнимую по размерам с Сатурном или даже Юпитером. Это было сенсационное открытие, ведь за последние несколько тысяч лет в числе известных планет увеличения не происходило (если, конечно, не считать провозглашения планетой самой Земли!), а тут — раз — и такое открытие!

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Тут-то астрономы вспомнили о казавшемся им сомнительным правиле Тициуса-Боде и решили продолжить ряд:


0, 3, 6, 12, 24, 48, 96, 192


4, 7, 10, 16, 28, 52, 100, 196 — Уран (так назвали новую планету) оказался точно на орбите предсказанной правилом (19,22 а.е — современное значение).

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Это обстоятельство заставило астрономов отнестись к правилу Тициуса-Боде серьезнее и задуматься теперь и о пустующей орбите с радиусом в 2,8 астрономической единицы. И действительно, совсем скоро была обнаружена малая планета Церера (1801 г.) находящаяся точно на этой орбите. Тициус и Боде получили заслуженное признание, а астрономы, наоборот, потеряли комплекс ощущения того, что все планеты в Солнечной системе давно открыты.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

С этим ли в связи или по другим причинам, но открытия малых планет посыпались как снег зимой в России за Уралом. Их стали открывать пачками и соответственно стали немного иначе к ним относиться — что это за планеты такие, которых за несколько лет открыли 4 — то столетиями не было ничего нового, то — в год по планете. Статус подобных объектов пришлось пересмотреть и вся эта "каменистая мелочь" была обобщена в класс малых планет. И "населением" этот класс только прибывал. Редкий год астрономы не открывали новую малую планету.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Правда, надо признать и то, что далеко не все малые планеты (или по другому — астероиды) соответствовали правилу Тициуса-Боде. Стали встречаться такие объекты (и все чаще) у которых орбиты вообще никакому правилу не подчиняются и больше похожи не на планетные, а на кометные орбиты. Впрочем, до комет мы еще доберемся. Важно сейчас то, что открытие пояса астероидов (значительная часть тел которого обращается по классическим астероидным орбитам в рамках правила Тициуса-Боде) одновременно и подтвердило это правило и тут же поставило на нем крест.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Когда многочисленные открытия малых планет уже набили оскомину астрономам, те перевели свой взор на недавно открытый Уран. Что-то с ним было не так. Уран — далекая и медленная планета. Чтобы вычислить в точности орбиту такой планеты требуется время. И вот оно прошло, были получены точнейшие измерения и произведены необходимые вычисления. И тут оказалось, что Уран идет немного "не по расписанию".

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

В чем это выражалось? — Ну, представьте себе, что согласно измеренным параметрам орбиты и определенным вычислениям астрономы утверждают, что, допустим, через месяц планета Уран будет находится в таком-то созведии, в точке с такими-то координатами. Проходит этот месяц, наблюдатели вновь измеряют положение Урана на небесной сфере и к немалому удивлению ученых мужей всего мира обнаруживается, что Уран почему-то находится немного в другом месте.


Надеюсь, Вы понимаете, что в науке не допускаются всякие "немного", да "чуть-чуть". Либо в теории все в порядке и положение планеты предвычисляется в пределах точности измерений, либо надо менять теорию. И второе "либо" было страшным, ибо оно недвусмысленно намекало на неверность главного из законов Вселенной — Закона Всемирного Тяготения — ведь на основе него в астрономии вычисляется всё, и если формула выведенная Ньютоном еще в 1687 году не абсолютна, то все труды астрономов за последние полтора столетия можно смело кидать в корзину и все изыскания начинать сначала, а этого очень не хотелось.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Что тут скажешь? — Уран преподнес астрономам очень неожиданный сюрприз. Если вначале отклонения его положения от расчетных значений как-то можно было списать на неточность определения орбиты, то дальше объяснить расхождение теории и практики было нечем... если только не существовало бы поблизости какого-то другого массивного небесного тела отклоняющего (или как говорят астрономы — "возмущающего") своим тяготением движение Урана от его "законной" орбиты.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Это была смелая идея для XIX века. Автор идеи — Алекс Бувард — не решился на вычисления и определение положения такого тела, полагая, что задача очень сложна, если вообще разрешима. Тем не менее за эту же задачу взялись независимо два астронома — Джон Адамс (англичанин) и Урбен Жозеф Леверье (француз). Адамс приступил к расчетам раньше и занимался ими несколько лет, и в 1843 году представил их Джорджу Эйри — королевскому астроному Великобритании, который не отнесся к вычислениям серьезно. Очевидно английская консервативность не позволила главнейшему из астрономов страны допустить, что планеты можно открывать и за письменным столом. И работа Адамса была отвергнута. Сам же Джон Адамс, будучи человеком скромным, не стал настаивать и добиваться проверки своих вычислений. Параллельно с этим, но двумя годами позже, Леверье выполнил свои расчеты и почему-то тоже отправил их в Англию — в Кембриджскую Обсерваторию — с просьбой поискать в предполагаемом районе неба слабосветящийся звездообразный объект. Пару месяцев в Кембридже что-то там искали, но ничего не нашли, но по большей части от того, что просто отложили обработку наблюдений на неопределенный срок. И Леверье пришлось обратиться в Берлин, где по распоряжению директора обсерватории Иоганна Галле новая планета была обнаружена всего через один час поисков студентом Гейнрихом д'Арре.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Открытие Нептуна "на кончике пера" стало триумфом науки и очередным подтверждением справедливости Закона Всемирного Тяготения. Добавлю, что и в отношении Джона Адамса была восстановлена справедливость, и уже после открытия Нептуна его расчеты были опубликованы, а Урбен Жозеф Леверье вынужден был признать их более точными и разделил с Адамсом славу сооткрывателя.


Если бы это было все...


С той первой ночи, когда в виде слабой звездочки 8-й звездной величины был открыт Нептун (название планеты менялось неоднократно в самых широких пределах, вплоть до попыток дать ей название "Леверье" в честь понятно кого) астрономы принялись вычислять элементы его орбиты и вскоре — О Ужас! — обнаружилось, что даже Нептун в полной мере не объясняет отклонения в движении Урана и сам тоже непонятным образом отклоняется от расчетной траектории.


Были ли эти отклонения столь значительны на самом деле или просто астрономам захотелось открыть еще одну планету на кончике пера — это сейчас трудно комментировать, но эту идею подхватили сразу несколько обсерваторий и вслед за грандиозными расчетами начались не менее грандиозные поиски новой — транснептуновой планеты. Долгое время такие поиски не приносили открытий и вскоре были свернуты — они все больше походили на поиск иголки в стоге сена — попробуй найти слабую (гораздо более слабую чем Нептун) похожую на звезду планетку среди миллионов таких же по яркости звезд.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

С заметным постоянством поиски продолжал только Персиваль Лоуэлл — бостонский богач, вложивший немало средств в строительство собственной обсерватории и в работу по обнаружению "Планеты Икс". Положение на небе этой предполагаемой планеты было предвычислено еще Уильямом Генри Пикерингом в 1909 году, но вплоть до самой смерти Персиваля Лоуэлла в 1916-м ничего похожего на далекую планету обнаружено не было, а тот-час, как спонсор проекта умер, его вдова решила продать обсерваторию и 10 лет длилась судебная тяжба в итоге которой скорбящая Констанция Лоуэлл так ничего и не получила.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Обсерватория возобновила свою работу лишь в 1929 году и тут на удачу рядом оказался молодой лаборант — Клайд Томбо, который как и Лоуэлл бредил "Планетой Икс". Именно ему и поручил всю эту рутинную работу новый директор обсерватории Весто Слайфер. Клайду предстояло всякую ясную ночь фотографировать на фотопластинки области неба предложенные Пикерингом, повторять фотографирование тех же областей через 2 недели (дав предполагаемой планете немного сместиться среди звезд), после чего — заниматься тщательным сравнением изображений. Лаборант усугубил и без того кропотливую и трудную задачу — он расширил границы поисков, чтобы уж наверняка обнаружить "Планету Икс", и начал фотографические поиски с самых дальних от предполагаемого района областей.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Примерно через год, разобравшись с окраинами и добравшись до рекомендованного района неба, в непосредственной близости от расчетной точки Клайд Томбо обнаружил звездоподобный объект с похожими характеристиками — подходящей яркостью, ожидаемой скоростью смещения. Дальнейшие измерения показали, что объект движется по близкой к расчетной орбите и таким образом открытие 9-й планеты Солнечной системы подтвердилось.

Солнечная система Астрономия, История, Солнечная система, Планета, Длиннопост, Космос

Правда, никак не было понятно — это ли тело производило гравитационные возмущения в движении Урана и Нептуна? Это и не возможно было понять, пока не стала известна масса планеты уже получившей название Плутон (в честь римского бога подземного царства аналогичного греческому Аиду и очень символично-удачно сочетающееся с положением самой дальней из известных планет — на краю Солнечных владений). В 1978 году астрономам посчастливилось открыть спутник Плутона и благодаря этому узнать массу системы "Плутон + Харон (спутник)", а вместе с ней — страшную правду — масса Плутона вместе со спутником оказалась крайне мала по планетным масштабам, что он никак не мог возмущать своим гравитационным присутствием ни Уран, ни Нептун, да и на полноценную планету Плутон никак не тянул по своим параметрам — все новые исследования и измерения говорили о том, что перед нами типичная малая планета.


___


Упс, Друзья. дальше Пикабу мне уже не позволяет вставлять иллюстрации, а текста и картинок в статье еще запланировано достаточно. Поэтому, если Вы дочитали до этого места, и желаете дочитать до конца, прошу перейти на сайт, где эта моя статья размещена оригинально:


http://neane.ru/rus/7/write/0061.htm


Там еще примерно половина того, что вы уже прочли.

Показать полностью 24
250

Учёные NASA изучили грозовые бури и град в атмосфере Юпитера и обнаружили аммиак

Видео переносит зрителя в путешествия в экзотические высотные грозовые бури Юпитера. Посмотрите вблизи на недавно обнаруженные Юноной молнии и погрузитесь в агрессивные облака Наутилус.


Учёные NASA, исходя из результатов исследований «Юноны» Юпитера предполагают, что крупнейший газовый гигант обладает уникальными катаклизмами. Неожиданная форма электрического разряда, «поверхностная молния» возникает из облаков, содержащих водно-аммиачный раствор, что является уникальным явлением, учитывая природу земных гроз, возникающих из облаков, содержащих водяной пар.

Результаты исследования свидетельствуют о том, что сильные грозы, которыми известен газовый гигант, могут образовывать аммиачный град, который научная группа Юноны называет «mushballs»; они предполагают, что градины, по сути, впитывают аммиак в верхних слоях атмосферы.

Учёные NASA изучили грозовые бури и град в атмосфере Юпитера и обнаружили аммиак NASA, Космос, Солнечная система, Юпитер, Юнона, Перевод, Планета, Наука, Видео, Длиннопост

Результат снимка "Юноны", запечатлевший грозы и град в облаках Юпитера.


Грозы породили еще одну загадку, касающуюся структуры атмосферы Юпитера: микроволновый радиометр «Юноны» обнаружил, что аммиак отсутствует в большей части атмосферы Юпитера. Еще более загадочным было то, что количество аммиака изменяется по мере движения в атмосфере Юпитера.

Journal of Geophysical Research: Planets, предполагает странное сочетание 2/3 воды и 1/3 газообразного аммиака, которое формирует град на Юпитере.

Учёные NASA изучили грозовые бури и град в атмосфере Юпитера и обнаружили аммиак NASA, Космос, Солнечная система, Юпитер, Юнона, Перевод, Планета, Наука, Видео, Длиннопост

Молнии в центре снимка, сделанного во время Миссии "Юнона".

Учёные NASA изучили грозовые бури и град в атмосфере Юпитера и обнаружили аммиак NASA, Космос, Солнечная система, Юпитер, Юнона, Перевод, Планета, Наука, Видео, Длиннопост

Процесс формирования гроз и града на Юпитере.


«Анализ результатов исследований привёл к разгадке тайны отсутствия на Юпитере аммиака», - сказал Болтон. «Как выяснилось, аммиак на самом деле не отсутствует; он просто перемещается вниз, будучи замаскированным, путем смешивания с водой. Решение этой теории очень простое: когда вода и аммиак находятся в жидком состоянии, они невидимы для нас до тех пор, пока не достигнут глубины, на которой они испаряются - а это слишком глубоко».

Поняв структуру атмосферы Юпитера, можно развивать теории строения атмосферы всех планет в нашей солнечной системе, а также для экзопланет, обнаруживаемых за пределами нашей солнечной системы. Сравнивая, как сильные штормы и атмосфера ведут себя в Солнечной системе, ученые-планетологам смогут проверять теории, основываясь на параметрах поведения планеты.


Источник: https://www.nasa.gov/feature/jpl/shallow-lightning-and-mushb...

Автор статьи: Tony Greicius

Перевёл: Бондарь А

Показать полностью 3
52

Астрохобби #1

Добрый день, Пикабу, пятница уже не за горами, поэтому "пятничное моё". Всегда интересовался астрономией, но с наукой разминулся самую малость. Мечта привести в свою жизнь звёздное небо в том или ином виде осталась. Так два года назад у меня появился телескоп, который специально выбирал для астрофото и понеслось, ночи без сна, штудирование форумов, подбор остального железа и вот, моя на данный момент последняя фотография:

Астрохобби #1 Астрономия, Астрофото, Космос

Точнее, ехал в конце июля в поле потестировать новую камеру, и это то что получилось отснять за 1.5 часа на еще не совсем тёмном небе (астрономические ночи в Нижегородской области начнутся только в середине августа).
Тут туманность Ведьмина метла, часть туманности Вуаль, которая, в свою очередь, является остатком древней сверхновой, вспыхнувшей 5000—8000 лет назад. Примерное расстояние от нас 2500 световых лет. Однако на небе вся туманность Вуаль огромна, примерно 3 угловых градуса, что в 6 раз больше в диаметре, чем диаметр полной Луны. Наш спутник целиком бы влез в поле зрения этой фотографии.

Ссылка на оригинал и параметры съемки можно посмотреть здесь:
https://deepskyhosting.com/gV84Qnb


Астрономический сезон 2020-2021 только начинается, так что если будет интересно - продолжу публиковать новые работы и расскажу про сетап, что за что отвечает.

384

Curiosity празднует 8-летие на Марсе

Марсоход НАСА Curiosity приземлился восемь лет назад, 5 августа 2012 года, и вскоре к нему присоединится еще один марсоход, Perseverance, запущенный 30 июля 2020 года.


Curiosity многое повидал с тех пор, как впервые остановился в бассейне Кратера Гейла шириной 96 миль (154 км). Его миссия: изучить, есть ли на Марсе вода, химические элементы и источники энергии, которые могли поддерживать микробную жизнь миллиарды лет назад.

Curiosity празднует 8-летие на Марсе NASA, Curiosity, Mars, Наука, Космос, Планета, Планеты и звезды, Марсоход

Curiosity сделал это селфи на 2082 сол на Марсе (15 июня 2018 года по земному времени).


С момента приземления марсоход проехал более 14 миль (23 км), пробурив 26 образцов горных пород и зачерпнув по пути шесть образцов почвы, вследствие чего выяснилось, что древний Марс действительно мог быть пригоден для жизни. Изучение текстуры и состава слоев древних горных пород помогает ученым понять, как марсианский климат менялся с течением времени, теряя озера и ручьи, пока не превратился в холодную пустыню, которой является сегодня.


Источник: https://www.nasa.gov/image-feature/curiosity-celebrates-8-ye...

Перевёл: Бондарь А

81

Черная дыра не сделала свою работу – и в скоплении галактик вспыхнули звезды

Черная дыра не сделала свою работу – и в скоплении галактик вспыхнули звезды Космос, Черная дыра, Длиннопост

Астрономы выяснили, что происходит, когда гигантская черная дыра не вмешивается в процессы, протекающие внутри скопления галактик. Используя рентгеновскую космическую обсерваторию Chandra («Чандра») НАСА и другие телескопы, они показали, что пассивное поведение черной дыры может объяснять мощную вспышку звездообразования, наблюдаемую в далеком скоплении галактик.


Скопления галактик содержат сотни тысяч галактик, погруженных в горячий, излучающий в рентгеновском диапазоне газ, масса которого превышает общую массу всех галактик скопления вместе взятых. Выбросы материала в результате активности сверхмассивной черной дыры (СМЧД), расположенной в центральной галактике скопления, приводят к тому, что горячий газ не может охладиться до температур, благоприятствующих образованию большого числа новых звезд. Этот нагрев позволяет СМЧД оказывать влияние на активность и эволюцию родительского скопления галактик – и даже регулировать их.


Основываясь на результатах наблюдений, проведенных при помощи космических телескопов НАСА Hubble («Хаббл») и Spitzer («Спитцер»), астрономы ранее обнаружили, что в скоплении галактик SpARCS1049 происходит формирование новых звезд с ошеломляющей скоростью – порядка 900 масс Солнца в год. Для сравнения, в нашей галактике Млечный путь скорость формирования звезд примерно в 300 раз ниже. Эта вспышка звездообразования наблюдается на расстоянии примерно 80 000 световых лет от центра скопления. Но с чем связано ее возникновение?


В новом исследовании группа под руководством Джулии Главачек-Ларрондо (Julie Hlavacek-Larrondo) из Монреальского университета, Канада, смогла выяснить причину загадочного всплеска звездообразования, выяснив, что звезды в скоплении галактик SpARCS1049 образуются в такой области пространства, температура которой составляет всего лишь 10 миллионов Кельвинов, в то время как большая часть газа в скоплении разогрета до 65 миллионов Кельвинов. Согласно команде, такое остывание газа до температур, благоприятствующих звездообразованию, связано с отсутствием активности со стороны черной дыры центральной галактики скопления. Отсутствие в окрестностях этой СМЧД материала, необходимого для «питания», подтверждается отсутствием рентгеновского и радиоизлучения с ее стороны и может быть связано с тем, что скопление SpARCS1049 образовалось в результате слияния двух меньших по размерам скоплений галактик, а потому его центральная СМЧД оказалась смещена по отношению к области с наивысшей плотностью газа, пояснили авторы.

Черная дыра не сделала свою работу – и в скоплении галактик вспыхнули звезды Космос, Черная дыра, Длиннопост

Исследование опубликовано в журнале Astrophysical Journal Letters.

Показать полностью 1
51

Испытания в Гидролаборатории

4 августа многофункциональный модуль «Наука» (МЛН) отправился на Байконур. В следующем году он должен войти в состав Российского сегмента Международной космической станции (МКС). Работы по присоединению модуля «Наука» к МКС будут проводить космонавты в открытом космосе. Прежде чем выполнить непростую задачу, схожие операции отрабатываются в гидролаборатории Центра подготовки космонавтов имени Юрия Гагарина. На последних таких учениях побывала наша съемочная группа. Инструкторы Центра подготовки космонавтов и специалисты Ракетно-космической корпорации «Энергия» отработали циклограмму выхода в открытый космос, последовательно выполнив все операции с оборудованием, которое предстоит использовать космонавтам во время предстоящей внекорабельной деятельности. Оператор подводных съемок – Артем Князев. Организация съемок в гидролаборатории – пресс-служба ЦПК им. Ю.А. Гагарина.

279

Модуль «Наука» перед отправкой на космодром

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

На сайте «Комсомольской правды» появился фоторепортаж о многофункциональном лабораторном модуле (МЛМ) международной космической станции «Наука», готовящемся к скорой отправке на космодром «Байконур» с завода им. М.В. Хруничева:

https://www.kp.ru/putevoditel/nauka/modul-nauka-dlya-mks/

В этом посте - фотографии оттуда с некоторыми пояснениями над ними. Сначала внешние особенности, потом интерьер.


Многое оборудование модуля, как внутреннее, так и наружное, будет установлено только на космодроме, так что пока он имеет незаконченный вид.

Конструктивно модуль состоит из приборно-герметичного отсека с основной цилиндрической частью диаметром 2,9 м и конической задней частью с максимальным диаметром 4,1 м и переднего герметичного адаптера с конической и сферической частями.


Вид на заднее коническое днище. На нём расположен стыковочный агрегат, предназначенный для стыковки МЛМ с МКС. Закрытые округлыми красными защитными чехлами - солнечные датчики. Также днище усеяно местами установки различных антенн. По шпангоуту наибольшего диаметра модуль соединяется с ракетой-носителем.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

На стыке конической и цилиндрической обечаек - один из двух двигателей коррекции и сближения, закрытый металлическим кожухом; можно разглядеть срез сопла, окружённый красными лентами. (Второй расположен диаметрально противоположно.) Слева - шар-баллоны для гелия системы наддува топливных баков. Белым матом закрыто место установки дополнительной раскрываемой радиаторной панели. По бокам от него - места установки датчиков ориентации на Землю.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Один из двух задних блоков двигателей причаливания и стабилизации и двигателей точной стабилизации.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Два топливных бака, накрытые панелью радиатора. Всего у МЛМ шесть баков, по три для горючего и окислителя.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Закрытая белой крышкой базовая точка робота-манипулятора ERA (European Robotic Arm), созданного под руководством Европейского космического агентства. На модуле три таких точки, ERA может переходить с одной на другую.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Справа, прямо посередине радиатора - место установки солнечной батареи, над и под ним - базовые точки ERA. Слева - блок двигателей управления ориентацией МКС по крену (чему способствует местоположение МЛМ в составе станции). Выше - фермы для закрепления ERA в стартовой конфигурации.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Гермоадаптер. Один из двух передних блоков двигателей причаливания и стабилизации. На куполе сверху иллюминатор, он у МЛМ всего один.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Передний стыковочный агрегат. Нетрудно увидеть, что он отличается от заднего. Дело в том, что он предназначен и для приёма кораблей «Союз» и «Прогресс», и позднее для пристыковки узлового модуля «Причал». Однако диаметр стыковочных агрегатов, используемых для соединения модулей российского сегмента МКС, больше, чем диаметр стыковочных агрегатов кораблей. Поэтому МЛМ оснащён отделяемым переходником.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

На гермоадаптере есть ещё один боковой стыковочный агрегат, почти такой же, как два других. Но он нужен для присоединения автоматизированной шлюзовой камеры. Сама шлюзовая камера, а также раскрываемая радиаторная панель и переносное рабочее место для работы в открытом космосе уже на станции и закреплены на малом исследовательском модуле «Рассвет»; они должны быть перенесены на МЛМ с помощью ERA. (А ещё на МИМ1 запасной локтевой элемент ERA.)

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Вид внутрь модуля из люка заднего стыковочного агрегата. Справа - мастерская. Слева - туалет. Ассенизационно-санитарно устройство такое же, как два других, уже имеющихся на МКС. Рядом с ним под полом - система регенерации воды из урины.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Вид на то же место из модуля. Сверху - многозонная вакуумная печь для проведения экспериментов в области материаловедения.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Ещё дальше вглубь модуля. Справа вблизи - рамы модуль-полок для сменного научного оборудования; за ними - место установки перчаточного бокса. Слева - пост управления внекорабельными операциями.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Рамы модуль-полок слева, пост управления справа. Между ними под полом - место установки поворотной виброзащитной платформы. На потолке дальше - каюта для одного космонавта.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Вверху дверь каюты. Под ней в стенке справа - ещё рамы модуль-полок и места установки двух высокотемпературных биотехнологических термостатов, слева - одного низкотемпературного термостата.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост

Вид на основной объём модуля из гермоадаптера, они разделены переборкой с люком.

Модуль «Наука» перед отправкой на космодром Млм, Наука, МКС, Космонавтика, Космос, Роскосмос, Длиннопост
Показать полностью 15
522

Сатурн, 31 июля 2020 года, 01:06

Сатурн, 31 июля 2020 года, 01:06 Сатурн, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 5000 кадров из 29923 в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

202

Марс, 31 июля 2020 года, 02:27

Марс, 31 июля 2020 года, 02:27 Марс, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 2500 кадров из 17859 в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

339

Юпитер, 31 июля 2020 года, 00:50

Юпитер, 31 июля 2020 года, 00:50 Юпитер, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор, Длиннопост

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC (49 fps).

Сложение 1000 кадров из 4468 в Autostakkert, деротация 5 стэков в WinJUPOS (00:46-00:54).

Место съемки: Анапа, двор.


Бонус: снимок Юпитера, полученный при помощи метанового фильтра CH4 (890 нм) и монохромной астрокамеры QHY5III178m:
Юпитер, 31 июля 2020 года, 00:50 Юпитер, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор, Длиннопост

Для того, чтобы самостоятельно найти Юпитер, посмотрите около полуночи в южную часть неба. Юпитер выглядит как яркая желтовато-белая немерцающая звезда невысоко над горизонтом.

В качестве ориентира для поиска Юпитера этой ночью можно использовать Луну.

Юпитер, 31 июля 2020 года, 00:50 Юпитер, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор, Длиннопост

Желаю всем ясного неба и успехов в изучении астрономии!

Мой космический Instagram: star.hunter

Показать полностью 2
210

Правда ли космический вакуум моментально убьет человека?

Гибель в космическом вакууме представляется в самых разных и малоаппетитных подробностях. Но правда ли в космическом сражении вакуум убьёт мгновенно?

Правда ли космический вакуум моментально убьет человека? Космос, Наука, Физика, Фантастика, Ликбез, Длиннопост

Рамки задачи


Последовательность действий, которую должен совершить космонавт, чтобы начать погибать от вакуума, напоминает анекдот, где бойцу, чтобы подраться врукопашную, нужно сделать следующее: «Потерять автомат, гранаты, нож, отыскать ровную площадку без камней и палок, найти другого такого же растеряху…» 

Почему так?


Специфика космического сражения


Гипотетический космонавт в бою вряд ли подвергнется действию космического вакуума без любых других угроз. Куда с большей вероятностью его не просто банально «подстрелят», а нашинкуют в мелкий фарш.

Правда ли космический вакуум моментально убьет человека? Космос, Наука, Физика, Фантастика, Ликбез, Длиннопост

Стержень кинетического поражающего элемента на скорости в несколько километров в секунду расплёскивает человека облаком кровавого тумана. Мощный лазер даёт ровно тот же эффект, хотя фрагментов тела в этом случае остаётся больше. Любые вторичные обломки от близкого попадания действуют как хорошая осколочная граната. Отказы систем жизнеобеспечения и критические техногенные аварии вроде пожара на борту — ещё опаснее. Ну и лёгкие скафандры для работы на боевом посту не отменял последние лет шестьдесят никто.


Повреждения скафандра


В реальных армейских исследованиях докосмической и ранней космической эры звучат неприятные выводы. Человека в скафандре, чтобы он умер, проще и выгоднее нашпиговать осколочными элементами хорошей такой гранаты. Или хотя бы подстрелить.

Правда ли космический вакуум моментально убьет человека? Космос, Наука, Физика, Фантастика, Ликбез, Длиннопост

Перчатки скафандров за бортом космической станции современные астронавты рвали достаточно часто и отделывались припухлостями и покраснениями. Разница в одну атмосферу не так уж и велика, тепловой ожог при контакте с нагретыми Солнцем поручнями станции повреждал кожу сильнее. Но это маленькая аккуратная дырочка. А если нет?


Идеальная смерть


Допустим, коварный выстрел подлого врага оторвал душевую кабинку с голым космонавтом и того немедленно выкинуло из неё на свежий вакуум, погибать. Что дальше?


Первые секунд десять нарастает дискомфорт. Остатки воздуха стремительно покидают лёгкие. Держать их — ошибка, напряжение лишь увеличивает дискомфорт и сокращает вероятный срок дееспособности. В этот промежуток времени достаточно тренированный человек может действовать условно нормально.


В пределах следующих тридцати секунд неминуемы первые судороги. Шанс успеть что-то сделать остаётся, но заканчивается потерей сознания. Короткий промежуток бессилия — ещё секунд пятнадцать — сменяется новыми, уже бессознательными и куда более резкими хаотическими движениями. Затем наступает умирание и потеря высшей нервной деятельности.

Современная медицина ручается, что полторы минуты ещё могут пройти без последствий, до примерно трёх — есть шансы откачать хотя бы овощ. Пожилой сердечник имеет все шансы помереть в пределах минуты от чрезмерной нагрузки сосудов мозга и сердца.


Так правда ли в космическом сражении вакуум убьёт мгновенно? Нет. Есть все шансы и подёргаться, и дождаться помощи — и остаться здоровым человеком, после чего долго ещё рассказывать внукам байки о своём невероятном спасении.


Михаил Лапиков


Источник

Показать полностью 1
141

Телескоп VLT сделал самое красивое фото «космической бабочки»

Очень большой телескоп (VLT) Европейской Южной Обсерватории (ESО) в Чили получил новое изображение газовой туманности NGC 2899, своей симметричностью, игрой цвета и сложной внутренней структурой напоминающей порхающую в ночном небе разноцветную бабочку.


Эту планетарную туманность еще никогда не удавалось сфотографировать в таких мельчайших деталях — видны даже просвечивающие сквозь фоновое звездное поле ее слабые внешние края.

Телескоп VLT сделал самое красивое фото «космической бабочки» Новости, Риа Новости, Наука, Космос

NGC 2899 расположена на расстоянии от 3000 до 6500 световых лет от нас в южной части созвездия Парусa.


Считается, что ее почти идеальная симметричная структура связана с наличием двух центральных звезд, одна из которых завершила свою эволюцию сбросила в окружающее пространство внешние оболочки.


Источник: ria.ru

299

Водородное Солнце, 30 июля 2020 года, 10:56

Водородное Солнце, 30 июля 2020 года, 10:56 Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор, Фотография

Оборудование:

-хромосферный телескоп Coronado PST H-alpha 40 mm

-монтировка Meade LX85

-светофильтр Deepsky IR-cut

-астрокамера QHY5III178m.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter
46

Космический интернет для МКС

Бортовая аппаратура широкополосной связи, была задействованаа на Российском сегменте Международной космической станции для участия российских космонавтов в голосовании, на прошедшем 1 июля конституционном референдуме. Система была смонтирована космонавтом Олегом Кононенко в 2019 году.

Новый вид связи, вбирает в себя все виды информации циркулирующей на МКС, телевидение, голос, файловый обмен,

мультиплексирует ее и через спутники-ретрансляторы, многофункциональной космической

системы «Луч-5Б» и «Луч-5В», передает на наземную аппаратуру в РКК «Энергия».

Здесь специальное программное обеспечение демультиплексирует информацию и раздает потребителям. Что характерно, с помощью этого вида связи можно не только получать информацию, но и передавать её на борт МКС, то есть, по сути, этот вид связи работает как интернет.

95

Что можно узнать о будущем, прочитав 100 научно-фантастических книг?

Что можно узнать о будущем, прочитав 100 научно-фантастических книг? Космос, Будущее, Цивилизация, Вселенная, Книги, Фантастика, Длиннопост

За последние два года я прочитал сто научно-фантастических книг, в среднем одну в неделю.


Полный список здесь:  https://fortelabs.co/blog/science-fiction-books-ive-read/


Я начал читать научную фантастику, чтобы скоротать время. Будучи еще ребенком, я хорошо запомнил «Парк Юрского периода». Я продолжил читать, когда обнаружил, что она дала мне кое-что еще: мощное воображение и неуважение к обычному, простому и возможному. Я заметил, что у меня другие идеи, которые вы не найдете, читая TechCrunch или любой другой дайджест из Кремниевой долины. По роду деятельности я продаю идеи, и эти книги для меня одновременно и клад, и инструментарий.


Как говорит футуролог Джейсон Сильва, «воображение позволяет нам ощущать восторг возможностей будущего, выбирать наиболее удивительные и подтягивать настоящее вперед, чтобы встретить их». Я думаю, что чтение этих книг позволило мне испытать это в полной мере.


В основе каждой хорошей научно-фантастической истории лежит мысленный эксперимент, некое ядро, и я решил запустить собственный:


Что, если эти книги в действительности отображают, на что будет похоже будущее?


Это высказывание не так уж и далеко от реальности. Читая ранних классиков вроде Жюля Верна и Герберта Уэллса я поражался не столько тому, как они ошибались, а тому, насколько оказались правы. Свой список я составил из списка лучших научно-фантастических произведений всех времен, поэтому эти книги отражают лучшие идеи (или хотя бы наиболее интересные), по мнению человечества.


Вот будущее, в которое мы движемся, по мнению величайших фантастов.

1. Чтобы спасти человечество, мы должны потерять его

Что можно узнать о будущем, прочитав 100 научно-фантастических книг? Космос, Будущее, Цивилизация, Вселенная, Книги, Фантастика, Длиннопост

Мы все знаем, что долгосрочное выживание нашего вида зависит от колонизации других планет, а значит и других солнечных систем. Вопрос не в том, станет ли наша планета непригодной для жизни, вопрос в том, когда.


Но глядя на расстояния и временные рамки, которые стоят за этим процессом, становится понятно, что как только мы начнем расселяться, мы начнем отдаляться друг от друга, дрейфовать.


Все начнется с языка и культуры. Колонии на других планетах, разделенных миллионами километров и часами передачи радиосообщения, начнут вырабатывать собственные диалекты, собственный сленг, музыку, тренды. Достаточно взглянуть только на изменения в английском языке, на разницу диалектов горных шотландцев и калифорнийский серферов, южно-африканских буров и карибских креольцев, и понять, что это только намек на всю культурную глубину.


Затем будет политический и экономический дрейф. Так же, как культурная идентичность американцев родилась в процессе американской революции, колонии будут считать себя другими, требовать прав и правительств, представляющих их интересы. Учитывая расстояния, мы сможем подавить только несколько первых восстаний, но пройдет время, и они найдут выход наружу.


Экономическая интеграция будет продолжаться, но намного медленнее, чем освоение космоса и колонизация. К тому времени, когда мы сможем полностью интегрировать эти колонии в свою экономику, у них давно будут самодостаточные экономические системы.


Наконец, мы увидим генетический дрейф. Примечательно то, что, несмотря на наше огромное разнообразие здесь, на Земле, мы все представляем один вид, что означает, что любое физическое лицо может продолжить род с любым другим лицом противоположного пола. На основе этого мы можем восстановить долгий генеалогический путь в 160 000 лет.


Но это не больше чем историческая случайность. До этого как минимум несколько видов гоминид бродило по планете, и только быстрое появление и расширение homo sapiens из Африки по миру стало ключевым пунктом в превалировании нашего вида.


К тому моменту, когда некоторые из нас покинут планету, ДНК снова начнет расходиться. Ограниченный генофонд, разнообразные давления, другие источники смертности, новые уровни радиации и мутации — все это выведет покорителей космоса на новый эволюционный путь, произвольный или искусственный.


В конце концов, через сотни или тысячи лет даже одна ключевая мутация в далекой изолированной колонии может сделать воспроизводство невозможным, отрезав эту ветвь навсегда.


Для того чтобы спасти человечество, мы должны колонизировать звезды, но при этом единое определение человечества, которое мы знаем, будет потеряно.

2. Время будет нашим злейшим врагом

Что можно узнать о будущем, прочитав 100 научно-фантастических книг? Космос, Будущее, Цивилизация, Вселенная, Книги, Фантастика, Длиннопост

По мере того, как мы осваиваем три пространственных измерения, четвертое измерение — время — будет становиться все большей и большей проблемой.


Первая причина — это замедление времени, доказанное следствие теории относительности, недавно показанное в фильме «Интерстеллар» и обыгранное в десятках фантастических книг за десятки лет. Замедление времени — это феномен, который проявляется в зависимости от того, как быстро вы двигаетесь (со всеми вытекающими). Если кто-то будет путешествовать с околосветовой скоростью, он будет стареть медленнее, чем тот, кто останется на Земле.


Последствия только этого явления поражают. Долгосрочные космические миссии с возвращением на родную планету будут неизбежно оканчиваться тем, что все, кого знали путешественники, уже мертвы. Семьи будут разделяться веками, люди будут переживать своих праправнуков. Легенды будут выходить из космических капсул еще молодыми. Тот, кто захочет увидеть будущее, отправится в долгое путешествие на высокой скорости и прибудет обратно к назначенному времени. Это будет подобно машине времени с единственным направлением — вперед.


Вторая причина заключается в огромных расстояниях, которые нужно будет преодолеть в ходе межзвездного путешествия. Вполне вероятно, что первые отправившиеся в межзвездное путешествие могут и не стать первыми прибывшими — за время путешествия появятся новые технологии, новые пути, новые методы, которые позволят второй миссии догнать и перегнать первую. Представьте, что вы погружаетесь в криогенный сон, будучи первой группой межзвездных путешественников, только для того, чтобы проснуться и обнаружить пункт своего назначения уже сто лет как колонизированным.


Третья причина — разница технологий. Технологии будут иметь важное значение для каждого аспекта космической цивилизации и будут улучшаться так быстро, что даже небольшие различия будут иметь далеко идущие последствия.


Две системы с разной скоростью технологического развития будут разделены гигантской пропастью в несколько десятилетий или столетий. Их общества могут стать настолько принципиально различными, что даже общение и обмен могут затрудниться.


Технологии, отправленные в далекие системы, могут стать устаревшими к моменту прибытия. Даже отправки информации на скорости света может быть недостаточно быстрой для систем, которые находятся в световых годах друг от друга. Торговля чем угодно, кроме сырьевых материалов, станет невероятно сложной.


Война на больших расстояниях станет тщетной, потому что любая военная сила, отправленная на субсветовой скорости, будет устаревшей к моменту прихода. Также это может означать бесконечную войну, в которой не выиграет ни одна сторона. Джо Холдеман описал это в «Бесконечной войне» (1974).


Мы уже испытываем ограничения путешествий во времени и пространстве. Вы знаете, что у космического аппарата «Розетта», запущенного Европейским космическим агентством, камера OSIRIS обладает разрешением всего 4 мегапикселя. А ведь на момент запуска в 2004 году это была самая передовая технология фотокамер. Сегодня ее даже в смартфон стыдно включить.


Посадочный аппарат «Филы», который отделился от «Розетты», чтобы приземлиться на комету, был оснащен тщательно проверенными гарпунами и сверлами по льду, на который должен был сесть аппарат. В последующие годы мы обнаружили, что поверхность планеты на самом деле состоит из смеси пыли, гравия и льда, а значит выбор оборудования для работы уже был неверен.


Пока текут года, наше общее восприятие времени меняется, и мы точно узнаем, что четвертое измерение представляет для нас куда больше проблем, чем три пространственных измерения.

3. Будущее будет странным

Что можно узнать о будущем, прочитав 100 научно-фантастических книг? Космос, Будущее, Цивилизация, Вселенная, Книги, Фантастика, Длиннопост

Если бы мне пришлось выбирать одно слово, чтобы описать будущее максимально правдоподобно, то это слово было бы «странное». Позвольте мне объяснить.


Такие писатели, как Рэй Курцвейл, проделали хорошую работу, объясняя, почему нам так трудно представить себе будущее, в котором мы направляемся. Он утверждает, наша древняя эвристика линейна — отследить антилопу, пересекающую саванну; оценить, сколько времени будут храниться продукты — но из-за закона Мура, мы входим в фазу экспоненциальных изменений, к которым наша эвристика просто не готова.


Другими словами, мы смотрим на скорость изменений в недавнем прошлом и экстраполируем на ближайшее будущее. Но теперь, когда мы переходим к экспоненциальному росту, этот вид экстраполяции не работает.


Этот аргумент довольно убедителен, но, что более интересно, это не скорость изменений, а непредсказуемость их направлений. Истории, которые я читал, привели меня к мысли, что мы едва знали о небольших последствиях некоторых из технологий, которые разрабатываем, но эти последствия оказались весьма странными.


Возьмем, к примеру, знакомства. На что будут похожи знакомства в мире с высокоразвитым лечением старения? Представьте мужчину и женщину на свидании. Оба выглядят на 25 лет, но их внешний вид ничего не значит. Они должны сыграть в сложную игру, изучая друг друга и пробуя на вкус привычки и предпочтения, чтобы попытаться определить возраст другого, не раскрывая свой. Будут целые школы и институты, обучающие тому, как (и почему) нужно знакомиться с людьми, которые на десятки лет (сотни?) старше или моложе вас.


Область, в которой мы очень скоро сможем наблюдать эти странные вещи самостоятельно, называется виртуальная реальность. Забавно видеть, что большинство передовых портретистов виртуальной реальности считают, что это будет мир, похожий на обычную реальность, с человекоподобными телами в человекоподобном мире. Думаю, очень скоро мы поймем, что эта реальность «баг, а не фича».


Какую форму вы приняли бы, если бы могли принять любую форму? Будет огромное число отраслей, которые помогут вам побыть в шкуре другого человека, животного, неодушевленного объекта, иностранца. Другие отрасли будут посвящены проектированию окружающей среды, законов физики, психических состояний, личностей, воспоминаний и многих других вещей. Фильм с Робин Райт «Конгресс» (2013) отлично описывает такой мир.


Но лучшим примером того, почему будущее будет странным, является искусственный интеллект.


Сама идея, лежащая в основе технологической сингулярности, говорит о том, что есть точка в нашем будущем, за которой мы не можем видеть. Предполагается, что это точка, когда искусственный интеллект человеческого уровня получает доступ к собственному исходному коду, положив начало экспоненциальному взрыву интеллекта.


Но что именно означает этот «сверхчеловеческий интеллект»? Чего можно ожидать от компьютера, который в миллион раз, допустим, умнее всех людей, которые когда-либо жили и умирали?


Мы полагаем, что он посвятит время решению «сложных» задач — мирового голода, земного климата, расшифровке структуры мозга и так далее. Но вы же понимаете, что здесь в силу вступает наше антропоморфное линейное мышление.


Мы можем исследовать это с помощью аналогии: представьте муравья, наблюдающего за поведение человека. С точки зрения муравья, человек не тратит свое время на решение «сложных муравьиных проблем». Практически ничего, что делает человек, муравей не может ни интерпретировать, ни даже наблюдать; масштабы и сложность простейшего действия человека лежат далеко за пределами восприятия муравья. Все, что видит муравей, думаю, он мог бы описать одним словом: «странно».


Точно так же мы будем описывать действия и мышление сверхчеловеческого искусственного интеллекта. Если взрыв интеллекта действительно произойдет, очень скоро мы станем муравьями по сравнению с ним.


Кто знает, каким путем пойдет такой интеллект? Может быть, он изобретет новую логическую систему, несовместимую с человеческой неврологией? Может быть, он обнаружит, что наша система принадлежит кому-то еще и вступит в контакт с нашими старшими братьями? Может быть, он использует чистую математику, чтобы разобрать темную материю и передвинуть нашу реальность в альтернативное квантовое состояние, в котором он будет создателем, а мы искусственными? Скорее всего, он будет делать такое, что даже нашего языка не хватит, чтобы это описать.

Источник: https://hi-news.ru/eto-interesno/chto-mozhno-uznat-o-budushh...

Показать полностью 3
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: