77

Hubblecast: "Последний рубеж"

В течение нескольких лет космический телескоп NASA / ESA "Хаббл" наблюдает за некоторыми из самых массивных структур во Вселенной - скоплениями галактик. Используя эффект увеличения, вызванный их массой, "Хаббл" может "всматриваться" во Вселенную глубже, чем когда-либо ранее. В этом видео рассказывается о целях и достижениях этой научной программы.

Дубликаты не найдены

Похожие посты
150

Карта свежих отложений водяного льда на Энцеладе

Карта свежих отложений водяного льда на Энцеладе Космос, Астрономия, Наука

NASA JPL собрали воедино данные, полученные аппаратом Cassini в течение 13 лет в инфракрасном диапазоне, и составили карту отложений водяного льда на поверности спутника Сатурна Энцелада.

Источник

Интерактивный глобус Энцелада

143

ТОП научно-популярных видео недели (06.09.20 – 12.09.20)

Здравствуйте! Это подборка самых научно-популярных видео за неделю, по версии подписчиков SciTopus.

Рекомендуем посмотреть видео с нашего канала: «Александр Соколов: про АНТРОПОГЕНЕЗ РУ, премию ВРАЛ и суд с Натальей Зубаревой | SciView».

На пятом месте «Что такое космические струны? Дефекты пространства-времени» от канала Космос просто:

Четвёртое место занял канал Упоротый Палеонтолог благодаря видео «Как молекула стала ЖИВОЙ и почему надо учить химию, а не Библию | Эволюция | Разумный замысел»:

«Переменные звезды | Цефеиды | Определение расстояний в космосе» от канала Space Room на третьем месте:

Второе место – «ТЫ НЕ ДОЛЖЕН ЭТО ОТКРЫВАТЬ [Топ Сикрет]», Utopia show:

Бонусным видео недели, по результатам голосования в нашей группе ВКонтакте, стало «В чём химичить? Курс Молодого Химика», канал Химия – Просто:

Самым популярным видео недели стало «Камни в Желчном Пузыре | Ликбез: Желчнокаменная болезнь», канал kvashenov:

Если вам интересна научно-популярная тематика, то вам может быть полезен наш полный список всех науч-поп каналов.

Показать полностью 5
428

Марс, 18 сентября 2020 года, 00:21

Марс, 18 сентября 2020 года, 00:21 Марс, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 1000 из 8973 кадров в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

597

Сатурн, 17 сентября 2020 года, 21:11

Сатурн, 17 сентября 2020 года, 21:11 Сатурн, Планета, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 5000 кадров из 29916 в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter
178

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем

Радиотелескоп MWA (Murchison Widefield Array), расположенный в одном из отдаленных и необжитых уголков Австралии, недавно закончил проведение самого глубокого и самого широкого обзора .

Целью аппарата являлись поиски признаков присутствия внеземных технологий. За счет уникальных возможностей телескопа MWA астрономы во время поиска охватили гораздо больший участок неба, чем во время любого другого аналогичного поиска, просканировав в низкочастотном диапазоне по крайней мере 10 миллионов звездных систем, находящихся в направлении созвездия Паруса. Но, к сожалению, если внеземные цивилизации и существуют в той области космоса, они пока остались для нас "неуловимыми".

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем Астрофизика, Космос, Наука, Интересное, Новости, Поиск, Иные, Цивилизация, Длиннопост

Исследования проводились учеными из австралийского Международного центра радиоастрономических исследований (International Centre for Radio Astronomy Research, ICRAR). Во время поисков проводилось сканирование низкочастотной части радиоспектра, включая FM-диапазон, с целью поисков достаточно сильных источников радиоизлучения, которые могут стать "указателем" на присутствие так называемой "техноподписи" высокоразвитой цивилизации.

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем Астрофизика, Космос, Наука, Интересное, Новости, Поиск, Иные, Цивилизация, Длиннопост

Dipole antennas of the Murchison Widefield Array (MWA) radio telescope in Mid West Western Australia. Credit: Dragonfly Media./

Дипольные антенны радиотелескопа Murchison Widefield Array (MWA) в Среднем Западе Западной Австралии. Предоставлено: Dragonfly Media.


"Мы сканировали небо в направлении созвездия Паруса в течение 17 часов, охватив область космического пространства в 100 раз более широкую и глубокую, чем это делалось раньше" - пишут исследователи, - "Но, как писал Дуглас Адамс в своей книге "Автостопом по Галактике", космос - это очень большое место. С этой точки зрения проведенный нами поиск был похож на попытку найти что-нибудь в земном океане, исследовав объем воды, сопоставимый с объемом бассейна на заднем дворе вашего дома".


Телескоп MWA входит в состав Мерчисонской радиоастрономической обсерватории (Murchison Radio-astronomy Observatory), которая находится в пустынной необжитой местности, в 800 километрах от Перта, Австралия, и находится под управлением австралийского Национального исследовательского агентства CSIRO (Commonwealth Science and Industrial Research Organisation).

Площадь антенного поля радиотелескопа MWA составляет 3 квадратных километра и он является одним из сегментов будущего радиотелескопа Square Kilometre Array (SKA), в состав которого войдут и другие сегменты, расположенные в Западной Австралии и Южной Африке. В результате, чувствительность телескопа SKA будет в 50 раз выше, чем чувствительность любого из отдельно взятых современных радиотелескопов, и при его помощи ученые будут в состоянии проводить еще более широкие и глубокие поиски, включая поиски признаков существования внеземных цивилизаций.


"При помощи радиотелескопа SKA мы сможем тщательно просканировать миллиарды звездных систем в поисках следов "техноподписей", скрывающихся в "океане" сигналов космических шумов и сигналов от астрономических объектов" - пишут исследователи.

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем.

Австралийский радиотелескоп не нашел признаков внеземных технологий в 10 миллионах звездных систем Астрофизика, Космос, Наука, Интересное, Новости, Поиск, Иные, Цивилизация, Длиннопост

Русскоязычный источник:

https://www.dailytechinfo.org/2020/09/16/


Англоязычный источник:

https://phys.org/news/2020-09-australian-telescope-alien-tec...

Показать полностью 2
78

Как скрывали радиоактивные осадки в США

Дерек расскажет, как после испытания первой ядерной бомбы проекта "Тринити", компания "Кодак", смогла раскрыть засекреченное правительством событие. И как именно удалось сокрыть от общественности мощный ядерный взрыв. Какие последствия были для населения от многочисленных ядерных испытаний в Неваде и последующего выпадения радиоактивных осадков на большей части территории страны, хотя специалисты рекомендовали выбрать другое место для полигона. Как это повлияло на частоту заболеваемости онкологией. И как можно отличить поддельное вино от оригинального, зная год сбора урожая, с помощью счётчика Гейгера. Как всплеск радиоактивных осадков в период активных испытаний в середине 20 века помогает судмедэкспертам и оценщикам картин.

1093

Мой адрес не дом и не улица

Когда-нибудь, указывая свой полный почтовый адрес, мы будем заканчивать его:

- Планета Земля (третья от звезды)

- Солнечная система

- Галактика Млечный Путь (между рукавом Стрельца и рукавом Персея)

- Местная группа галактик (подгруппа Млечного пути)

- Скопление Девы

- Сверхскопление Ланиакея

Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост
Мой адрес не дом и не улица Космос, Вселенная, Астрономия, Длиннопост

Изображение в оригинальном разрешении

Показать полностью 8
843

Взрыв звезды, съёмки которой велись телескопом Хаббл на протяжении четырех лет

V838 Единорога (V838 Mon) — необычная переменная звезда в созвездии Единорога, находящаяся на расстоянии около 20 000 световых лет (6 кпк) от Солнца. Звезда пережила серьёзный взрыв в начале 2002 года. Первоначально предполагалось, что причиной взрыва была обычная вспышка новой, но позднее эта гипотеза была опровергнута. Причина вспышки до сих пор неясна, но на этот счёт было выдвинуто несколько теорий, например, что взрыв связан с процессами умирания звезды и поглощения компаньона или планет. Температура поверхности V838 Единорога — 3270 кельвинов (2996.85 градусов Цельсия), радиус — 380 радиусов Солнца, светимость — в 15 000 раз больше светимости Солнца. Оценки массы колеблются от 5 до 10 масс Солнца.

Взрыв звезды, съёмки которой велись телескопом Хаббл на протяжении четырех лет Взрыв, Вспышка, Звезда, Космос, Снимки из космоса, Телескоп Хаббл, Единорог, Созвездия, Вселенная, Видео, Гифка, Теория, Reddit

Гифка отсюда - https://redd.it/itt7w1

Текст и видео отсюда - https://ru.wikipedia.org/wiki/V838_Единорога

Показать полностью 1
431

Марс, 15 сентября 2020 года, 01:47

Марс, 15 сентября 2020 года, 01:47 Марс, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 1000 из 17000 кадров в Autostakkert, вейвлеты в Registax 6, деротация в WinJUPOS.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

496

Туманность IC 5070 "Пеликан". 67 часов съемки

Туманность IC 5070 "Пеликан". 67 часов съемки Астрономия, Астрофото, Космос, Туманность, Телескоп, Звёзды

Закончил очередной долгострой. Снимал Пеликана с 10 июля по 17 августа, всего накопил 67 часов. Вчера наконец-то закончил обработку.
Находится туманность на расстоянии около 2 тысяч световых лет от Земли в созвездии Лебедя. Располагается недалеко от восточной части туманности Северная Америка, часть которой я уже снимал в прошлом году.

Полный размер в масштабе 0,980 угловых секунд на пиксель (27 Мб)

Оборудование:
Телескоп: SW QUATTRO-8S

Монтировка: Sky-Watcher NEQ6 Pro

Камера: ZWO ASI1600MM-Cool

Телескоп-гид: Celestron 80/400

Камера-гид: ZWO ASI120MM

Корректор комы: GPU f/4

Фильтры: Baader SII, Ha, OIII 1.25″

Использованные программы:

Съемка: APT, PHD2.

Калибровка, сложение, постобработка: PixInsight 1.8

Место, время, кадры:

10 июля — 17 августа 2020, Азов

H-alpha — 339×300 cек.

OIII — 242×300 cек.

SII — 223×300 cек.

Общая выдержка 67 часов

Красная зона засветки.

Показать полностью
365

Мы из космоса

Российские ученые показали доказательства возникновения жизни до появления Земли. Это кадры окаменелых микроорганизмов. Их обнаружили внутри древнего метеорита Оргей. Он упал во Франции в 1864 году

Мы из космоса Новости, Космос, Жизнь, Необычное, Познавательно, Длиннопост, Наука
Мы из космоса Новости, Космос, Жизнь, Необычное, Познавательно, Длиннопост, Наука
Мы из космоса Новости, Космос, Жизнь, Необычное, Познавательно, Длиннопост, Наука
Мы из космоса Новости, Космос, Жизнь, Необычное, Познавательно, Длиннопост, Наука

Российские ученые обнародуют фотографии окаменелых древних микроорганизмов, которые могли существовать в момент зарождения Солнечной системы, то есть до формирования Земли. Об этом РИА Новости рассказал академик РАН, научный руководитель сектора астробиологии в Объединенном институте ядерных исследований Алексей Розанов.

https://www.google.ru/amp/s/ria.ru/amp/20200915/zhizn-157724...

Показать полностью 3
374

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года

Лучшая фотография в номинации «Наша Луна»: «Кратер Тихо в красках» / © Алэн Паулу

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост

Галактика Андромеды на расстоянии вытянутой руки / © Николас Лефоде

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост

Лучшая фотография в номинации «Небо»: «Раскрашивая небо» / © Томас Каст

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост

Лучшая фотография в номинации «Наше Солнце»: «Жидкий свет» / © Александра Харт

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост

Лучшая фотография в номинации «Полярное сияние»: «Леди в зеленом» / © Николас Рем-Мелт

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост

Лучшая фотография в номинации «Планеты, кометы и астероиды»: «Космос между нами» / © Лукаш Суджка

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост

Лучшая фотография в номинации «Люди и космос»: «В плену технологии» / © Рафаэль Шмаль

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост

Лучшая фотография в номинации «Звезды и туманности»: «Космический ад» / © Питер Уорд

Гринвичская обсерватория опубликовала список лучших астрофотографий 2020 года Астрономия, Фотография, Космос, Интересное, Познавательно, Длиннопост
Показать полностью 7
435

Жизнь на Венере!

Новость номер один сегодня — сообщение об обнаружении жизни на Венере. Уже много десятилетий астрономы предполагали, что облака в верхних слоях атмосферы этой планеты могут содержать микроорганизмы. И вот наконец-то, астрономы смогли зарегистрировать, следы жизнедеятельности микробов, живущих в средах, лишенных кислорода.


Вместе с астрономом Пулковской обсерватории попытаемся разобраться, что же все-таки обнаружено, в чем сенсация этой новости и кто может обитать на Венере.

Официальный пресс-релиз этой новости состоялся в 14.09.2020 18:00 (МСК). Однако некоторые недобросовестные СМИ стали сливать эту информацию значительно раньше, наплевав на все правила публикации релиза. Ну а так, как уже можно об этом говорить, то приведем краткое содержание этой новости.


Группа астрономов из университета Кардиффа в Великобритании обнаружила в спектре облаков Венеры редкую молекулу: фосфин. На Земле этот газ образуется только или в ходе производственных процессов, или в результате жизнедеятельности микробов, живущих в средах, лишенных кислорода. Регистрация фосфина может указывать на присутствие внеземной жизни. Обнаружить эти молекулы удалось при помощи телескопа Джеймса Клерка Максвелла (JCMT) в Восточно-Азиатской обсерватории на Гавайских островах. Для подтверждения этого открытия пришлось задействовать 45 антенн Большой Атакамской миллиметровой и субмиллиметровой антенной решетки (ALMA) в Чили, более чувствительного телескопа, который Европейская Южная обсерватория (ESO) эксплуатирует на партнерских началах. Оба астрономических инструмента наблюдали Венеру на длине волны около 1 мм.


Исследователи из Великобритании, Соединенных Штатов и Японии провели оценку концентрации фосфина и пришли к выводу, что такое количество молекул не могло образоваться в результате небиологических процессов на планете, например в результате воздействия солнечного света или вулканических извержений. Наши современные представления о химии фосфина в атмосферах каменистых планет исключают возможность его небиологического образования на Венере.

Жизнь на Венере! Наука, Космос, Астрономия, Венера, Жизнь, Видео, Длиннопост, Внеземная жизнь

На картинке ниже — изображение спектра, полученного на телескопе JCMT (серый) и на телескопе ALMA (белый).


Плавая в верхних слоях атмосферы Венеры в составе облаков, молекулы фосфина поглощают миллиметровые волны определенной длины, излучаемые на более низких высотах. Наблюдая планету в миллиметровом диапазоне длин волн, астрономы могут выявить эту линию поглощения фосфина в виде депрессии в спектре.

Жизнь на Венере! Наука, Космос, Астрономия, Венера, Жизнь, Видео, Длиннопост, Внеземная жизнь
Показать полностью 2
27

Как Бетельгейзе «чихнула»: промежуточные итоги активности звезды в 2020-м году

Как Бетельгейзе «чихнула»: промежуточные итоги активности звезды в 2020-м году

АВТОР: ALEXANDER MINKIN · 12 СЕНТЯБРЯ, 2020


Ученые опубликовали результаты нового исследования сверхгиганта Бетельгейзе.

Известно, что Бетельгейзе относится к красным супергигантам, а её «жизнь» уже подходит к концу. Для звёзд такого класса периодическое изменение светимости является нормой. За 150 лет наблюдений астрономами были замечены изменения яркости Бетельгейзе каждые 420 дней. Однако именно последний год стал для неё весьма необычным.

Что же произошло на самом деле и как это событие влияет на астрономическое сообщество? Предлагаю разобраться.


Значительные изменения яркости звезды были обнаружены ещё в конце 2019-го года.

В начале 2020 года звезда по-своему «чихнула» и тем самым удивила весь мир: её яркость какое-то время составляла всего 2/3 от обычного значения. Важно заметить, что ранее столь резкий спад светимости не наблюдался.


Изначально астрономы были озадачены, но разобраться с ситуацией помог телескоп «Хаббл», который начиная с января 2019 года систематически наблюдал Бетельгейзе в ультрафиолетовом диапазоне.


В период с сентября по ноябрь 2019-го, телескоп обнаружил признаки тёмных пятен вещества, которые были выброшены звездой в её атмосферу. Чуть позже, в декабре 2019-го, наземные телескопы зафиксировали потускнение звезды.


Один из ведущих авторов исследования Андреа Дюпри объясняет случившееся следующим образом: https://www.cfa.harvard.edu/news/2020-17


Мы считаем, что выброшенный звездой газ охладился на расстоянии миллионов миль от звезды – таким образом сформировалась пыль, которая заблокировала видимость южной части Бетельгейзе, фотографии которой были получены в январе-феврале.


Что же могло вызвать столь массивный выброс звездного вещества?


В первую очередь, следует отметить, что учёным неизвестны показатели плотности всех звездных веществ, состав и преобладание химических элементов, а также их температура.

Во-вторых, выброс вещества произошёл вдалеке от полюсов Бетельгейзе, несмотря на то, что там гравитационное влияние наиболее слабое и обычно именно это позволяет огромному количеству вещества покинуть звезду.


Буквально месяц назад было зафиксировано “внеплановое” небольшое снижение яркости звезды. Хотя астрономы считали, что оно должно было произойти не менее чем через год.

Андреа Дюпри считает, что «…такого не должно быть», поэтому основная задача состоит в проведении тщательных исследований во второй половине года для регистрирования новых колебаний светимости.


Так почему астрономов так интересует Бетельгейзе и какую тайну хранит звезда?

Дело в том, что сверхгигант находится на стадии окончания «жизни» и в скором времени Бетельгейзе взорвётся сверхновой.


Останки сверхновой SN 1604, сфотографированные телескопом им. Хаббла

Светило находится на расстоянии 700 световых лет от Земли. Результат появления сверхновой будет виден на земном небосводе несколько месяцев, а её яркость, по некоторой информации, может достичь яркости Луны.

По оценке исследователей, событие должно случится в ближайшие 100 000 лет. Это даёт астрономам уникальную возможность наблюдать за взрывом сверхновой, предваряющими его «колебаниями» звезды, а также точнее рассчитывать взрывы других звёзд.

Как Бетельгейзе «чихнула»: промежуточные итоги активности звезды в 2020-м году Космос, Бетельгейзе, Чиханье, Телескоп Хаббл, Длиннопост
Как Бетельгейзе «чихнула»: промежуточные итоги активности звезды в 2020-м году Космос, Бетельгейзе, Чиханье, Телескоп Хаббл, Длиннопост
Показать полностью 2
97

Сингулярность: добро пожаловать в нигде

Пространство-время – та сцена, на которой разворачивается вся история Вселенной: с момента Большого Взрыва, через рождение Млечного Пути, Солнца и расцвет динозавров – к Александру Македонскому и электронным научно-популярным журналам. К нему часто добавляют слово континуум, от латинского «непрерывное» – но кое-где и пространство-время обрывается. Здесь теряют силу привычные законы физики. Здесь время выглядит иначе. Здесь даже нельзя сказать «здесь», поскольку здесь нет и пространства. Это – область нигде и никогда. Это – гравитационная сингулярность.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikipedia

Притяжение геометрии


Со времен древних греков пространство казалось чем-то неизменным, постоянным, однородным, а время – не связанной с ним циклической спиралью вечного возвращения и повторения. К эпохе научно-технических революций эти представления лишь укрепились. Декартова система координат расчертила мир тремя взаимно перпендикулярными осями, время выпрямилось в отдельную, независимую от пространства (и вообще ни от чего) прямую стрелу. Во многом мы до сих пор живем в тех представлениях, возникших еще в XVIII веке.


Революционность взглядов Эйнштейна во многом состояла в понимании двух важных фактов, переворачивающих взгляды и на время, и на пространство. Во-первых, они взаимосвязаны и представляют собой единый пространственно-временной континуум. А во-вторых, континуум этот вовсе не неизменен и не постоянен: он деформируется в присутствии любой формы энергии, в том числе – в виде массы.


Классический способ представить этот обновленный Эйнштейном мир дает пример из геометрии. Представьте себе двухмерное пространство – туго натянутую сетку, на которую положен тяжелый бильярдный шар. Запустите мимо него теннисный мяч: шар немного растянул сетку, и мяч в своем движении отклонится, словно притянутый им, а возможно, даже «упадет» на него. Гравитация в эйнштейновском понимании может рассматриваться как геометрическое свойство пространства-времени, его искажение, возникающее под действием энергии (массы). Даже просто вращающееся массивное тело увлекает за собой «сетку» пространства-времени.


Мысленно расширьте этот пример на четыре измерения (три пространственных плюс одно временное) – и вы получите примерную геометрическую модель реального пространства-времени. Обратите внимание: где есть масса (энергия) – там нет прямых координатных осей, да и само время перестает быть прямолинейным и равномерным для всех наблюдателей. Представление о прямой оказывается просто математической абстракцией: самая прямая вещь, которую мы знаем из физики, – это траектория светового луча, движение фотона – но и оно искажается под действием гравитации. Притянутая материя локально движется по прямой, однако в глобальном рассмотрении эта прямая в гравитационном поле оказывается кривой.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Depositphotos

Разрывая сети


Но что если мы бросим на сетку из нашего геометрического примера не бильярдный шар, а что-нибудь потяжелее? Гантель, двухпудовую гирю. Скорее всего, наш демонстрационный экспонат не выдержит и лопнет, а в центре его останутся лишь дыра, нити, обрывки пространства-времени нашей модели. Нечто вроде сингулярности.


Даже в философском смысле сингулярность – антоним континуальности (непрерывности, отсутствия лакун, квантованности, разделенности на фрагменты – NS). Сингулярность – нечто, происходящее лишь однажды. Точка, к которой события стремились, пока не разрешились уникальным исходом. Взрыв, слияние, освобождение. В точках сингулярности математические функции резко меняют свое поведение: устремляются в бесконечность, переламываются, внезапно обращаются в ноль. Если переменная Х стремится к нулю, а функция от Х – к бесконечности, знайте: вы уже в сингулярности. В области, где обрывается непрерывная (континуальная) геометрия пространства-времени – и происходит нечто совсем уж невообразимое.


Удивительно, что Общая теория относительности сама обозначает границы своей применимости: в сингулярности «не работает» и она. При этом теория не только указывает на саму возможность существования гравитационных сингулярностей, но в некоторых случаях делает их вообще обязательными. Речь, в частности, о черных дырах – объектах колоссальной плотности, которая делает их невероятно массивными для своих размеров.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

Черная дыра / ©Wikimedia Commons

Черная дыра может иметь массу, сравнимую с массой крупной планеты или с миллиардом крупных звезд, но эта масса определяет лишь величину той области вокруг нее, где царит одна лишь гравитация – и откуда не вырваться ничему, ни веществу, ни излучению, ни информации. Размер этой «области невозврата» называется радиусом Шварцшильда, а ограничивает ее горизонт событий, условная линия, по одну сторону которой Вселенная живет своими законами, а по другую властвует сингулярность.


Гравитационная плюс космологическая


Принято говорить, что в сингулярности «законы физики теряют силу». Это не так – просто привычные законы здесь неприменимы, как неприменимы законы классической механики к миру квантовых частиц. По красочному выражению немецкого профессора Клауса Уггла, поведение математических уравнений и функций в сингулярности «становится патологическим». Заметить этот момент достаточно просто – достаточно наблюдать поведение свободно падающих частиц.


Независимо ни от вида самой частицы, ни от того, где именно она падает, она стремится двигаться по максимально прямой траектории, которая только существует в данных условиях. В пустом космосе, у поверхности Земли или за границей горизонта событий частица меняет траекторию лишь под действием других сил, в том числе гравитации. Но в сингулярности гравитационное поле возрастает до бесконечности, и свободно падающая частица просто… перестает существовать.


Прямые здесь обрываются (это свойство сингулярности называется геодезической неполнотой), а с ними обрывается и судьба частицы. Как показал еще около 40 лет назад великий математик Роджер Пенроуз, геодезическая неполнота должна возникать внутри любой черной дыры. Впоследствии его выкладки развил Стивен Хокинг, расширив эти представления до целой Вселенной.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

Черная дыра / ©Wikimedia Commons

Да, вначале была сингулярность. Еще в 1967 году Хокинг строго доказал, что если взять любой вариант решения уравнений Общей теории относительности и «развернуть их» назад во времени, то при любом раскладе в расширяющейся Вселенной мы придем к ней, к сингулярности. Из бесконечного провала этой «космологической праматери» и распустился цветок нашего пространства-времени.


Впрочем, при всей своей красоте «теоремы сингулярности Пенроуза – Хокинга» лишь указывают на возможность их существования. О том же, что происходит там, внутри, что можно «увидеть» в сердце черной дыры и чем была Вселенная до Большого Взрыва, они не говорят ровным счетом ничего. Возьмем хотя бы космологическую сингулярность Хокинга: она должна иметь одновременно бесконечную плотность и бесконечную температуру, совместить которые пока никак не получается. Ведь бесконечная температура означает бесконечную энтропию, меру хаоса системы – а бесконечная плотность, наоборот, указывает на хаос, стремящийся к нулю.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

Сингулярность оголяется


Впрочем, это далеко не единственная странность вокруг сингулярности. Среди диковинных гипотез, построенных на строгой основе общей теории относительности, стоит вспомнить идею существования «голых сингулярностей» – не окруженных горизонтом событий, а значит и вполне наблюдаемых извне.


По мнению некоторых физиков, голая сингулярность может появляться из обычной черной дыры. Если черная дыра вращается чрезвычайно быстро, сингулярность вместо точки может приобрести кольцеобразную форму тора, окруженного горизонтом событий. Чем быстрее дыра вращается, тем сильнее сходятся внешний и внутренний горизонты – и в какой-то момент они могут слиться, исчезнув.


К сожалению, в реальности наблюдать голую сингулярность пока не удается, зато в фантастике она встречается регулярно. Одна из населенных разумными существами колоний в культовой киносаге «Звездный крейсер «Галактика» вращается не вокруг звезды или планеты, а вокруг такой голой сингулярности.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

Голая сингулярность / ©Wikimedia Commons

Стоит сказать, что Роджер Пенроуз ввел в космологию принцип космической цензуры, предположение, согласно которому голых сингулярностей во Вселенной быть не может. Ученый образно сформулировал свой подход: «Природа не терпит голых сингулярностей». Этот принцип до сих пор остается недоказанным и не опровергнутым окончательно.


Как (не) попасть в сингулярность


Рассуждая логически, можно прийти к выводу о том, что оказаться внутри сингулярности мы не сможем никогда – вплоть до момента окончательной гибели Вселенной. Давайте представим частицу, притянутую черной дырой. Вот она, ускоряясь, по спирали приближается к ней. Чем сильнее гравитация и выше скорость, тем, согласно уравнениям того же Эйнштейна, сильнее замедляется течение времени. Наконец наша частица пересекает горизонт событий.


Сколько у нее ушло на это времени? Для стороннего наблюдателя это могут быть годы. Но вот частица устремляется к сингулярности в центре дыры – пространство-время вокруг нее буквально встает на дыбы, время для частицы практически останавливается. Можно представить это и наоборот: время Вселенной в сравнении с ней ускоряется практически бесконечно.


Но ведь даже черные дыры не вечны. Как показал Стивен Хокинг еще в 1970-х, в результате сложной игры гравитации и квантовых эффектов у горизонта событий все черные дыры понемногу испаряются и рано или поздно исчезают. Быть может, исчезнет и частица, так и не добравшись до сингулярности. Но тут снова появляются парадоксы почище тех, что встретились Алисе в Стране Чудес. Например – где же находится эта частица?

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

С точки зрения теоретической физики, черные дыры – пустые. Да, их ограничивает горизонт событий, но за ним нет ничего, что можно было бы измерить, обозначить, зафиксировать – а значит, нет ничего вообще. Вся масса черной дыры сосредоточена в сингулярности – бесконечно малой точке, окруженной сферой, полной почти метафизической тьмы.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

Что у нее внутри?


Некоторые теоретики полагают, что Вселенная не терпит не только голой сингулярности, но и разрывов пространства-времени. Поэтому каждая сингулярность является червоточиной – своего рода провалом, туннелем, соединяющим одну область мира с какой-то другой «прямым ходом», образно называемым «кротовой норой» или «червоточиной». Но это лишь гипотеза, и неизвестно, появится ли у нас когда-нибудь хотя бы возможность подтвердить ее или опровергнуть.

Сингулярность: добро пожаловать в нигде Наука, Вселенная, Космос, Длиннопост

©Wikimedia Commons

Главный вопрос остается: что там, внутри сингулярности? Что наступает после того, как сама ткань пространства-времени мнется, растягивается, дыбится, пока не разрывается окончательно? Ответить на него проще простого: неизвестно.

Источник: Naked Science.

Показать полностью 8
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: