Дубликаты не найдены

Похожие посты
89

Сверхпроводимость при комнатной температуре, антибиотик из яда. Самые интересные новости науки за неделю

Еженедельная подборка новостей из мира науки. В этом выпуске больше информации об орудиях труда беспозвоночных; как ядовитые осы помогают создавать антибиотики; какое вещество стало сверхпроводником при комнатной температуре; что такое спагеттификация и зачем это черной дыре; как испытают вторую российскую вакцину от коронавируса и как физики смогли записать и переместить свет?

Содержание ролика:

00:30 Инструменты у беспозвоночных

02:57 Ученые рассматривают яд ос в качестве антибиотика

05:11 Сверхпроводник получили при комнатной температуре

07:20 Черная дыра спагеттифицировала неосторожную звезду

09:18 Россия зарегистрировала вторую вакцину от коронавируса

10:30 Физики смогли записать и переместить свет


(все ссылки на пруфы и исследования под роликом на ютубе. Текстовая версия ниже)


Яд ос в качестве антибиотика

Под прицел новой работы попал яд осы из Азии - Веспулы. Он содержит пептид мастопаран-Л. Для человека он не слишком опасен в малых дозах, но вызывает разрушение эритроцитов, воспаление и иногда даже анафилактический шок у слишком уязвимых людей.

Но мастопаран-Л также обладает бактериальной токсичностью, что может стать отправной точкой для разработки нового антибиотика. Вот только нельзя же одновременно и лечить, и калечить. Ученые отыскали в мастопаране-Л участок, который отвечает за вред человеческим клеткам и заменили его. Причем заменили на участок, вредящий бактериям, взяв его из базы сотен антимикробных пептидов. В дальнейших экспериментах на мышах, зараженных смертельными штаммами кишечной палочки и золотистого стафилококка, выяснилось, что при лечении модифицированным мастопараном 80% мышей выживают, а если давать мастопаран-Л, то они выживают хуже и получают серьезные побочные эффекты.


Ученые рассчитывают, что модифицируя новый мастопаран, они смогут разработать новый антибиотик. Также вероятны в дальнейшем эксперименты со змеиным, скорпионьим и другими животными ядами.


Сверхпроводник получили при комнатной температуре

Формула успеха включает смесь водорода, углерода и серы, которая была использована для синтеза углеродсодержащего гидрида серы органического происхождения в исследовательской камере высокого давления, называемом ячейкой с алмазной наковальней. Этот углеродистый гидрид серы продемонстрировал сверхпроводимость при температуре около 14,5 ° C и давлении около 2,67 миллиона атмосфер.


Черная дыра спагеттифицировала неосторожную звезду

Событие, которое в прошлом году зафиксировала ESO  при помощи Очень большого телескопа и телескопа новой технологии, произошло на расстоянии в 215 миллионов световых лет от Земли в галактике в созвездии Эриадна. Астрономы зарегистрировали яркую вспышку и направили туда свои инструменты. Возникают такие вспышки и истечения вещества от того, что черная дыра высвобождает много энергии в процессе поглощения звезды, и эта энергия отбрасывает часть вещества со скоростью до 10 тысяч километров в секунду, плюс создает помехи в виде из пыли и осколков. Астрономы увидели, как после вспышки потоки вещества стали образовывать вуаль вокруг этих объектов. Звезда была массой с наше солнце, а черная дыра в миллион раз массивнее. К тому же это самое близкое к земле событие подобного рода, которое удалось пронаблюдать.


Россия зарегистрировала вторую вакцину от коронавируса

Не успели мы распробовать первую зарегистрированную российскую аденовирусную вакцину от короновируса от центра Гамалеи, как Новосибирский центр Вектор зарегистрировал вторую вакцину, на этот раз эпитопную.

Роспотреб заявляет, что все необходимые клинические испытания вакциной ЭпиВакКорона пройдены успешно. однако данных о них в открытом доступе нет. Как и в случае с первой вакциной. Пока что говорят, что побочных эффектов особых нет, правда нет и данных о защитных титрах антител, то есть об эффективности вакцины.


Физики смогли записать и переместить свет

Оказалось, что свет действительно можно переместить, пока что вот на целых 1,25 миллиметра. Физики смогли накопить свет, а точнее сохранить его состояние, световое возбуждение в ансамбле холодных атомов, это облака охлажденных почти до абсолютного нуля атомов рубидия. Часто их используют для получения конденсата Бозе-Эйнштейна. На эти атомы записывались значения светового возбуждения.

Таким образом в ансамбле холодных атомов реализовалась квантовая световая память, и это в целом не нечто новое. А вот то, что это облако смогли переместить, вместе с накопленным светом - это впервые.

При этом свойства системы почти не изменились. Это первая попытка контролируемого перемещения сохраненного света.

Показать полностью
123

Большое Магелланово Облако (БМО)

Большое Магелланово Облако (БМО) – это карликовая нерегулярная галактика. Это четвертая по величине галактика в местной группе, после галактик Андромеды, Млечного Пути и Треугольника. БМО также является одной из очень немногих галактик, которые видны невооруженным глазом. Галактика выглядит как слабое облако, более чем в 20 раз превышающее ширину полной Луны. Видимая часть Большого Магелланова Облака имеет около 17 000 световых лет в поперечнике.

БМО вращается вокруг Млечного Пути и гравитационно связано с ним, часто упоминается как галактика нерегулярного типа из-за ее внешнего вида, что вероятно является результатом приливных взаимодействий галактики с Млечным Путем и Малым Магеллановым Облаком (ММО).

Первое известное упоминание о БМО было сделано персидским астрономом Аль Суфи 964 г. н. э. Аль-Суфи назвал объект аль-Бакр, что означает “овца”.Он упомянул, что БМО не может быть виден из Багдада и Северной Аравии, но виден из самой южной точки Аравии, пролива Баб-эль-Мандеб (широта 12°15′ N).

Португальский мореплаватель Фердинанд Магеллан был тем, кто сделал известным Большое Магелланово Облако в Европе, именно поэтому галактика позже была названа в его честь. БМО упоминается в его работах, описывающих его путешествие в 1519 году. Магеллан погиб во время этой экспедиции на Филиппинах, но его команда привезла записи об открытии обратно в Европу.

Расчетное число звезд в Большом Магеллановом Облаке составляет 10 миллиардов, что составляет примерно десятую часть массы Млечного Пути.

Магеллановы облака образовались примерно в то же время, что и наша галактика, около 13 миллиардов лет назад. Галактики, как полагают, первоначально формировались в виде полосатых спиралей.


С диаметром, охватывающим приблизительно 14 000 световых лет, БМО является четвертой по величине галактикой в местной группе, меньшей только по размеру, чем галактика Андромеды (Messier 31), Млечный Путь и галактика Треугольник (Messier 33).

Большое Магелланово Облако считалось ближайшей внешней галактикой к нашей собственной до 1994 года, когда астрономы обнаружили карликовую эллиптическую галактику Стрельца, которая находится всего в 80 000 световых лет от нас.


Млечный Путь, вероятно, в конечном итоге поглотит Магеллановы Облака, но трудно сказать, когда это произойдет. Две галактики, расположенные ближе к нам, чем Магеллановы облака, вероятно, столкнутся с Млечным Путем первыми.
Показать полностью
43

Метеорный поток Ориониды. Что ждать в 2020 году

Наступила вторая половина октября, а значит, скоро небо украсят метеоры из потока Ориониды, порожденного легендарной кометой Галлея. Что ожидать от него в 2020 году, разберем в этом видео.

60

Астрономы стали свидетелями «казни» звезды черной дырой

Полученные результаты помогут лучше разобраться в физике сверхмассивных черных дыр и в поведении вещества в крайне сильном гравитационном поле, окружающем их.

Благодаря телескопам Европейской южной обсерватории (ESO) и другим инструментам астрономам удалось зафиксировать редкое явление: вспышку света от звезды, разрываемой на части сверхмассивной черной дырой. Пойманное событие, называемое актом приливного разрушения, является самым близким к нам среди себе подобных – его источник расположен на расстоянии примерно 215 миллионов световых лет от Земли. Исследование, описывающее захватывающее открытие, представлено в журнале Monthly Notices of the Royal Astronomical Society. (Ссылка, к сожалению, не работает)

)«Идея о «засасывании» черной дырой близкой к ней звезды звучит, как научно-фантастический сюжет. Но именно это и происходит при приливном разрушении светила. Однако, такие события, при которых «всасываемая» черной дырой звезда подвергается разрушительной деформации под названием спагеттификация, очень редки и не всегда доступны подробному изучению», – рассказывает Мэтт Николл, ведущий автор исследования из Эдинбургского университета (Великобритания).

Астрономы стали свидетелями «казни» звезды черной дырой Астрономия, Астрофизика, Черная дыра, Звезда, Видео, Длиннопост, Копипаста

Приливное разрушение звезды сверхмассивной черной дырой в представлении художника. Credit: ESO/M. Kornmesser

С целью детально разобраться в том, что происходит, когда «космический монстр» пожирает звезду, группа исследователей направила Очень Большой телескоп (VLT) и Телескоп новой технологии (NTT) ESO на вспышку света, произошедшую в прошлом году в окрестности сверхмассивной черной дыры.

Теоретически астрономы знают, что в таких случаях должно происходить.

«Когда «невезучая» звезда проходит слишком близко к сверхмассивной черной дыре, расположенной в центре какой-нибудь галактики, колоссальное гравитационное притяжение разрывает ее на потоки вещества. В процессе этой спагеттификации тонкие пряди звездного материала устремляются к черной дыре, создавая яркие вспышки, регистрируемые нами», – объяснил Томас Веверс, соавтор исследования из Института астрономии Кембриджского университета (Великобритания).

Хотя наблюдающиеся вспышки мощные и яркие, до последнего времени астрономы сталкивались с большими трудностями при их исследовании, так как они часто закрыты от нас завесой пыли. Лишь теперь исследователям удалось пролить свет на ее происхождение.

«Мы обнаружили, что, когда черная дыра поглощает звезду, могут происходить мощные выбросы вещества в направлении от черной дыры, которые и создают помехи при наблюдениях. Это происходит из-за того, что энергия, высвобождаемая в процессе поглощения черной дырой звездного вещества, отбрасывает часть его фрагментов наружу», – добавила Саманта Оутс, соавтор исследования из Бирмингемского университета. (Великобритания).

Открытие стало возможным лишь потому, что изучавшееся группой событие приливного разрушения AT2019qiz было обнаружено спустя очень короткое время после разрыва звезды на части.

«Из-за того, что мы поймали это явление на ранней его стадии, мы сумели увидеть, как из окрестностей черной дыры истекает поток вещества со скоростью до 10 тысяч километров в секунду, который и образует завесу из пыли и осколочного материала. Уникальная возможность «заглянуть за занавес» впервые указала на происхождение экранирующего материала и позволила в реальном времени проследить за тем, как он окружает гравитационного монстра», – отметила Кейт Алекзандер, соавтор исследования из Северо-западного университета (США).

Группа вела наблюдения события AT2019qiz в спиральной галактике в созвездии Эридана на протяжении шести месяцев; за это время яркость вспышки сначала возрастала, а затем стала затухать. Своевременные и обширные наблюдения в ультрафиолетовом, оптическом, рентгеновском и радио-диапазонах впервые выявили прямую связь между истечением вещества из звезды и яркой вспышкой в момент ее поглощения черной дырой.

«Наблюдения показали, что масса этой звезды была примерно такой же, как и у Солнца, и что звезда потеряла примерно половину этой массы под воздействием черной дыры, более, чем в миллион раз более массивной», – заключил Мэтт Николл.

Астрономы стали свидетелями «казни» звезды черной дырой Астрономия, Астрофизика, Черная дыра, Звезда, Видео, Длиннопост, Копипаста

Художественное представление Чрезвычайно Большого Телескопа ESO. Credit: ESO

Полученные результаты помогут лучше разобраться в физике сверхмассивных черных дыр и в поведении вещества в крайне сильном гравитационном поле, окружающем их. Чрезвычайно Большой телескоп ESO (ELT), начало работы которого планируется в текущем десятилетии, позволит регистрировать все более слабые и быстротекущие события приливного разрушения и решать все более сложные проблемы физики черных дыр.

Источник: in-space.ru

Показать полностью 1 2
48

Что мы знаем о тёмной материи #ТЕДсаммари

Около 85% массы во Вселенной — это так называемая тёмная материя, таинственная материя, которую невозможно увидеть и которая оказывает огромное воздействие на космос. Что же это за вещество и как оно связано с нашим существованием?


Астрофизик Риса Векслер изучает, почему тёмная материя может быть ключом к пониманию того, как образовалась Вселенная. 


Риса Векслер создает модели вселенных. Эти цифровые вселенные созданы из разных материалов в разных пропорциях и имеют разные начала. Потом их сравнивают с нашей вселенной и так удаётся узнать из чего она состоит и как эволюционировала.


В телескопы мы можем увидеть только 15% общей массы Вселенной. Остальные 85% - это тёмная материя. Её нельзя увидеть, засечь радиоволнами и микроволнами. Но благодаря тому, что она влияет на видимые объекты, мы знаем, что она есть.


Тёмная материя окружает нас с вами прямо сейчас. Более того, частицы тёмной материи проходят сквозь наши тела. Ведь мы на Земле, которая крутится вокруг Солнца, а Солнце движется по нашей галактике со скоростью 800 тысяч километров в час.

Давайте вернёмся к моменту рождения Вселенной, всего на долю секунды после Большого взрыва. Тогда материи ещё не было. Совсем. Вселенная быстро расширялась. Благодаря квантовой механике мы знаем, что материя создаётся и разрушается постоянно, но тогда Вселенная слишком быстро расширялась - создаваемая материя не успевала разрушаться.


Спустя 400 тысяч лет после Большого взрыва Вселенная была горячей, плотной и достаточно однородной. Появились протоны, нейтроны, водород. В некоторых местах было немного больше массы и гравитация притягивала в эти области ещё больше массы.


Со временем в одном месте накапливалось достаточно всего, чтобы газ водород, который до этого был перемешан с тёмной материей, начал отделяться от неё, охлаждаться, образовывать звёзды и превращаться в маленькую галактику. Спустя многие миллиарды лет маленькие галактики сталкивались друг с другом, сливались и становились большими, такими как наша галактика Млечный Путь.


Так какова роль тёмной материи? Благодаря ей и начали образовываться звёзды. Без тёмной материи достаточной массы в одном месте не соберётся.


Риса Векслер говорит, что без тёмной материи не появилась бы наша Галактика, Солнце, не было бы нас с вами.


Итак, эта невероятная тёмная материя составляет бóльшую часть массы Вселенной, проходит сквозь нас прямо сейчас, без неё нас бы просто не было. Так что же это? Ну, мы не знаем.

Но есть некоторые эмпирические предположения. Большая часть учёных полагает, что тёмная материя — это частица, во многом похожая на известные нам элементарные частицы, такие как протоны, нейтроны и электроны. Дело в том, что гравитация действует на неё схожим образом. Однако она не излучает и не поглощает свет, а также без проблем проходит сквозь обычную материю.


Риса Векслер рассказывает, что физики и астрономы ищут тёмную материю по-разному. К примеру, с помощью приборов под землёй. Учёные ждут когда частица тёмной материи, проходящая через Землю, столкнётся с более плотной материей и оставит какой-нибудь след. Ещё мы ищем её в небе, надеясь, что частицы тёмной материи столкнутся друг с другом и создадут энергию и свет. Ну и конечно мы пытаемся создать тёмную материю в Большом адронном коллайдере в Швейцарии.


Риса Векслер участвует в проекте «Исследование тёмной энергии», в рамках которого была построена самая большая карта Вселенной. Учёные измерили позиции и формы 100 миллионов галактик, расположенных на 1/8 части неба. Так как гравитация материи достаточно сильна, чтобы искривить путь света, мы знаем, сколько существует тёмной материи, а также о том, как она меняется со временем.


Благодаря самым маленьким галактикам нашей Вселенной, мы узнали, что тёмная материя движется достаточно медленно. Если бы скорость была выше, то маленькие галактики не могли бы сформироваться. Также учёные узнали, что мало что происходит при столкновении тёмной материи с обычной материей.


Специалисты продолжают разгадывать загадки тёмной материи. И эта тайна касается нас всех. Как говорит Риса Векслер, “поиск тёмной материи может стать ключом к абсолютно новому пониманию физики и нашего места во Вселенной”.

Показать полностью
176

Исследователи из NIST предложили методику прямого гравитационного наблюдения частиц темной материи

Суть метода заключается в использовании огромного массива свободно колеблющихся маятников длиной около 1 мм. Частицы темной материи, пролетающие сквозь массив, будут вызывать систематические колебания маятников, которые можно будет отличить от хаотических колебаний, вызванных температурными флуктуациями и другими условиями среды.

Гипотетический детектор будет чувствителен к частицам с массами в примерном интервале от 20 микрограммов до нескольких миллиграммов.

Источник

Показать полностью
41

Туманность Эты Киля (NGC 3372) — эмиссионная туманность

Туманность Киля имеет альтернативное название NGC 3372. Она является эмиссионной и собирается вокруг светила «Эта». В ней присутствует одновременно несколько скоплений открытого типа. Внутри объекта можно обнаружить мистические горные хребты. Точное расположение объекта – рукав Киля-Стрельца, а удалённость составляет 6 500 – 10 000 лет (световых). Среднее расстояние, как считает большинство учёных, равно 7 500 св. лет.

Кстати, именно в туманности Киля находятся две самые большие по массе и самые яркие во Вселенной звезды. Они носят имена: Эта Киля и HD 93129.

Туманность Киля является крупной и яркой. Она имеет в своём составе несколько скоплений звёзд. На её территории находятся наиболее крупные по массе и габаритам звезды нашей галактической системы. Она простирается на большое расстояние даже по космическим меркам, составляющее 260 световых лет, что в 7 раз превышает M42. Изображения этого объекта делались несколькими космическими устройствами. На них можно рассмотреть детали элементов, из которых он состоит, а также обнаружить интересные объекты, которые до сих пор впечатляют учёных своими интересными свойствами.

Хоть туманность прилично удалена от Земли, её можно увидеть невооружённым глазом. Но это возможно, если вы находитесь в южных или экваториальных широтах.

Учёные пристально наблюдают за туманностью. Поскольку здесь активно происходят процессы формирования, развития и изменения звёзд и газа. Возможно, благодаря изучению взаимодействий объектов в данной области, мы получим ответы на вопросы космической эволюции.

410

Марс, 12 октября 2020 года, 23:10

Марс, 12 октября 2020 года, 23:10 Марс, Планета, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 2500 из 17834 кадров в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

105

Астрохобби #9. Обработка

Добрый день, дорогие читатели. По прошлым постам понял, что вам интересно, как обрабатываются фото, как выглядят сырые снимки, и что с ними дальше происходит. Попробую рассказать на пульцах на примере Туманности Ориона (M42), которую в очередной раз отсняли с братом ради тренировки. Объект яркий, поэтому для такого результата вполне хватило 20 минут экспозиции между облаками (по 10 и 30 секунд на каждый снимок).

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Как видно по ореолу вокруг звезд в правом верхнем углу, была еще небольшая дымка.

Итак, по-порядку. Чтобы сделать хорошее фото - совершенно неважно как ярко объект выглядит на одиночном фото. Важно получить хороший SNR (соотношение сигнал/шум), тогда на этапе обработки, мы сможем достать больше деталий (даже банально подняв яркость).
Способы увеличить SNR:

1) Увеличить время экспозиции одиночного кадра, по-сути, увеличить количество сигнала (тут я понимаю, сигнал от объекта съемки).

2) Увеличить количество снимков, и сложить их, усреднить, тогда постоянный сигнал останется на месте, а случайный шум усреднится, и в идеале превратиться в константу, которую можно будет скомпенсировать. Чем больше фотографий мы сложим - тем лучше. Может показаться, что мы складываем одинаковые фотографии, тот же объект, тот же ракурс, те же параметры съемки, но нет, все они отличаются случайным шумом на них.

3) Снизить шум. Тут работают 2 совета: не задирать ISO на фотоаппарате и уменьшить температуру матрицы. Вы когда-нибудь замечали, выставляя ISO 6400+ на фотоаппарате, что в итоге изображение получается крайне шумным? У каждого фотоаппарата есть "родная" чувствительность, выше которой идти нет смысла, попытка камеры сделать ярче то чего нет выливается в шумах. Например на Canon 600D родным было IS0 400.


Итак, как же выглядить одиночный кадр? А вот так. Это переведённый из родного для текущей камеры fits формата в TIFF, чтобы открывался обычным редактором, одиночник экспощицией 30 секунд.

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Немножко крутнём ползунки яркости и уровня чёрного:

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Деталей стало больше, но невооружённым глазом видно адовый шум, если приглядеться, заметим тёмную виньетку по краю кадра, стандартная ситация, когда изображение к краю кадра становится темнее, это обусловленно оптикой и таким её параметром как image circle. APS-C матрица чуть больше в размерах, поэтому получаем затемнение к краю. Всё это подводит нас к следующей теме. Калибровочные кадры.

1) Darks. Дарки, они снимаются с теми же настройками, что и объект. Выдержка, чувствительность, крайне желательно, температура (поэтому раньше я их снимал прямо в поле, после того как начинались утренние сумерки, чтобы сохранить температуру. Сейчас на ASI071MC-Pro могу выставить заданную температуру, приезжаю домой, сую её в холодильник, снимаю дарки). Цель - получить еще больше примеров хумов для усреднения, грубо говоря.

Пример дарка приводить не буду, вы можете представить случайный шум на тёмном фоне 

2) Flats. Флэты, нужны чтобы скомпенсировать виньетирование, пыль и дефекты на оптических элементах, проще говоря, усправить недостатки оптики. По-правильному, они снимаются с применением так называемых Flat-box'ов, коробка, на одной из граней которой реализована равномерная белая подсветка. У меня такой штуки нет, поэтому я снимаю обычно по светлеющему небу перед рассветом. Важно при съемке: сохранить конфигурацию телескопа, как при съемке объекта (фокусировку, поворот камеры), не пересветить снимок, успользуются те же настройки камеры кроме экспозиции, если есть экспонометр, то выбирая выдержку, надо заполнить его на 1/2 - 2/3.
Пример Флэта:

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Тут мы видим такую же тёмную виньетку, как на нашем одиночном кадре объекта. Явных следов пыли и грязи нет ( и это хорошо) Если б были - не фатально, но стоит задуматься о чистке оптики (лучше делать знаючи и чем реже тем лучше, испортить очень просто).

3) Bias/Offset, биасы нужны, чтобы получить пример шума чтения матрицы, снимаются с теми же настройками, что и объект, но с ниминально возможной выдержкой, еще один пример шумов, примера не будет. 

Итак, мы отсняли несколько кадров изображения, калибровочные кадры. Самое время сложить их. Я пользуюсь программой DeepSkyStacker но только для сложения, ничего больше.

Для начала сложим тот самый одиночник из начала с калибровочными кадрами и сразу крутнём яркость и Blacks:

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Из очевидного - ушла виньетка, баланс цветов сдвинулся в розовый (это потому что Flat голубоватый). Появились новые детали, например обычное земное облако (в процессе съемки набежали облачка) в верхней части снимка обрело текстуру, обычно, я подобные кадры выбрасываю, но предлагаю на него не отвлекаться и двинуться дальше и сложить все имеющиеся кадрый в сумме на 20 минут:

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост
Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Результат сразу после суммирования очень похож на одиночник, с которого мы начали. НО! SNR в нём намного выше, что даёт нам возможность "тянуть" тусклые детали сильнее до появления заметного шума.
Крутнём ползунки, как мы делали до этого:

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Поскольку Flat'ы несли синий оттенок, маленьку уехал баланс цветов. Исправляю его обычно так: мы знаем, что космос должен быть чёрным (ну или почти). Выбираю точку в пустой убласти и делаю так, чтобы значения цветов в ней сравнялись, в LightRoom очень удобна вон та пипетка под гистограммой:

Астрохобби #9. Обработка Космос, Астрономия, Астрофото, Обработка, Туманность, Длиннопост

Заметили, насолько меньше стало шумов?


Ну а дальше играемся ползунками, чтобы достать как можно больше деталей не проиграв в остальных частях изображение, например, сейчас тут пересвечен центр, соответственно убавляем яркость светлых участков. Прибавляем яркость тёмных, чуть-чуть шумодава, немножко повысим цветность (важно не переборщить). Момент с цветностью может вызвать споры, я лично тут проблемы не вижу, потому что глазом в телескоп цвета мы почти не видим, потому что в темноте у нас работает в основном черно-белое зрение, а информация о цветах, которую мы усиливаем поднимая яркость - всё же содержится в сырых изображения. Моё личное правила работы с цветом - работать со всем изображением сразу, не раскрашивать отдельные части.

Так же, плохую цветовую обработку можно отличить по цвету звёзд. Известно, что звёзды бывают желтыми, белыми, голубыми и распределены в общем то случайно вокруг нас, почти на каждом снимке они есть, а это значит, если мы видим, что на снимке все звёзды жёлтые, красные, или вместо голубых фиолетовые - можно смело делать вывод, что что-то пошло не так.

Вот так я обрабатываю снимки. Добавлю, что это не идеальная моя работа, сделаная больше для разминки, и показать вам, как пример обработки, весьма известный объект.


С вами был N0R1S,
Чистого неба!

Показать полностью 8
291

Спагеттификация звезды

Ученые впервые смогли пронаблюдать процесс поглощения звезды черной дырой:

https://www.eso.org/public/russia/new...

Гравитация черной дыры разорвала большую часть звезды на ленты из горячей плазмы, напоминающие спагетти.

Процесс назвали «спагеттификацией звезды».

Выше представлена анимация, созданная на основе описания данного процесса.


https://vk.com/wall-79039403_245469

26

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная»

Внутри чёрных дыр определённого типа должна существовать «фрактальная вселенная» Космос, Вселенная, Астрономия, Черная дыра, Фракталы, Наука, Теория, Горизонт событий, Видео, Длиннопост

Чёрные дыры притягательны не только в буквальном смысле (ещё бы при такой гравитации!), они захватывают воображение фантастов, кинематографистов и, естественно, ученых. Смесь опасности и необъяснимости этих космических объектов порождает огромное множество теорий на их счет. И если вопрос о реальности их существования в наше время уже снят (потому, что снята первая фотография чёрной дыры), то вопросов об их природе и свойствах остается очень много.


В разных теориях чёрные дыры могут оказываться связанными друг с другом через кротовые норы, порождать наши дочерние вселенные, иметь электрический заряд, вращаться или быть стационарными, парить в вакууме или быть плотно окруженными материей.


Поскольку изучение чёрных дыр это процесс, по большей части, чисто теоретический, то и сами теории можно строить практически на любой основе.


Один из самых свежих взглядов на возможную сущность чёрных дыр совсем недавно представил в своем исследовании астрофизик Пол Саттер (Paul Sutter). Его чисто теоретический, основанный на математических расчетах, подход позволяет обосновать тип сверхпроводящих чёрных дыр, которые будучи электрически заряженными, окружены определенным видом пространства, известным как "антидеситтеровское пространство".


Этот тип пространства интересен и сам по себе, потому что предполагает отрицательную геометрическую кривизну, что делает это пространство похожим на седло. Но не менее интересно, что такая совокупность исходных предположений по расчетам Саттера должна приводить к существованию внутри такой чёрной дыры фрактальной вселенной.


Логика Саттера основана на следующем построении. Заряженные чёрные дыры во многом аналогичны вращающимся чёрным дырам, существование которых однозначно доказано. Поэтому изучая заряженные дыры, математика которых даже проще, можно основываться на том, что известно о вращающихся чёрных дырах.


Ученые выяснили, что когда последние становятся относительно холодными, то вокруг них возникает "дымка" квантовых полей. Эта дымка липнет к поверхности чёрной дыры, притягиваемая неумолимой гравитацией, но выталкивается наружу наэлектризованным отталкиванием той же самой чёрной дыры. Такая дымка квантовых полей, постоянно колеблющихся на поверхности чёрной дыры, создает сверхпроводящий слой.


Всю свою последующую математическую модель Саттер на известных свойствах сверхпроводников. Обычно частицы в реальных сверхпроводниках могут колебаться, поддерживая колебания волн взад и вперед, создавая эффект, известный как колебания Джозефсона. А глубоко внутри этих чёрных дыр само пространство колеблется взад и вперед, что позволяет строить самые фантастические предположения относительно их внутренней природы.


«Исследователи обнаружили, что самые внутренние области сверхпроводящей черной дыры могут представлять собой расширяющуюся Вселенную в гротескной миниатюре, место, где пространство может растягиваться и деформироваться с разной скоростью в разных направлениях», - поясняет Саттер.


Кроме того, в зависимости от температуры чёрной дыры, некоторые из этих областей пространства могут вызвать новый цикл вибраций, которые затем создают новый участок расширяющегося пространства, который в свою очередь запускает новый цикл вибраций, которые затем создают новый участок расширения пространства, и так далее, и так далее во все меньших масштабах.


Это сформировало бы миниатюрную фрактальную вселенную, бесконечно повторяющуюся от большей до меньшей. Совершенно невозможно представить, как бы выглядело путешествие через такое пространство, но это определенно было бы необычно.


В центре этого причудливого фрактального хаотического беспорядка должна находиться сингулярность: точка с бесконечной плотностью, место, где находится всё, что составляло материю, когда-то упавшую в черную дыру.


К сожалению, даже используя свои математические методы сверхзаряженной сверхпроводимости, исследователи не могут описать, что происходит в сингулярности. Вся известная физика рушится, и для ее полного описания требуются новые теории гравитации.

Никто не знает, что может обнаружиться в центре сверхпроводящей чёрной дыры. Но, учитывая как обычный, не связанный с наукой зритель, залипает на видах фракталов, большинству путешествие к такому центру понравилось бы.


Смотрите также анонсы новых тем на нашем ютуб-канале
Показать полностью 1
196

Астрофизики опять получили Нобелевскую премию. За исследования черных дыр

Астрономы всего мира находятся в приподнятом настроении, ведь уже шестая Нобелевская премия по физике вручается за открытия в области астрофизики. В этом году премию получают: Роджер Пенроуз "за открытие того, что образование черной дыры является надежным предсказанием общей теории относительности", и Рейнхард Генцель вместе с Андреа Гез "за открытие сверхмассивного компактного объекта в центре нашей галактики".


Подробнее, почему премию присудили только сейчас и в чем заслуга номинантов рассказывает Кирилл Масленников, астроном Пулковской обсерватории.

Британский физик-математик и философ науки Роджер Пенроуз открыл, что образование черных дыр является следствием общей теории теории относительности.


Немецкий ученый-астрофизик Рейнхард Гензель (Институт внеземной физики общества Макса Планка) и американский астроном и доктор философии Андреа Гез (профессор кафедры физики и астрономии в Калифорнийском университете) обнаружили, что невидимый и чрезвычайно тяжелый объект управляет орбитами звезд в центре нашей галактики. Они пришли к выводу, что единственным объяснением этому может быть сверхмассивная черная дыра.


39

Как проходит подготовка космического корабля к полёту в космос. «Созвездие Энергии» – выпуск 22

На расстоянии 2096 километров от Москвы, на космодроме Байконур идёт завершающая предполётная подготовка экипажа 63 и 64 экспедиций на Международную космическую станцию.

На стапеле, космически корабль, или как говорят специалисты, изделие «Союз МС-17».

Корабль как и его будущий экипаж, с помощью специалистов РКК «Энергия» и других предприятий входящих в Госкорпорацию Роскосмос, активно готовится к полёту, о том как это происходит, смотрите наш репортаж.

Еженедельная информационная программа "Созвездие Энергии" Выпуск 22 Ракетно-космической корпорации "Энергия" имени Сергея Павловича Королёва.

553

Астрохобби #8

Пятничное моё. Снимал галактику Водоворот (M51) в начале 2019. Это пара взаимодействующих галактик. Тут сложено снимков на 1,5 часа экспозиции в сумме.

Астрохобби #8 Астрономия, Астрофото, Телескоп, Галактика, Космос

А ниже кроп этой картинки. Тогда наблюдалась "недосверхновая" в ней, отмечена как AT2019abn.

Астрохобби #8 Астрономия, Астрофото, Телескоп, Галактика, Космос

Тогда я ещё только начинал эксперименты с астрофото, так что эта фотография получилась шумноватой, но звезда за которой тогда охотился вполне себе тут видна.

440

Чёрная дыра в центре Млечного пути

Видео показывает реальные наблюдения группы звёзд в центре нашей галактики на протяжении нескольких лет. Звёзды обращаются вокруг невидимого объекта, который и является сверхмассивной черной дырой Стрелец А*, имеющей массу в 4 миллиона масс Солнца. Выделенная звезда, S0-2, в момент прохождения перицентра (наиболее близкой к черной дыре точки орбиты) ускоряется до скорости 7650 км/с, что составляет 2,6% скорости света.

378

Нобелевскую премию по физике вручили за исследование чёрных дыр

Награду разделили на две части.

Нобелевскую премию по физике 2020 года разделили пополам: одну часть вручили Роджеру Пенроузу — за открытие того, что образование чёрных дыр является предсказанием общей теории относительности. Вторая половина досталась Райнхарду Генцелю и Андрее Гез — за открытие сверхмассивного компактного объекта в центре нашей галактики.

Нобелевскую премию по физике вручили за исследование чёрных дыр Общество, Нобелевская премия, Космос, Наука, Черная дыра, Tjournal, Роджер Пенроуз
Нобелевскую премию по физике вручили за исследование чёрных дыр Общество, Нобелевская премия, Космос, Наука, Черная дыра, Tjournal, Роджер Пенроуз

«Три лауреата разделили Нобелевскую премию по физике этого года за открытия, касающиеся одного из самых экзотических явлений во Вселенной — чёрной дыры», — отмечается на сайте премии. Говоря о важности работ учёных, представитель Шведской академии заявил, что премия присуждается за «раскрытие самых тёмных секретов Вселенной».

В 2019 году награду по физике вручили за «теоретические открытия в области физической космологии» и «за открытие экзопланеты, вращающейся вокруг звезды солнечного типа».

5 октября Нобелевскую премию по физиологии и медицине присудили Харви Олтеру, Майклу Хаутону и Чарльзу Райсу за открытие вируса гепатита C.

7 октября Нобелевский комитет объявит лауреатов премии по химии, 8 октября — по литературе. Премию за содействие установлению мира вручат 9 октября. 12 октября станет известно, кто получит премию по экономике. Согласно правилам, список потенциальных кандидатов на получение награды держится в секрете.

Ольга Щербинина

via

Показать полностью 1
64

Как млекопитающим регенерировать, а графену улучшить квантовые вычисления. Дайджест новостей науки за неделю

Каждый понедельник делаем подборку из самых интересных новостей науки и рассказываем о них подробнее. Смотрите видео или включайте фоном как подкаст.

В этом выпуске мы рассказываем как изменились мозги млекопитающих и птиц через 300 миллионов лет эволюции; где обнаружена вода в жидком состоянии на Марсе; что нужно для регенерации кожи млекопитающих; как личинки мух помогут от сельскохозяйственных болезней и как графен улучшил болометры для квантовых измерений?

Содержание ролика:

00:37 Эволюция мозга млекопитающих и птиц

03:16 Озера на Марсе

05:53 Регенерация кожи

07:35 Личинки мух могут бороться с сельскохозяйственными болезнями

09:19 Графен улучшил свойства болометров для квантовых измерений


(все ссылки на пруфы и исследования под роликом на ютубе)

248

Космонавты МКС поздравили землян с годовщиной начала космической эры

Ровно 63 года назад в космос был запущен первый спутник.


Космонавты Роскосмоса Иван Вагнер и Анатолий Иванишин поздравляют с борта Международной космической станции с годовщиной запуска первого спутника Земли!


Как отметил Анатолий Иванишин, именно благодаря труду наших ученых и конструкторов был успешно сделан первый шаг в освоении космического пространства.

В свою очередь Иван Вагнер обратился к ветеранам отрасли: «Отдельное спасибо ветеранам ракетно-космической промышленности нашей страны, людям, чья жизнь посвящена сложной и интересной работе — производству космической техники и ее запуску на околоземную орбиту».

via

Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: