-3

Bluetooth в металлический корпус

Друзья,всем привет. Нужен Ваш совет.

Приступаю к постройке аудиоусилителя. Размещаю всю электронику в полностью алюминиевом корпусе. Хочу установить туда Bluetooth модуль. Сможет ли модуль принимать сигнал в этом корпусе? Если нет-то как решить эту проблему? Как-то вынести антенну Bluetooth за пределы корпуса?

Дубликаты не найдены

+2

Ручка у усилка будет? Вот и сделай ее антенной

раскрыть ветку 2
0

ага на 2,4 гигагерца

раскрыть ветку 1
0
Дискоконусной :)
+2

Не сможет. Выводите антенну на заднюю стенку. Через любой высокочастотный разъем - SMA или что-нибудь похожее.

раскрыть ветку 3
+1

Разъёма для антенны на модуле нет,сама антенна выполнена в виде дорожки на плате.

раскрыть ветку 2
0

Да, надо будет отрезать эту дорожку и подпаять к выходу чипа провод внешней антенны.

0

нет,так как клетка Фарадея ,выноси антену

0
Купи в Китае усилок с блютуз 😁
0

Работать не будет. Я использовал Wi-Fi антенну от роутера (частоты одни) и разъем SMA с подпаянным кабелем.

0

У меня малинка в алюминиевом корпусе,  и встроенный БТ пробивается через него до датчиков БТ в другой комнате

0

Антену вывести наружу

0

Либо прорезь из стекла, либо металла, ну как в новых телефонах.

раскрыть ветку 2
0

стекло-пластик ,такое на ФАР радаров стоит

,на самолетах
раскрыть ветку 1
0

Ок,спасибо! Буду что-нибудь колхозить

-1

Что за блятус модуль? обычно у них есть выход под антену, центр на него, землю на цифровую землю модуля. сам разъем наружу. Обычно из под экрана блитус плоха ловет, нужна внешнея антена или нет зависит от нужной максемальной дестанции преемопередатчека

раскрыть ветку 1
0
Блядь, у меня глаза вытекли.
Иллюстрация к комментарию
Похожие посты
646

Умный дом

Всем привет! Особенно моим 5 подписчикам) Без вас, вероятно, я б еще лет 9 ничего не писал)


Давным-давно, когда в ходу был длиннопост.ру, я наткнулся на пост про ардуинки. Тема эта мне близка, так как учился я на программиста. Мне очень захотелось воочию увидеть как мой код реально что-то делает, поэтому я заказал этот набор не раздумывая, чем и положил начало данной истории.


Набора мне хватило надолго: я и светодиодами помигал и двигателями повращал.

Первым законченным проектом стали часы на газоразрядных индикаторах ИН-14, которые я подарил тогда еще будущей жене.

Умный дом Умный дом, Своими руками, Программирование, Электроника, Автоматизация, Пятничный тег моё, Видео, Длиннопост

Они и сейчас стоят под телевизором, безумно радуя глаз.

Это было моё первое знакомство с пайкой: навесной монтаж, удары напряжением 180V,  постоянно горящие компоненты. К тому же из-за экономии я купил паяльник в фикспрайсе, так как дедовским было жутко неудобно, и даже не понимал, насколько он плох, пока у меня не появилась паяльная станция с феном)

Потом я разработал отцу на дачу систему автополива на 6 зон, с датчиками температуры и влажности почвы(чтоб не поливать в мороз и дождь), с экранчиком, часами реального времени и расписанием полива. Заказать подобную систему стоило 300к+. так что тысяч 280 мы сэкономили)


По вышеуказанному ты, дорогой читатель, вряд ли подумаешь, что я ленивый, но это так. Даже нет, я оооочень ленивый. В подростковом возрасте у меня очень сильно сбился режим сна: несколько лет я бодрствовал по ночам и засыпал к утру. Как сейчас помню: в предрассветные часы, лёжа на кровати и смотря сериал, я понимал, что хочу уснуть, но включен свет. Со светом спать проблематично, а если встать и выключить, то сон как рукой снимет...

В тот момент я захотел умный дом.


Готовые решения были отвергнуты сразу: пол ляма за однокомнатную квартиру? Нет, спасибо!

И я начал разрабатывать. Первая версия была на основе arduino mega с ethernet shield w5100(AMS) и умела только включать/выключать телевизор и свет в комнате через веб страницу. Долго он не продержался, так как mega дорогая и большая, а из доски для прототипирования постоянно выпадали проводки.


В итоге мой выбор пал на esp8266 - это малюсенький микроконтроллер, с wi-fi на борту, кучей памяти и высокой частотой процессора. А главное цена:

Умный дом Умный дом, Своими руками, Программирование, Электроника, Автоматизация, Пятничный тег моё, Видео, Длиннопост

1шт - 111 рублей!


Сервером был выбран windows планшете, raspberry pi был отброшен из-за отсутствия экрана и батареи.


И началась разработка: Sprint-LayoutЛУТ,  smd, бесконечные даташиты. Arduino IDE сменил SmingHub. Моя комната превратилась в мастерскую, во все свободные(и не очень) места были поставлены металлические стеллажи из леруа, куча коробок с компонентами с али. Тогда-то я и понял, что значит паять на коленке.


Спустя 2 года(спасибо СДВГ) у меня была плата версии 1.1 и прошивка 1.0! На ней работало всё, что я задумывал, чего не скажешь о предыдущих версиях...

Умный дом Умный дом, Своими руками, Программирование, Электроника, Автоматизация, Пятничный тег моё, Видео, Длиннопост

все версии по порядку (сверху вниз, слева направо). AirDots для масштаба)


В итоге устройство умеет и имеет:

- Управлять светодиодной лентой RGBW (10м без усилителя)

- Имитировать сигналы пультов с инфракрасным сигналом(тв, аудио системы и т.д.)

- Передавать RF(радио) команды

- 2 датчика температуры ds18b20

- 2 датчика движения

- 1 аналоговый вход (напр. для датчика света или влажности почвы)

- 4 цифровых входа/выхода (используются, только если придумываю что на них повесить, например датчик тока)

- питание 5-24В

- прошивка по USB

- обновление по воздуху


Потом я женился, и приступил делать ремонт в квартире старого фонда закладывая все нужные коммуникации для умного дома, и хочу показать что из этого получилось.


Свет

Тут без комментариев

Датчики движения

Умный дом Умный дом, Своими руками, Программирование, Электроника, Автоматизация, Пятничный тег моё, Видео, Длиннопост

Датчики стоят в каждой комнате, коридорах, ванной и кухне. Выключателей нет вообще, даже провода не закладывал. Для обратной совместимости с старым аналоговым способом включения света были куплены выключатели-наклейки, работающие от батарейки)

Для автоматического света предусмотренно 3 режима: дневной, вечерний, ночной.

Например, в спальне днём включаются лента и точечники. Вечером, когда годовасик ложится спать, только лента на 4 процента яркости, которая не бьёт по глазам, не мешает спать, но позволяет всё видеть. Ночью включается лента на 1% яркости, при этом хорошо видно очертания предметов. Жене очень удобно посреди ночи махнуть рукой (чтоб включился свет) и найти потерянную ребёнком соску. Когда ночью идёшь в туалет, ты не бьешься об углы, никуда не врезаешься, потому что не приходится делать это наощупь в темноте: в коридоре свет включается на 20%, а в туалете на 14%.

Окна


Одна из самых полезных функций. Управлять с телефона конечно удобно: не надо вставать с дивана или кровати для открытия/закрытия окон, но это ж надо что-то сделать в телефоне (лень!), поэтому я реализовал периодическое проветривание.

Мы можем настроить процент открытия окна, как долго оно будет открыто и как часто оно будет открываться.

и всё! Если температура в комнате падает ниже настроенного минимума - окно закрывается(при условии, что на улице температура ниже минимума, иначе выключаем кондиционер).

Умный дом Умный дом, Своими руками, Программирование, Электроника, Автоматизация, Пятничный тег моё, Видео, Длиннопост

Шторы


Тоже очень удобная функция. Каждый день система проверяет время захода солнца для моего города, и в это время закрывает шторы). Открываются так же каждый день по будильнику, время которого мы сами выставляем (в выходные, например, шторы открываются позже).

Техника.

Сценарий по голосовой команде "включи проектор"

Выключается телевизор.

Выключается свет.

Если включена лента - снижаем яркость до 15%

Включается комп.

Закрываются шторы.

Включается аудио система, переключает каналы на 5.1, выставляет настроенную громкость и слегка добавляет басов(+2)

Опускается полотно проектора.

Включается проектор.

Безопасность


Шаровые краны с датчиками протечки: в случае протечки перекрывают трубы с холодной и горячей водой, приходит уведомление в телеграмм и голосом оповещается о протечке

Умный дом Умный дом, Своими руками, Программирование, Электроника, Автоматизация, Пятничный тег моё, Видео, Длиннопост

Перекрывать можно и "вручную", уходя из дома. Пока писал это придумал, что надо б перекрывать автоматически уходя из дома.


"Вручную" можно использовать и необычным способом)

Удобство


Электромеханический замок на входной двери спасает, когда забыл ключи, либо когда пришли гости: в этом случаем не обязательно идти к двери (лень!) и открывать её, достаточно сказать "Алиса, открой дверь".

И это не весь функционал: датчики температуры в каждой комнате, климат-контроль с кондиционерами и окнами... могу ещё долго рассказывать..


Работает всё это и без интернета (кроме голосового управления). Благодаря KeenDNS я имею доступ к системе из любой точки мира: прикольно лёжа на пляже, смотреть во сколько закрываются шторы, и какая температура в квартире.


В итоге, у меня получился не просто умный, а так же и удобный дом. Он позволяет мне не просто включить свет или открыть шторы/окна с телефона или голосом, он даёт возможность не делать это вовсе, даже не думать об этом. Мой дом сам делает так, чтобы мне и моей семье было действительно комфортно в нём жить.


Теперь считаем


Получилось всё очень бюджетно. Я много дней провёл, сравнивая решения и цены, и выбрал лучшие решения за низкую цену.


Шторы:  3*10к = 30к

Приводы для окон:  3*5к = 15к

Жалюзи на балкон:  3*3,3к = 10к

RGB лента: ~75м * 300р/5м = ~5к

Себестоимость моих контроллеров ~500р, в квартире их 15шт - 7,5к

Шаровые краны: - 4шт *1к = 4к

Замок на дверь:  3к

Мелочевка вроде датчиков протечки, датчиков движения и блоков питания ~ 5к


Итого - около 80 000 рублей за умный дом с полным фаршем на 3х комнатную квартиру без учёта разработки. это <10% от стоимости ремонта.

Хотя и с стоимостью разработки вышло куда меньше, чем запрашивали за готовое решение.


Система получилась очень масштабируемая и универсальная: ровно день я потратил, чтобы установить её на съемной квартире (свет и датчики движения)


Разработка не останавливается ни на месяц, почти каждый день что-то поправляю и улучшаю.


Подписывайтесь, так как скоро буду внедрять умный дом в двухуровневый пентхаус с бассейном, помасштабнее будет.


Рассказать могу ещё много о чём, а пост не резиновый, так что пишите в комменты, что ещё рассказать: голосовое управление, интерфейс, технические подробности, да что угодно.

Показать полностью 5 7
90

Робот на Уно Совместимой платформе

Робот на Уно Совместимой платформе Робототехника, Arduino, Робот, Программирование, Разработка, Своими руками, Свежее, Электроника, Видео, Длиннопост

Всем привет! Не пинайте сильно, это мой первый пост на пикабу. Сегодня речь пойдет об очень интересном проекте. Как то раз мне понадобилось сделать простое устройство, чтоб научить детей программированию. Всё то, что имеется в сети либо дорого, либо не удовлетворяет мои запросы. Хотелось сделать что то простое и компактное, но в то же время функциональное. Назвал робота muBot! Так как это был первый мой серьезный проект - решил делать платы в Китае.

Заказал из Китая 5 штук.

Коротко  шо по чём (основная плата):

- МК - Atmega328p-au

- Драйвер моторов MX1508

- Датчик черной линии сделан на микросхеме LM393

- Заряд АКБ сделан на ТР4056.

- Юсб - ЮАРТ сделан на CH340G

- 2 двигателя N20 100об./мин.

- разъем USB-B.

- li-pol аккумулятор 3,7в ( в моём случае старая батарея от iphone 4s)


Схемы все по даташитам, как по мне - самое верное решение!


Кроме того сделал шилд (который ещё в дороге) где есть место под OLED дисплей  128х32, барометр BMP180, сонар НС-SR04, 2 фоторезистора с компаратором LM393, 3 адресных светодиода, термометр LM35, стабилизатор 3,3в, ИК-приемник пульта ДУ, место под макетирование и несколько свободных пинов под свои нужды. Неплохо как по мне.


Устройство получилось компактным 100х130х60мм.


Спустя месяц ожиданий платы пришли, можно паять!

Робот на Уно Совместимой платформе Робототехника, Arduino, Робот, Программирование, Разработка, Своими руками, Свежее, Электроника, Видео, Длиннопост

Около 2 часов спустя белый кругляшек стал похож на что то - напоминающее плату с колёсиками! На 3д принтере напечатал упоры, чтобы плату не  клонило со стороны в сторону.

Робот на Уно Совместимой платформе Робототехника, Arduino, Робот, Программирование, Разработка, Своими руками, Свежее, Электроника, Видео, Длиннопост

Осталось дело за малым - прошивка. Дабы упростить задачу, решил залить бутлоудер от Ардуино Уно, так как это самая ходовая плата, и при работе с ней проблем не возникает. После загрузки загрузчик (прям игра слов какая то!) надо установить драйвер СH340 и программировать из под Ардуино ИДЕ ка обычную Ардуино Уно.


Осталось дождаться плат шилда, и завершить сие чудо полностью,  А пока на этом всё! Всем удачи и хорошего настроения!

Робот на Уно Совместимой платформе Робототехника, Arduino, Робот, Программирование, Разработка, Своими руками, Свежее, Электроника, Видео, Длиннопост
Показать полностью 3 1
124

Небольшой пост о сборке ламповых часов на ИН-8-2

Не так давно я перевёл используемую схему на другую микросхему часов реального времени - DS3132SN, и вот наконец сделал первые платы по обновлённой схеме под лампы ИН-8-2.
Для того, чтобы заинтересовать читателей (если мои посты вообще кому-то интересны (так как пишу я сюда в основном для себя)), сразу поделюсь фотографией получившихся часов:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

А теперь немного о сборке. Практически "с нуля" развёл платы:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

И с нижней стороны:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Получившиеся платы выглядят вот так:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Плату собирал постепенно. Сначала - преобразователи 12 - 5 и 12 - 175 Вольт.

Проверка наличия напряжения на входе:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Проверка наличия +5В:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

И проверка наличия +175В:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Далее - установка и пайка ламп:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Одну поставил чуть позже:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Фото получившейся конструкции сверху:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

И снизу:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Заработало всё с первого раза:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

В этот раз для корпуса была взята древесина вишни. Заготовка была подобрана подходящего сечения, а вот длина - с запасом. Обрезал лишнее я лобзиком, с помощью такого вот приспособления:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Получается довольно аккуратно (позже будет ещё шлифовка):

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

По шаблону отмеряю необходимую длину, отпиливаю таким же образом:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

И вот что получается после шлифовки:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

По тому же шаблону производится разметка отверстий под лампы:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

А с нижней стороны - сверление направляющих отверстия на заданную глубину под сверло Форстнера:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Лишнее убираю сверлом и Дремелем, попутно примеряя плату:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Получается не очень аккуратно, но это всё будет закрыто крышкой, так что и пусть. вид сверху:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Сверху ещё решил поставить такую вот пластинку из нержавейки и скруглить углы:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

После покрытия воском:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Дальше - мелочи: установка разъёма питания, закрепление платы в корпусе, пайка кнопок и установка нижней крышки:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

И куда же без фотографии с прошлыми моделями часов на этих же лампах:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Третьего блока питания под рукой не оказалось, поэтому только вот так:

Небольшой пост о сборке ламповых часов на ИН-8-2 Самоделки, Своими руками, Рукоделие с процессом, Подарки, Часы, Древесина, Электроника, Длиннопост

Справа - версия в корпусе из массива венге, сзади - из бубинги.

Почта для вопросов - matvey6191@gmail.com

Показать полностью 23
176

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры

Кратко в статье будет:

Что же не так в первой же картинке: хоть и выглядит вполне аккуратно, или сказ о наводках и СВЧ чёрной цифровой магии и почему так делать нельзя.

Немного об отладочной плате FPGA и особенностях разработки.

О модуле камеры, её сенсоре, MIPI интерфейсе и как его испортить.

Как сделать связь с ПК в сотни мегабит, менее 100мбит/сек, и как в том числе и тут словить кару.


Внимание: в статье несколько хайрез фоток и видео, много тех терминов и лютого DIY, возможен взрыв мозга!


Итак, начнём с пациента:

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео

Что это на фото?

1. Белая плата - мозги: FPGA плата на базе Artix-7 от Xilinx, подключена к ПК по micro USB для прошивки и отладочных логов

2. Мини плата слева сверху - FTDI, обещала "скоростную" связь с компом...

3. Синяя плата справа сверху - сам модуль скоростной камеры с пимпкой "объектива" (извиняюсь за ругательство).

4. Куча проводков от ардуины.


Требовалось:

Захватить видеопоток с камеры и послать на ПК как есть, без сжатия но в RGB, при этом достичь максимального количества кадров в секунду (в идеале несколько сотен).


Что за зверь это, FPGA плата?

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео

Это процессор или миникомп как "малинка"?

Нет!

Но, она, как и процессор, может исполнять алгоритм, считать и управлять чем-нибудь.

По сути FPGA - это набор блоков памяти, отдельных битов памяти и простых, проще сложения, логических элементов с управляемыми связями. А связями всего этого набора можно произвольно управлять софтом по своему желанию.


Стоп! А как же тогда оно считает? исполняет алгоритм и управляет?


А тем, что специальный софт разбивает алгоритм, написанный на Си подобном языке, на отдельные блоки:

массивы размещает в большие блоки памяти,

переменные разбивает на биты и размещает в отдельные аппаратные биты,

вычисления, даже такие простые как инкремент разбивает на сотни и тысячи логических функций, для сложных использует готовые аппаратные блоки.

И потом всё это соединяет вполне реальными физическими связями. И работает всё это на частотах в несколько сотен мегагерц.


По сути алгоритм превращается в реальную и очень комплексную электрическую схему. Это настолько низкоуровневое программирование, что даже "ниже" не только ассемблера, но и машинных кодов и чёрт побери перфокарт!


100-200 Мгц медленно? и зачем нужны такие заморочки? Если есть обычная малинка или одноплатные ПК х86 на которых винда крутится.

И нет, это не медленно и есть задачи, где не возможно обойтись без FPGA физически.


Первая фишка:

в том что это не проц, который исполняет алгоритм шаг за шагом. Это куча связанного "железа" которая исполняет весь алгоритм одновременно! Тотальное 100% распараллеливание алгоритма, даже если в нём несколько сотен тысяч строк кода!

Это даёт возможность такой магии, как сортировка массива за ноль тактов (например, в фильтре шума).

А ещё даёт возможность самому проектировать эмуляторы старых консолей и они будут работать в точности, нет, ТАК В ТАК, так-же как и их аппаратные дедушки, даже даёт возможность сэмулировать баги, и разные аппаратные нестабильности например в звуке чип-тюна ZX-Spectrum.

А ещё это и чудовищное быстродействие: делать расчёты на 66 Мгц быстрее чем Core i7 на 3700 МГц? запросто! Именно поэтому ASIC (некоторые их виды - FPGA с предзаказанными, не изменяемыми связями) так полюбились всеми майнерами.


Вторая принципиально непобедимая фишка:

время реакции - раз всё работает параллельно и можно реагировать с нереальной скоростью, в десятки а порой единицы наносекунд. Робототехника, автопрома и оружейка - без FPGA и ASIC (захардкоженный FPGA) никак.


Третья фишка:

можно реализовать любую периферию, любой интерфейс самому при помощи исходного кода, и если ты написал сам всё с нуля, включая интерфейсы, то это 100% переносимо, ну не мечта ли? Но с большими оговорками, и можно "отстрелить себе ногу", что я и сделал в интерфейсе камеры.


Модуль камеры:

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео

Это плата модуля камеры: сверху чёрный цилиндр объектива, под ним чип сенсора который собственно и видит со всей логикой, который установлен на плате, два стабилизатора питания и разъём 40 контактный.


Характеристики этого модуля:

5 мегапикселей.

"Объектив" полное разочарование: мылит даже на VGA разрешении, света собирает мало, не настраивается фокус. Но для отладки пойдёт.

Чип сенсора выдаёт RAW формат как в профессиональных фотокамерах - в RGB придётся проявлять самому,

Интерфейс параллельный MIPI, он примитивный: каждый такт синхросигнала выдаёт 12 бит данных пикселя, с парой статусных сигналов "конец строки" и "конец кадра".

Для настройки юзает двух проводной последовательный I2C.

Коннектор - 40 пиновый, двухрядный с шагом 2.56мм, как в старых жестяках.


Казалось бы всё просто особенно для FPGA...


"Отстрел ноги"


Но чтоб достичь максимальной скорости надо выдать камере максимальную частоту в ~100Мгц (а с гармониками до гигагерца), от которой камера и тактируется, которая в свою очередь даёт ответный синхросигнал обратно в FPGA с сырыми данными изображения.

А это очень быстро, даже слишком быстро и было наивно с моей стороны надеется, что можно отдельными проводками соединить и ничего за это не будет...


Будет!


Во первых:

В стародавние времена, когда у жестяков был широченный ParallelATA 40 пиновый коннектор и такой-же шлейф, то этот 40 жильный шлейф работал только до частот 30-60МГц, а далее уже нужно было использовать особый магический 80 жильный шлейф с чередованием земель. И это не спроста: на таких частотах взаимные наводки очень сильно влияют и портят сигнал. Но в этой связке его использовать нельзя т.к. на основной FPGA плате нет такого же 40пинового разъёма, а негодяи из Xilinx ради маркетинга (ну и чтоб продавать только их доп платки по конской наценке) и несовместимости запилили 4 группы по 12 контактов в два ряда.


Во вторых:

Длинна ардуино-проводов разная да и на самой плате очень сильно различается длинна дорожек, а это критично на таких скоростях, и если даже не из за скорости света, то из за разной индуктивности - которая усиливает взимные наводки, разносит их по разным фазам ещё сильнее и превращает полезный сигнал в "кашу".


В третьих:

маркетологи посчитали что при помощи платы "всего" за 100 баксов нельзя давать заниматься серьёзными вещами. И поэтому два из четырёх 12 контактных коннекторов GPIO подключили через много килоомные резисторы тем самым зарезав частоту и "завалив форнты" (когда тактовая нарастает не слишком быстро чип камеры, из за шумов может не понять время переключение, это было одно или несколько).

Не делайте так! Не надо пытаться ардуино-проводками подключать такие быстрые (свыше 30 МГц и многобитные интерфейсы)


Попытки профиксить и прочие бесполезные трепыхания


1. Тактовая пикселей MIPI что выходит из камеры оказалась в разы шумнее: это тактовая из FPGA которая набрала по пути до камеры шумы, а потом вернулась из камеры в FPGA набрав ещё шумов на обратном пути. Пришлось затактироваться внутренней частотой внутри FPGA что генерится и выдаётся наружу и игнорировать синхронную с данными от камерами возвращающуюся обратно частоту самих данных.

Фейл: чип камеры при каждом старте настраивается чуток по разному и поэтому выходящая из него тактовая тоже на пару наносекунд то отстаёт то опережает.

Адский Костыль: Нужно вручную подстраивать каждый раз при каждом включении задержку.


2. Фейл: Взаимные шумы: так как лежит на первой картинке (плата связи рядом с платой камеры) не работает! В линке с ПК проскакивают лишние байты или он теряет байты.

Адский Костыль:

приходится буквально на пару сантиметров отгибать в сторону камеру вот так:

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео

Чёртов бубновый шаманизм!


3. Мини Фейл: Ардуино проводки - они норовят отскачить при любом неосторожном движении любой платы! Это, просто, очень и очень не удобно, надо ОЧЕНЬ аккуратно всё двигать.

Костыль: расковырял иголкой разъём чтоб лучше держалось ... помогло мало но вроде помогло.


4. Связь с ПК при помощи модуля FTDI2232H оказалось не настолько крутой как её рекламировала фирма.

Фейл: скорость вместо 480 мегабит оказалась всего в 100 мегабит, т.к. внутри ФТДИхи два канала и они прибиты гвоздями, уже 240мегабит, USB не умеет в 100% пропускной, уже 200Мегабит, а чип не сразу видит такт записи а через пол дополнительного такта: вот тебе и 100 мегабит. Заморачиваться и собирать из двух каналов один не стал - драйвер фтди перемашивает рандомно пакеты и байты не говоря где начало пакета, а где конец.


5. Так-же производитель камеры обманул: вместо 150 фпс оказалось 128 фпс - только на  такую скорость удалось настроить. Сам сенсор на такой скорости оказался очень тёмным, а чуствительность красного и синего канала настолько низкой что её пришлось домножать на х2 - х3 вместе с шумами и добавочно делать полноценное шумо-подавление.


Что дополнительно было разработано


Т.к. камера выдаёт сырой рав-поток как в проф камерах, то его надо обрабатывать как это делают тулзы цифровой проявки такие как Adobe Light room.

Для этого запилил на верилоге свой видеопроц:

в нём и MIPI приёмник, и свой i2c контроллер и такие страшные слова как:

- баланс белого,

- гамма-коррекция,

- коррекция дин. диапазона (после гаммы чёрный усиливается и становится серым - это надо фиксить),

- шумодав (где сортируется за 0 тактов в медианном фильтре),

- кроп и ресайз,

- усиление и коррекция цветов (синий и красный оказались очень слабыми).


схемка для пущего "устрашения" (to NN это выход в фтди, и спойлер темы будущей статьи ;):

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео

Итог и что получилось сделать:


Оно заработало:

слева рендеринг на ПК при помощи OpenCV и С++ (на нём же писал и отлаживал RTL код для верилога и переносил как есть в верилог),

а справа отладочная консоль из FPGA в формате VT100 с цветами и свистелко-перделками  (терминал с printf, текстом и преобразованием чисел в текст и пр. реализовано всё это аппаратно на FPGA при помощи той же логики и такой-то матери), да я люблю красиво, дорого и богато особенно в отладке.


Расшифровка видео:

В первую секунду видна первичная инициализация и пуск камеры с логом адресов и значений команд записи регистров настроек в камеру по I2C.

Далее я ручками, посылаю текстовые команды в FPGA (лексический интерпретатор команд тоже сам сделал, тоже на логике) и настраиваю яркость и чёртову фазу сигналов, видно что после подстройки фазы обильный "розовый снег" исчезает.

После я машу перед камерой древним смартом с настроечной таблицей цветов.


всплывшие косяки:

1. т.к. хоть камера и работает в режиме 128 фпс, но по скорости FTDI подвела и только 64 кадра в сек посылается в ПК, в среднем каждый второй кадр пропускается.

2. есть местами мусор в виде снега и цветных кластеров (показаны красными стрелочками)

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео

3. сам модуль камеры на такой скорости оказалось полным разочарованием: мутная картинка, и шумов много т.к. ISO задран к небесам.


Использованные ресурсы чипа:

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео

блочной BRAM памяти больше всего ушло на буфер для одного кадра.


Ушло примерно 200 часов моего времени на разработку, из них 150 на видео проц (raw --> rgb).


Вывод:

Не делайте так! Не надо пытаться ардуино-проводками подключать такие быстрые (свыше 30 МГц и многобитные интерфейсы). Именно поэтому профессионалы порой недолюбливают ардуинщиков за такие дикие сопли с ардуино-проводками.


А отладить камеру и ip-корку (аппаратная либа) видеопроца я всё-таки смог. Благо сам алгоритм разработал и верифицировал формально и математически, а на FPGA только проверил, что оно в принципе работает и понял что надо копать в сторону само синхронных синфазных LVDS гигабитных интерфейсов без тактовой и всего этого замороча с шумами.


На этом всё, вот в завершение фотка с топологией чипа (светлосиним заюзанные аппаратные ячейки), зачем? незнай, просто красивый город как из сим-сити вышел.

Карательная электроника: Как нельзя разрабатывать интерфейс скоростной видеокамеры Длиннопост, Своими руками, Электроника, Видеомонтаж, Fpga, Плис, Прототипирование, Прототип, Видео
Показать полностью 8 1
488

Самодельная метеостанция для мониторинга погоды

Казалось бы, причем тут исследования космоса? Но далее все по-порядку :)

Мониторинг погоды с помощью самодельного оборудования оказался довольно любопытным занятием...


Идея создания автоматизированной обсерватории с удаленным управлением упёрлась в необходимость получать текущие данные состояния погоды в точке установки астрономического оборудования, вот этого:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Четыре года назад познакомился с микроконтроллерами Arduino (AVR), они оказались очень удобными для прототипирования различных устройств, которые потом можно будет сделать на более серьезных МК. Для обучения работы с Arduino решил собрать первое устройство - метеостанцию. Состояла она из двух блоков - внешнего, который висел за окном и раз в 5 минут передавал показания, и внутреннего, который принимал показания по радиоканалу и отправлял их в сеть на удаленный сервер. На внешнем блоке даже сделал солнечную панель, как помню купил по акции шесть садовых фонариков по 39 рублей, выдернул из них солнечные панели. Собрал из них одну большую, она заряжала внутренние АКБ (обычные ААА аккумуляторы). Такого симбиоза хватало на полгода бесперебойной работы метеостанции, потом аккумуляторы все-таки приходилось заряжать нормально.

Спустя год работы метеостанции, я ее отключил и разобрал. Сделана она была из подручных материалов, вот как она выглядела спустя год работы (внешний блок):

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Самодельный блок с анемометром, датчиком освещенности на фоторезисторе и датчиком DHT22 - температуры и влажности.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Блок с МК, и аккумуляторами спустя год - резиновые заглушки сильно потрескались.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Ну а внутри этого блока находится вот что:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Корпус утеплял в 2-3 слоя, проклеивал. Не знаю помогло это или нет, но АКБ, которые там стояли, до сих пор держат заряд и работают исправно. Целый год работала Arduino и не было ни одного сбоя или зависания - ее не приходилось перезагружать. Разброс температур был от +45 на Солнце, до -32 зимой.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Анемометр можно было бы сделать из шариковой мышки, но я такую не нашел. Сделал из небольшого двигателя, убрал все лишнее и прорезал сбоку отверстие для отпопары. На штоке якоря убрал обмотку, поставил самодельный диск с прорезью. Ну и DHT22 датчик:

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Одно из моих увлечений - астрономия, и в этом году я построил астрономическую будку с удалённым управлением (часть 1, часть 2, часть 3). И для автоматизации процесса съемки очень важно получать и обрабатывать погодные условия прямо здесь и прямо сейчас. Поэтому решил строить новую метеостанцию, опять на Arduino (понравилась мне она), но уже более серьезную.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сперва сделал на RJ-45 розетках возможность подключения модулей, но потом переделал на жесткую пайку. Все-таки так будет надёжнее, учитывая прошлый опыт. Соединения могут давать сбои.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все детали метеостанции напечатал на 3D принтере, получилось прям как заводское исполнение.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Метеостанция после недели тестов и отладки программного обеспечения установлена на свое место - на астрономическую обсерваторию.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Сейчас она измеряет и передает на удаленный сервер показания - температуру, влажность, точку росы, освещенность, интенсивность УФ-излучения, скорость и направление ветра. Заказал еще ИК-пирометр, для датчика облачности. Измерение уровня осадков делать не стал, так как актуально только в теплое время года.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Все данные можно смотреть через веб-интерфейс: просматривать текущие метеоусловия, а также статистику по предыдущим дням: https://meteo.miksoft.pro/

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

В планах - "допиливание" frontend \ backend метеостанции, сделать возможность выгрузки данных. Также сейчас метеостанция подключена и к проекту "Народный мониторинг".

Конечно, я понимаю, что для работы настоящей метеостанции должны быть выполнены большое количество условий (чтобы ее показания котировались), датчики должны быть сертифицированы, и явно быть дороже и точнее. Но сейчас, для работы удаленной астрономической обсерватории, мне этого более чем достаточно - перед запуском планировщика обсерватории я могу посмотреть текущую метеосводку. Теперь я могу быть уверенным, что в случае наступления неблагоприятных метеоусловий во время съемки (облака или осадки) - контроллер обсерватории сам припаркует телескоп и закроет крышу.

Самодельная метеостанция для мониторинга погоды Астрономия, Наука, Телескоп, Космос, Обсерватория, Строительство, Своими руками, Arduino, Электроника, Метеостанция, Погода, Длиннопост, Рукоделие с процессом

Буквально вчера получил посылку из Китая - ИК пирометр, который будет работать в паре с другим датчиком и мониторить облачность. Так что в ближайшие выходные буду добавлять новый датчик в метеостанцию.


Что дальше? Может быть стоит как-то развить этот мини-проект, сделать еще одну, но автономную, с солнечной панелью, АКБ и передачей данных по GSM?


Посты про строительство обсерватории смотрите в моем профиле.


Адрес метеостанции: https://meteo.miksoft.pro/

Мой телеграмм канал: https://t.me/nearspace (@nearspace)
Показать полностью 13
10552

Как я учился играть на гитаре, а в итоге создал свою цифровую

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Меня зовут Дмитрий Дударев. Я занимаюсь разработкой электроники и очень люблю создавать различные портативные девайсы. Еще я люблю музыку.


Давным-давно – в апреле или около того, когда весь мир сотрясался от ударов страшного карантина, я решил научиться играть на гитаре. Я взял у друга акустическую гитару и стал осваивать инструмент по урокам из ютуба и табулатурам. Было тяжело. То ли я неправильно что-то делал, то ли плохо старался, то ли в обществе моих предков мелкая моторика вредила размножению. Короче, ничего кроме звуков дребезжащих струн у меня не выходило. Мое негодование усиливала постоянная расстройка струн. Да и окружающим тысячный раз слушать мою кривую Nothing else matters удовольствия не доставляло.


Но в этих муках про главное правило электронщика я не забыл. Если что-то существует, значит туда можно вставить микроконтроллер. Или, хотя бы, сделать портативную электронную модификацию.


Электронная гитара? Хм, интересная идея, подумал я. Но еще лучше, если на этой гитаре я сам смогу научиться играть. В тот же день акустическая гитара отправилась на свалку обратно к другу, а я стал придумывать идею.

Поскольку я у мамы инженер, то первым делом я составил список требований к девайсу.



Что я хочу от гитары?


1)  Я хочу что-то максимально похожее на гитару, т.е. шесть струн и 12 ладов на грифе.


2)  Хочу компактность и портативность. Чтобы можно было брать девайс с собой куда угодно, не заказывая газель для транспортировки.


3)  Устройство должно без плясок с бубном подключаться к чему угодно, от iOS до Windows. Окей-окей, ладно, будем реалистичными – ко всем популярным осям.


4)  Работа от аккумулятора.


5)  Подключение должно производиться без проводов (но раз уж там будет USB разъем для зарядки, то и по проводу пусть тоже подключается)


6)  Ключевой момент – на гитаре должно быть просто учиться играть, без необходимости в долгих тренировках по адаптации кистевых связок. Как это реализовать? Сразу пришла идея оснастить струны и лады светодиодами. Типа, загрузил табулатуры в гитару, а она уже сама показывает, куда ставить пальцы. Т.е. нет такого, что смотришь на экран, потом на гитару, снова на экран, снова на гитару. Вот этого вот всего не надо. Смотришь только на гитару. И там же играешь. Все. Это прям мое.


7)  Хотелось бы поддержки разных техник игры на гитаре: hummer on, pull off, slide, vibrato.


8) Без тормозов. По-научному – чтобы задержка midi-команд не превышала 10мс.


9)  Все должно собираться из говна и палок легко доступных материалов без сложных техпроцессов и дорогой электроники.



В итоге должен получиться компактный инструмент, на котором можно играть, как на гитаре, лишенный аналоговых недостатков и оснащенный наглядной системой обучения. Звучит реализуемо.


Разумеется, для мобильных платформ потребуется написать приложение, в котором можно будет выбрать табулатуру для обучения светодиодами, выбрать инструмент (акустика, классика, электрогитара с различными пресетами фильтров, укулеле и т.д.), и воспроизводить звуки.


Существующие аналоги


А надо ли изобретать велосипед? Ведь на всякую гениальную идею почти наверняка найдется азиат, который уже давно все реализовал в «железе», причем сделал это лучше, чем ты изначально собирался. Иду гуглить.


Оказывается, первая цифровая гитара была создана еще в 1981 году, но в народ сильно не пошла из-за хилой функциональности.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Варианты посовременнее, конечно, тоже нашлись.

Вот, например, с айпадом вместо струн или еще одна в форме моллюска:

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара
Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Однако такого, чтобы выполнялись все мои хотелки – в первую очередь компактность и режим обучения «жми на лампочки» – такого нет. Кроме того, такие midi-гитары нацелены все же на более профессиональную аудиторию. И еще они дорогие.


Значит, приступаем!


Первый прототип


Чтобы проверить жизнеспособность концепции, нужно сначала определиться с элементной базой.


Контроллер берем STM32F042. В нем есть все, что нужно, при стоимости меньше бакса. Кроме беспроводного подключения, но с этим позже разберемся.


Далее. Струны на деке. Для первого концепта решил напечатать пластиковые язычки, закрепить их на потенциометрах с пружинками и измерять углы отклонения.

Так выглядит 3D-модель:

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

А так живьем:

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Тактильное ощущение приятное. Должно сработать.

Для ладов на грифе я заказал на Али вот такие тензорезистивные датчики.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

В отличие от разнообразных кнопок, они не щелкают. Плюс есть возможность определять усилие нажатия, а значит, можно реализовать сложные техники вроде slide или vibrato.

Плюс нужен АЦП, чтобы считывать инфу с датчиков и передавать на контроллер.


Пока ждал датчики из Китая, развел плату:

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара
Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Прежде чем заказывать печать платы, решил дождаться тензорезисторов. И, как оказалось, не зря. Из 80-ти датчиков рабочими оказались только несколько, и то с разными параметрами.

Выглядит, мягко говоря, не так, как заявлено. И чего я ожидал, покупая электронику на Али?..

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

И тут меня осенило.

Можно ведь применить другой метод детектирования — измерение емкости, как в датчиках прикосновения. Это гораздо дешевле и доступнее. А если правильно спроектировать механику, то можно и усилие определять.


Что ж. Удаляю все, что было сделано

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Второй прототип


Итак, тензорезистивные датчики в топку. В качестве сенсорных элементов в этот раз взял небольшие медные цилиндрики, напиленные из проволоки. Для измерения емкости удалось найти дешевый 12-канальный измеритель емкости общего назначения. Он измеряет емкость в масштабах единиц пикофарад, чего должно быть достаточно для схемы измерения усилия, которую я планирую реализовать в следующих модификациях.


Дополнительно на всякий случай повесил на каждый элемент грифа по посадочному месту для кнопки или чего-то подобного. И сделал соответствующие вырезы в плате. Это чтобы можно было не только прикоснуться к цилиндрику, но и прожать его внутрь. Можно будет поэкспериментировать с разными техниками игры.


Решив вопрос подключения множества микросхем измерителя емкости к контроллеру, приступаю к разводке платы.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

На этот раз плату удалось заказать и даже дождаться ее изготовления.

После того, как припаял все комплектующие к плате, понял, что конструкция с пластиковыми струнами получается слишком сложной. Поэтому решил пока что повесить на деку такие же сенсорные цилиндрики, но подлиннее.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Два проводочка в нижней части – это я подключил накладку с цилиндриками к уже изготовленной плате. Это временное решение.

Железяка готова. Следующая задача – заставить ее играть.

Софт

Программная часть реализована так:

1. Скачиваем виртуальный синтезатор, который может работать с MIDI устройством и издавать гитарные звуки.

2. Пишем прошивку для контроллера, которая будет опрашивать сенсоры и передавать данные по USB на комп.

3. На стороне компа пишем программу, которая будет получать эти данные, генерировать из них MIDI-пакеты и отправлять их на виртуальный синтезатор из пункта 1.

Теперь каждый пункт подробнее.

Виртуальных синтезаторов под винду с поддержкой MIDI оказалось довольно много. Я попробовал Ableton live, RealGuitar, FL studio, Kontakt. Остановился на RealGuitar из-за простоты и заточенности именно под гитару. Он даже умеет имитировать несовершенства человеческой игры – скольжение пальцев по струнам, рандомизированные параметры извлечения нот.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Чтобы подключить свое приложение к виртуальному синтезатору я сэмулировал виртуальный порт midi, который подключен ко входу синтезатора RealGuitar через эмулятор midi-кабеля. Такая вот многоуровневая эмуляция.


*Мем с ДиКаприо с прищуренными глазами*

В интерфейсе программы я сделал графическое отображение уровня измеряемой емкости для каждого сенсора. Так будет проще подстраивать звучание. Также на будущее добавил элементы управления светодиодами, вибромотором (пока не знаю зачем, но он тоже будет в гитаре), визуализации работы акселерометра и уровня заряда аккумулятора.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Для того чтобы удары по струнам гитары вызывали проигрывание правильных нот, нужно замапить все 72 сенсора на грифе на соответствующую ноту.

Оказалось, что из 72 элементов на 12-ти ладах всего 37 уникальных нот. Они расположены по определенной структуре, так что удалось вместо построения большой таблицы вывести простое уравнение, которое по номеру сенсора выдает номер соответствующей ноты.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Проверяем работу


Похоже, все готово для первого теста. Пилить прутки и паять все 12 ладов мне было лень, поэтому ограничился 8-ю. Момент истины:

IT’S ALIVE! Жизнеспособность концепта подтверждена. Счастью не было предела! Но нельзя расслабляться.


Следующий этап – добавление светодиодов, акселерометра, вибромотора, аккумулятора, беспроводной связи, корпуса и возможности работы без драйверов или программ эмуляции midi на всех популярных платформах.


Светодиоды


По плану гитара должна подсказывать пользователю, куда ставить пальцы, зажигая в этом месте светодиод. Всего нужно 84 светодиода. Тут все просто. Я взял 14 восьмибитных сдвиговых регистров и соединил в daisy chain. STM-ка передает данные в первый регистр, первый – во второй, второй – в третий и т.д. И все это через DMA, без участия ядра контроллера.


Акселерометр


Самый простой акселерометр LIS3D позволит гитаре определить угол своего наклона. В будущем буду это использовать для наложения звуковых фильтров во время игры в зависимости от положения гитары.


Беспроводное соединение


Для беспроводной передачи данных решил поставить ESP32. Оно поддерживает различные протоколы Bluetooth и WI-FI, будет с чем поэкспериментировать (на тот момент я еще не знал, что в моем случае существует только один правильный способ подключения).


Корпус


Одно из ключевых требований к гитаре – портативность. Поэтому она должна быть складной, а значит, электронику деки и грифа нужно разнести на две платы и соединять их шлейфом. Питание будет подаваться при раскрытии корпуса, когда магнит на грифе приблизится к датчику Холла на деке.


Доработка прототипа


Что ж, осталось облачить девайс в приличную одежку.

Я много экспериментировал с различными конструкциями тактильных элементов грифа и рассеивателями для светодиодов. Хотелось, чтобы равномерно светилась вся поверхность элемента, но при этом сохранялась возможность детектирования прикосновения и нажатия на кнопки.

Вот некоторая часть этих экспериментов:

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Еще я обратился к другу, который профессионально занимается промышленным дизайном. Мы придумали конструкцию узла сгибания гитары, после чего он спроектировал и напечатал прототип корпуса.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Развожу финальный вариант плат и собираем гитару:

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Выглядит почти круто. Но девайс все еще подключается к компу через цепочку эмуляторов, эмулирующих другие эмуляторы.


Превращаем гитару в MIDI-устройство


В новой версии в первую очередь я хотел, чтобы при подключении по USB, гитара определялась как MIDI устройство без всяких лишних программ.


Оказалось, сделать это не так сложно. Все спецификации есть на официальном сайте usb.org. Но все алгоритмы, которые выполнялись на стороне python-приложения, пришлось переписывать на C в контроллер.


Я был удивлен, что оно сразу заработало на всех устройствах. Windows 10, MacOS, Debian 9, Android (через USB переходник). Достаточно просто воткнуть провод и в системе появляется MIDI-устройство с названием «Sensy» и распознается всеми синтезаторами. С айфоном пока протестировать не удалось т.к. нет переходника. Но должно работать так же.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Беспроводной интерфейс


Осталось избавиться от проводов. Правильное решение пришло не сразу, потому что я поленился как следует погуглить. Но в итоге я использовал протокол BLE MIDI, который поддерживается всеми новыми операционками и работает без всяких драйверов прямо как по USB MIDI. Правда, есть вероятность, что на более старых операционках решение не заработает в силу отсутствия поддержки BLE MIDI. Но все тесты с доступными мне девайсами прошли успешно.


Переписанный функционал приложения – т.е. трансляция данных сенсоров в MIDI-данные – занял точнехонько всю память контроллера. Свободными осталось всего 168 байт. Очевидно, кремниевые боги мне благоволили, значит иду в правильном направлении.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Уверен, можно оптимизировать, но это отложу для следующей версии. Хотя, возможно, проще не тратить время и просто взять контроллер потолще. Разница по деньгам – 5 центов. Посмотрим. Все равно нужно будет место для новых фич – обрабатывать техники игры, например. В первую очередь, хочу реализовать slide. Это когда начинаешь играть ноту с определенным зажатым ладом и проскальзываешь рукой по грифу, перескакивая с лада на лад.

Теперь можно проверить работу по беспроводу:

При включении всех светодиодов, гитару можно использовать, если вы заблудились в темной пещере.

Как я учился играть на гитаре, а в итоге создал свою цифровую Своими руками, Технологии, Музыка, Гитара, Электроника, Arduino, Разработка, Мобильное приложение, Стартап, Kickstarter, Видео, Длиннопост, Электрогитара

Недостатки прототипа


На текущий момент у конструкции есть следующие минусы:


1) На сенсорах нигде не измеряется усилие нажатия. Это влечет за собой три проблемы:

• Постоянно происходят случайные задевания соседних струн как на деке, так и на грифе. Это делает игру очень сложной.

• Все играемые ноты извлекаются с одинаковой громкостью. Большинство подопытных этого не замечают, но хотелось бы более приближенной к настоящей гитаре игры

• Невозможность использовать техники hammer on, pull off и vibrato


2) Светодиоды одноцветные. Это ограничивает наглядность при игре по табулатурам. Хочется иметь возможность разными цветами указывать на различные приемы игры.


3) Форма корпуса не подходит для левшей. С точки зрения софта – я уже реализовал инверсию струн по акселерометру. Но механический лепесток, необходимый для удержания гитары рукой во время игры, поворачивается только в сторону, удобную правшам.


4) Отсутствие упора для ноги. Сейчас при игре сидя нижняя струна почти касается ноги, а это неудобно.


5)  Сустав сгибания гитары требует осмысления и доработки. Возможно, он недостаточно надежен и стабилен.



Время переходить к разработке следующей версии.


Переезжаю на контроллер серии STM32F07. На нем уже 128КБ флэша – этого хватит на любой функционал. И даже на пасхалки останется.


Использовать ESP32 в финальной версии гитары было бы слишком жирно, поэтому я пошел искать что-то более православное. Выбор пал на NRF52 по критериям доступности, наличию документации и адекватности сайта.


Конечно, будут реализованы и три главных нововведения:


- светодиоды теперь RGB,

- на каждом сенсоре грифа будет измерение усилия (тактовые кнопки больше не нужны),

- струны на деке станут подвижными.


На данный момент плата деки выглядит так (футпринт ESP на всякий случай оставил):

Уже есть полная уверенность в том, что весь задуманный функционал будет реализован, поэтому было принято решение о дальнейшем развитии. Будем пилить стартап и выкладываться на Kickstarter :)


Проект называется Sensy и сейчас находится в активной разработке. Мы находимся в Питере, сейчас команда состоит из двух человек: я занимаюсь технической частью, мой партнер – маркетингом, финансами, юридическими вопросами.


Скоро нам понадобится наполнять библиотеки табулатур и сэмплов различных инструментов. Если среди читателей есть желающие в этом помочь – пожалуйста, пишите мне в любое время.


Кому интересно следить за новостями проекта – оставляйте почту в форме на сайте и подписывайтесь на соцсети.


Очень надеюсь на обратную связь с комментариями и предложениями!

Спасибо за внимание!



Забавный эпизод из процесса разработки


Сижу отлаживаю NRF52, пытаюсь вывести данные через UART. Ничего не выходит. Проверял код, пайку, даже перепаивал чип, ничего не помогает.


И тут случайно нестандартным способом перезагружаю плату – в терминал приходит буква «N» в ascii. Это соответствует числу 0x4E, которое я не отправлял. Перезагружаю еще раз – приходит буква «O». Странно. Может быть проблема с кварцевым резонатором и сбился baud rate? Меняю частоту в терминале, перезагружаю плату – опять приходит «N». С каждой новой перезагрузкой приходит по новой букве, которые в итоге составляют повторяющуюся по кругу фразу «NON GENUINE DEVICE FOUND».


Что эта NRF-ка себе позволяет? Прошивку я обнулял. Как она после перезагрузки вообще помнит, что отправлялось в предыдущий раз? Это было похоже на какой-то спиритический сеанс. Может, я и есть тот самый NON GENUINE DEVICE?


Залез в гугл, выяснил, что производители ftdi микросхем, которые стоят в USB-UART донглах, придумали способ бороться с китайскими подделками. Виндовый драйвер проверяет оригинальность микросхемы и на лету подменяет приходящие данные на эту фразу в случае, если она поддельная. Очевидно, мой донгл оказался подделкой и переход на другой решил эту проблему.


Снова спасибо китайцам.

Показать полностью 21 3
540

Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики

Расскажу свой опыт по сборке и доработке металлоискателя Пират, а так же о том, почему я решил внести изменения в традиционную плату. И так, я давно загорелся идеей сделать этот металлоискатель. Почитав много форумов, я решил не гнать вперед паровоза и собрать проверенный мд Пират по классическому варианту на К157УД2. Печатные платы я давно уже делаю на ЧПУ станке и эта плата не была исключением.

Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики Металлоискатель, Пираты, Своими руками, Smd, Плата, Скачивание, Покупка, Замена, Операционный усилитель, Аналог, Сборка, Чертеж, Электроника, Конструктор, Набор, Видео, Длиннопост

Плата готова) Запаиваем все элементы, они строго соответствуют классической схеме.

Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики Металлоискатель, Пираты, Своими руками, Smd, Плата, Скачивание, Покупка, Замена, Операционный усилитель, Аналог, Сборка, Чертеж, Электроника, Конструктор, Набор, Видео, Длиннопост

С данной платой у меня лучшие результаты показала катушка диаметром 25см, намотанная проводом 0,5мм в 15 витков. Из UTP провода катушка давала результаты хуже.

Все готово, переходим к тестам. Первое, что хочется отметить, это высокая чувствительность прибора. На 10 копеек по воздуху прибор реагировал с расстояния в 15 см! Крупный металл обнаруживался на расстоянии около 1 метра. Обрадовавшись, я собрал более 300 шт. таких приборов, которые были проданы в разные уголки по России и получал только положительные отзывы.

Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики Металлоискатель, Пираты, Своими руками, Smd, Плата, Скачивание, Покупка, Замена, Операционный усилитель, Аналог, Сборка, Чертеж, Электроника, Конструктор, Набор, Видео, Длиннопост

Однако, далеко не все так радужно и идеально, получив достаточный опыт, я могу с уверенностью рассказать о недостатках этого металлоискателя на старом советском ОУ К157УД, и о том с какими трудностями пришлось столкнуться и как можно доработать этот металлоискатель.

Вот основные пункты с «недочетами»

- Реакция на мелкие предметы излишне высокая. 90% людей покупают металлоискатель именно для поиска металлолома и совсем не хотят собирать гвозди и крышечки от пива.


- Звук из динамика очень тихий, даже при условии, что металл находится вплотную к катушке, а уж если он находится на грани срабатывания то и подавно.


- Само качество звука тоже оставляет желать лучшего, нет четких громких щелчков


- Про питание от батарейки Крона можно вообще забыть. Чувствительность падает в разы, громкость звука тоже.


- Все соединения на проводах (динамик, резисторы и питание) очень ненадежны и смотрятся так себе.


- Качество и стоимость К157УД2 (КР1434УД1). По началу я заказывал их по 7 руб. потом по 20 руб. а после едва удавалось найти их меньше чем по 50 руб. А теперь все чаще встречаются цены от 150 руб. за шт!!! При этом последние партии не радовали качеством и было много брака.

Именно последний пункт и подтолкнул меня сделать плату на современных и доступных радиодеталях. Сразу же решено было перевести плату под SMD компоненты и заказать партию из 50шт в Китае самой быстрой доставкой. Забегая вперед, скажу, что с заказом такой партии я слегка поторопился, но некритично.

Пришли мои платы отличного качества с шелкографией и маской.

Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики Металлоискатель, Пираты, Своими руками, Smd, Плата, Скачивание, Покупка, Замена, Операционный усилитель, Аналог, Сборка, Чертеж, Электроника, Конструктор, Набор, Видео, Длиннопост

А вместе с ними подоспели и радиодетали. Сразу же заказал много разных резисторов и самое главное несколько разных ОУ. Среди которых, всеми любимые TL074 lm358 и другие.

Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики Металлоискатель, Пираты, Своими руками, Smd, Плата, Скачивание, Покупка, Замена, Операционный усилитель, Аналог, Сборка, Чертеж, Электроника, Конструктор, Набор, Видео, Длиннопост

Тестировал я плату не один день с разными ОУ и разными номиналами обвязки. В том числе пробовал всеми любимый TL072, но все не то, до легендарной схемы с К157УД2 ничего не дотягивало. В итоге, я вспомнил, что когда-то я так же подбирал ОУ для металлоискателя Клон (тема отдельной статьи…) и тогда я сразу же остановился на MC33079, почему бы не попробовать, что-то из той же серии.


MC33272ADR2G – отмел все вопросы и поставил точку в этом непростом деле. Осталось немного изменить номиналы обвязки, и получилась отличная плата с высокими характеристиками, решающая все проблемы старого Пирата. Основные изменения в радиодеталях видно в файле «Перечень радиодеталей».

Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики Металлоискатель, Пираты, Своими руками, Smd, Плата, Скачивание, Покупка, Замена, Операционный усилитель, Аналог, Сборка, Чертеж, Электроника, Конструктор, Набор, Видео, Длиннопост
Металлоискатель Пират SMD на ОУ MC33272 Высокие характеристики Металлоискатель, Пираты, Своими руками, Smd, Плата, Скачивание, Покупка, Замена, Операционный усилитель, Аналог, Сборка, Чертеж, Электроника, Конструктор, Набор, Видео, Длиннопост

Преимущества новой платы:

- Первое, что радует это даже не высокая чувствительность, а качественный звук (на сколько это возможно для Пирата). Получился он не только благодаря ОУ, но и с благословения транзистора VT2 - bc847C с высоким коэффициентом усиления и высокоомного динамика на 0,5W 50Ом.


- Честно не знаю почему так получилось, но убавляя немного чувствительность, реакция на мелкие предметы падает сильнее чем на крупные, можно так убавить что 10 руб. металлоискатель не видит в упор, а вот холодильник при этом различает с 40 см.


- Так же сама чувствительность ничуть не хуже, а при условии качественного звука, который появляется сразу при попадании металла в цель, создается ощущение, что даже лучше.


- Эту плату уже вполне можно питать и от батарейки Крона, конечно чувствительность и громкость падают, но не так критично, как в старом варианте.


- Все соединения на удобных винтовых разъемах (при желании конечно можно их и не устанавливать)


- Переменные резисторы установлены прямо в плату. Кстати в данной плате вполне достаточно и одного резистора на 100 К. А второй можно заменить постоянным на 50 К. В старой плате резистор с точной настройкой играл действительно большую роль.


На видео показываю пример работы металлоискателя собранного на моей плате с новыйм операционным усилителем MC33272

А теперь о нюансах – Катушка из UTP провода работает отлично и не хуже чем катушка из эмалированного провода. Если брать эмалированный, то лучше мотать около 27 витков провода сечением 0,5мм для катушки диаметром 27 см.


И конечно о минусах – на плате была предусмотрена защита от переполюсовки, но каким-то образом я не заметил, что часть схемы подключена в обход неё. Поэтому временно установил резистор на 0 Ом в корпусе 1206 (С диодом работать не будет). Так же конденсатор для лучшей работы надо перенести и подключить максимально ближе к контактам питания, как на фото выше. Сейчас приходится запаивать конденсатор в те же отверстия, что и винтовые контакты.


В целом устранить эти недостатки достаточно просто, как дойдут руки, сделаю это, но пока прикреплю файлы так, как они есть. Надеюсь, эта статья кому-то поможет при сборке своего металлоискателя Пират. Собрал их на данный момент более 30 шт. и все платы работают отлично, одинаково с первого раза и без нареканий.

А если кто-то даст рекомендации и улучшения по плате, буду премного благодарен.

Прикладываю файлы для скачивания:
- Перечень радиодеталей
- Плата в формате DipTrace
- Фото 


Ссылка для скачивания архива:
https://dfiles.eu/files/51mjovwr0

Показать полностью 5 1
287

Электросамокат ч.2

Электросамокат часть 1.
Пока у меня было много работы, @ilyaVsamare запилил синусную прошивку. Прошился, прокатился, чуть не убился, в общем, прошивка огонь, тачка стала супер. Динамика лучше в разы, тормоза тоже, пару раз чуть через руль не улетел. И тишина, ничего не гудит, не резонирует, только шелест шин по асфальту Илья, респект! Продолжай в том же духе!
Для сравнения 2 видоса, синус и меандр.

В процессе испытаний плату управления случайно спалил, на лабораторнике разогнал на всю и резко сбросил газ. В результате обратной ЭДС пробило 2 силовых транзистора и tip127 в схеме вкл/выключения. Транзисторы заменил, дополнительно подпаял диоды, заодно пластину теплоотвода новую выпилил из алюминия 4 мм взамен китайской подковы.

Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом

Т.к. тишина, люди не шарахаются, надо сделать бибикалку. И свет. И расход батареи неплохо бы знать. Решил сделать комп, типа велосипедного. По моей задумке он должен менять скорость, пробег, напряжение на аккумуляторе, потребляемый ток и управлять фарой и стопаком. Всё сохраняется в eeprom и не сбрасывается при выключении.

В закромах был найден дисплей oled128x64 i2c, atmega328p-pu, горстка рассыпухи и кусок текстолита. На отладочной плате была проработана прошивка.

Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом

В протеусе накидал схему и развел плату. Ногами прошу не пинать, чукча не профессионал, делает как может. Тем не менее, оно сразу заработало.

Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом

В процессе добавилась функция противоугонки, после включения пока не приложишь ключик, аппарат не заработает и будет тормозить. Конечно от багажника это не спасет, но всё же.
Всё что нужно для замеров есть на плате гирика, амперметры подпаял к выходам соответствующего операционника, вольтметр к делителю, 5 вольт со стабилизатора. Блокировка тупо тащит газ на массу. Потом будет переключена на тормоз.

Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом

В чипидипе взял алюминиевый корпус, выпилил отверстия под разъемы, дисплей и кнопки, туда всё и засунул. Сбоку приклеил самодельный считыватель ключей (таблетки как для домофона).

Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом
Электросамокат ч.2 Своими руками, Транспорт, Электроника, Самоделки, Самокат, Видео, Длиннопост, Рукоделие с процессом

Управление двумя кнопками. Левая переключает на следующий экран, правая на главном работает как бибикалка, на остальных обнуляет текущий пробег и включает/выключает свет. Если свет включен, светит фара и стопак в полнакала, если нажимаем тормоз, стопак горит в полную яркость.

Прогноз пробега. Т.к. контроллер не знает, какая ёмкость батареи, его нужно откалибровать. Заряжаем полностью и катаемся, пока не сядет в 0. При напряжении ниже 32 вольт полученное значение израсходованной ёмкости будет сохранено в памяти и все расчеты будут исходить от этого значения. В любой момент можно перекалибровать.
Также при включении комп спрашивает, подключали или нет зарядку, если подключали -обнуляется пробег и расход с предыдущей зарядки и отсчёт идёт заново как от полностью заряженной батареи.
Всё. Ругайте или хвалите. В следующей части доделаю руль и финальные испытания.

Показать полностью 13 2
359

Точечная сварка под микроскопом

Хомяки приветствуют вас друзья!


Сегодняшний пост будет посвящен аппарату для точечной контактной сварки аккумуляторов типа 18650 и прочих. В ходе соберем такое устройство, разберем основные принципы его работы и детально изучим сваренные места под микроскопом. Аккумуляторам сегодня придётся нелегко. Казалось бы сварочный аппарат, который в буквальном смысле состоит из одного трансформатора и контроллера, что тут может пойти не так?!

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Представьте себе, что одним прекрасным утром у вас сдох шуруповёрт. Крутить шурупы отверткой не царское дело, потому нужно решать проблему. Виновниками этого происшествия стали никелевые аккумуляторы, которые преждевременно отправились в Вальхаллу пить вино и сражаться на мечах. На смену им пришли компактные, высокотоковые литий-ионные аккумуляторы, которые по характеристикам в разы превосходят своих предшественников.


По технологии такие банки соединяются точечной контактной сваркой, которая приваривает токопроводящую ленту к телу аккумулятора. Использовать паяльник тут не рекомендуют из-за возможного перегрева внутренностей батареи, что может привести к преждевременному выходу ее из строя. Устанавливаем на сборку так называемую BMS плату с балансиром и собираем шуруповёрт. Теперь он работает как новенький.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

На идею создания сварочного аппарата меня подтолкнул Витя. Человек который ремонтирует в буквальном смысле всё. Для перепаковки аккумуляторных батарей в различных устройствах он как раз применяет аппарат для точечной кантатной сварки. Соединение тут получается настолько прочным, что лента в буквальном смысле отрывается с потрохами. Меня впечатлил данный аппарат, и нужно было разобраться что и как в нем работает.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

На самом деле тут все оказалось довольно просто. Сердцем устройства выступает трансформатор от микроволновки с перемотанной вторичной обмоткой, и контроллер который обеспечивает подключение первичной обмотки МОТ-а к питающему напряжению сети на необходимое время для формирования сварочного импульса. Так же нам понадобиться блок питания для контроллера, пару медных кабельных наконечников, сетевой провод сечением в 1.5 кв. мм. и корпус, в котором разместиться все электроника. У меня давно валялся 700 Вт МОТ с отрезанной вторичной обмоткой, как раз появился повод куда-то его пристроить.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Извлекаем магнитные шунты и аккуратно зачищаем отверстия куда будет вставляться толстый провод. Особое внимание уделяем краям, они довольно острые и легко могут повредить изоляцию кабеля.


Что касательно самого кабеля, тот тут лучше не экономить и взять вот этого товарища. РКГМ сечением 25 кв. мм. Производство Россия "Рыбинсккабель". Это хитрый многожильный провод с изоляцией из кремний-органической резины повышенной твердости, в оплетке из стекловолокна пропитанного эмалью или теплостойким лаком. Он очень тонкий и гибкий. Изоляция провода абсолютно равнодушна к повышенным температурам, пламя зажигалки едва способно вызвать хоть какое-то тление. Длинна термостойкого змея 2.2 метра.


Внутренние отверстия магнитопровода смажем вазелином. Ту же процедуру проводим с кабелем. Несмотря на то, что кабель достаточно тонкий по сравнению со своими более дешевыми собратьями, в трансформатор нужно попытаться вместить 4-5 витка. Но вот незадача. 700 Вт МОТ позволяет вместить в себя только 3 витка. Не беда! На помощь приходит система рычагов и отвёрток. В общем, включив смекалку и мотаем 4 витка в такой небольшой трансформатор.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Кабельные наконечники. Хорошие, медные, на 25 квадратов. По технологии их нужно обжать специальным гидравлическим прессом. Пайка тут не рассматривается из-за возможного нагрева провода в процессе дальнейших экспериментов. Обжим провода тут проходит в 6- гранной матрице, которая равномерно обжимает медную гильзу со всех сторон, создавая качественное соединение. После опрессовки на наконечнике могут образоваться небольшие ушки, их необходимо удалить с помощью напильника. В результате у нас получаться красивые обжатые наконечники на концах провода.


Теперь их необходимо соединить к медным шинам на ручке для контактной сварки. Болт тут диаметром 8 мм и длинной 20 мм. Обязательно устанавливаем шайбу Гровера, она обеспечит надежный прижим, если соединительный узел ослабиться в процессе работы.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Самую простую ручку для контактной сварки можно заказать на алиэкспресс. Но мне приглянулся более продвинутый вариант созданный одним народным умельцем. Зовут его Генадий Збукер. Он сам собирает сварочные аппараты, дополняет их ручками которые сам проектирует и печатает на 3D принтере. Называется такая конструкция держатель электродов точечной сварки "ZBU 5.1" с кнопкой и пружинами. 3D модели ранних версий, таких ручек, можно найти на сайте Thingiverse, автор позаботился чтобы при желании каждый мог собственноручно сделать подобный держатель для электродов. Это заслуживает уважения! Так же у него на сайте можно заказать расходные материалы (не реклама, а рекомендация).


Что касаемо ручки для контактной сварки. Выполнена она довольно качественно. Печать корпуса тут осуществляется ABS пластиком. Особенность версии "5.1" в том, что на борту есть два вентилятора, которые способны охлаждать медные шины в процессе непрерывной работы. Питаются они от 5 вольт через разъем micro USB. Ток потребления не более 300 мА.


Из практики скажу, что нагреть ручку за время всех экспериментов мне так и не удалось. Электроды тут подпружиненные и имеют кнопку "концевик", которая при определенном усилии прижима срабатывает и дает команду на сварку. Это сжатие обеспечивает хороший электрический контакт со сварными поверхностями, гарантирует повторяемость качества сварных точек, устраняет образование искр и прожогов аккумуляторов. Именно из-за нагрева и одновременному сжатию заготовок такой способ сварки называли «электрической ковкой». При желании конструкцию электродов на ручке можно изменить для двухсторонней сварки.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Электроды выполнены из жаропрочной хромовой бронзы БрХЦр. Поскольку электроды при сварке быстро изнашиваются, к ним предъявляются требования по стойкости сохранения формы при нагреве до 600 градусов и ударных усилиях сжатия до 5 кг на квадратный миллиметр. В процессе работы такие электроды особо не прилипают и не обгорают. Импульс тока сварки аккумуляторов должен быть очень коротким, иначе есть шанс прожечь дыру в корпусе, что приведет к выходу его из строя.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Задача по управлению длительности импульса лежит на довольно простом контроллере, который был взят с одного сайта. Устройство собрано на базе Arduino NANO, с применением жидкокристаллического дисплея для вывода полезной информации. Управление по меню осуществляется с помощью энкодера. Элементарно и просто подумал я, и начал собирать устройство из имеющихся в хозяйстве модулей.


Функционал контроллера довольно простой. Он выдает два последовательных импульса с паузой между ними. Первый импульс называется "присадочным", а второй "основным". Он приваривает метал друг к другу. Все переменные времени импульса регулируются с помощью энкодера, включая паузу между ними. Управление силовым трансформатором осуществляется c помощью довольно мощного симистора на 40 А. Он устанавливается по входу первичной обмотки. Маркировка BTA41-600.


Для удобства пользования контроллером, все его модули можно разместить на одной плате. Это позволит не путаться в куче проводов идущих от ардуины. Травим плату и смотрим как все функционирует. Лампочка мигает, значит схема собрана правильно. Вид самодельных плат на сегодняшний день постепенно уходит в закат, потому что их производство выгодней заказывать в Китае. Цена правда от размеров во многом зависит, но это уже другой вопрос.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Размещаем модули контроллера для контактной сварки согласно своим указанным местам. Вы уже наверное обратили внимание, что контакты на плате позолоченные. Интересно было посмотреть как они себя покажут в процессе пайки. Особенность позолоченных контактов заключается в том, что они не подвержены различным видам окисления на поверхности металла, что позволяет хранить платы довольно длительное время. Это актуально для больших производств. Также припой растекается по таким контактам как масло по сковороде.


После сборки устройства на плату ардуины нужно загрузить скетч. Делаем это через программу FL Prog буквально в несколько кликов. Программа за пару секунд заливается в мозг и на экране высвечивается все нужные настройки для дальнейшей сварки.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Теперь сделаем красивую панель управления. Для этого нужно разметить все необходимые окна и будущие отверстия на пластиковой панели. Окна аккуратно вырезаем бормашиной, а отверстия сверлим тем шуруповёртом, который мы отремонтировали в начале.


Размещаем внутри корпуса МОТ, импульсный блок питания на 12 вольт и запихиваем внутрь сетевой провод. Длинна его полтора метра. Распределяем все необходим провода по своим разъемам, и в принципе все. С электроникой разобрались.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

В результате всех манипуляций у нас получился довольно красивый контроллер для точечной сварки. Силовые провода выводятся через отверстия в верхней крышке корпуса. Тут же разместился разъем для подключения кнопки "концевика". Все эстетично и просто. Вроде как показалось мне. Все подписчики канала знают, что ничего просто так не бывает. Что-то, да должно пойти не так. И это один из тех случаев! Пора проверить аппарат в деле.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Для сварки возьмем старый аккумулятор и никелевую ленту толщиной 0.15 мм. Установим время сварки 20 мс для каждого импульса. Это соответствует одному периоду переменного напряжения из сети. Если там 50 Гц, то это одна пятидесятая. В результате испытаний оказалось, что на самых коротких выдержках времени, ленту не то чтобы варит, а прожигает насквозь. Теперь это не аккумулятор, а сплошная вентиляция...


На других банках сварка проходила несколько иначе, прожиг был меньше, но зато лента между электродами разогревалась до красна. Это было довольно любопытно. При том на одних аккумуляторах лента приваривалась так, что ее практически не оторвать, а на других при том же времени сварки эффекта не было вообще. Лента в прямом смысле отлипала от корпуса, оставляя только две вмятины на металле. Разобраться в проблеме помог цифровой осциллограф, который способен записать сигнал для его дальнейшего изучения.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Причиной прожига аккумуляторов стало время работы силового трансформатора, которое не соответствует установленным значениям. Проблема тут явно программная, так как скечт разработчика неоднократно загружался на другую ардуинку, но результата это не дало.

Сейчас по нашим установленным параметрам сигнал на оптопаре должен быть 10 и 60 мс. А по факту это время в несколько раз затянуто, 80 и 125 мс. Естественно этого времени хватает чтобы перегреть никелевую пластину между электродами и в некоторых аккумуляторах прожечь дно.


Если среди вас есть программисты, у меня просьба, посмотрите код и найдите там ошибку. Это хороший с точки зрения простоты и повторения проект, но он оказался с котом в мешке.

Мы пытались разобраться в дебрях данного кода, но максимум на что хватило знаний так это на визуализацию картинки при загрузке программы. В общем далекий я в этих дела, да и ладно!

Нужно выходить из ситуации. 

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

В Китае есть готовые контроллеры для точечной сварки, заказываю и жду. Это одна из самых продвинутых версий плат. Модель NY-DO2X. Кроме того что она дает двойной импульс с паузой, так еще тут есть возможность регулировать мощность. Симистор тут установлен BTA100 рассчитанный на ток в 100 ампер. Рабочее напряжение 1200 В.


Размечаем и выпиливаем отверстия под новую панель управления. На этом этапе не торопимся чтобы не отрезать чего нибудь криво. На плате видим несколько разъемов. На первый слева подается переменное напряжение номиналом в 9 вольт. На второй подключается кнопка от держателя электродов или внешняя педаль. Второй вариант хороший, если у вас ручка без кнопки, или же вам просто нравится работать с педалями. Трансформатор для питания платы можно выковырять из какого-нибудь старого блока питания от домашнего телефона. Тока в 300 мА хватит с головой.


В общем пробуем варить ленту к аккумулятору. Нажимаем на ручку, идет импульс и что у нас тут. Проварка толком не произошла и лента прилипла к электродам. Такое чувство как будто у трансформатора на 700 Вт не хватает мощности для проварки ленты на коротких выдержках. Не вопрос, одеваюсь и еду на радиорынок за более мощными микроволновочным МОТ-ами.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Слева направо трансформаторы: 700 Вт, 800 Вт и 900 Вт. Чем больше магнитопровод, тем больше мощность. Тут видно на сколько 900 Вт вариант больше своего предшественника. Размеры: длинна 106 мм, высота 89 мм, ширина 66 мм.


Более продвинутые сварочники можно делать на софМОТах от отечественных микроволновок, но во-первых для них нужен огромный корпус, во-вторых это вес, в-третьих рука на такой редкий артефакт не у каждого поднимется. Не будем злить бога, и пустим под нож трансформатор привезенный с радиорынка. Спиливать вторичную обмотку удобней всего ножовкой по металлу. Медь довольно мягкая, потому режется довольно быстро.


Выбиваем провод из сердечника железным стержнем. В общей сложности данная операция занимает 20 минут. Медные косы не выбрасываем, а сдаем на металл и покупаем пиво. Обязательно извлекаем магнитные шунты, которые установлены для мягкой работы магнетрона и зачищаем края отверстий в магнитопроводе как это было показано ранее. В такой большой трансформатор без труда помещается 4 витка. При желании можно вместить и 5-тый, но я не стал переводить вазелин) Последовательно с мощным симистором припаиваем первичную обмотку только что перемотанного МОТ-а. Не жалеем припоя и делаем все как для себя.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Схема соединения просто элементарна. Справится даже ребенок. Пора испытать этот "второй" сварочный аппарат собранный в течении одного фильма. В одном из следующих выпусков  будет вообще тройное фиаско политое сверху толстым слоем шоколада, там я еще на 600 баксов влетел, взяв поюзать чужую инфракрасную камеру. В общем канал это дорогое удовольствие. Впитывайте чужой опыт и чужие ошибки. В отличие от меня, вам за них платить не нужно.

Все бесплатно.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Краткое руководство по использованию китайского контроллера. Зажимаем и держим красную кнопку примерно 4 секунды. Устройство при этом зайдет в режим калибровки сетевого напряжения. Его нужно выставить согласно реальным показаниям мультиметра вставленного в розетку. Зачем нужна эта функция, непонятно, но установленные цифры будут меняться пропорционально напряжению в сети.


Что означают лампочки над цифрами? Первый светодиод говорит о наличии питания. Второй светодиод горит когда нажата кнопка на ручке. Третий загорается только в момент наличия импульса. В общем первые три красные светодиода чисто информационные. Четвертая зеленая лампочка - это счетчик наработки, суммирует каждое нажатие на педаль или "концевик" внутри сварочной кучки. Сбрасывается счетчик двойным нажатием на красную кнопку. Дальше оранжевый светодиод. Первый устанавливает длительность "первого импульса". Выбирается он в периодах. Установим один что будет ровняться 20 мс. Второй светодиод задает мощность импульса. Поставим скажем 35 процентов. Минимум 30 максимум 99.9%. Зеленый светодиод между оранжевыми определяет паузу между импульсами. Так же в периодах. Поставим 2. Последние два оранжевые светодиода так же определяют длительность и мощность, но уже "второго импульса". Поставим 2 периода и мощность выкрутим на 100 процентов. Собственно все, теперь можно потыкать в какую-нибудь ленту и посмотреть как происходит сварка, изучить точки, подобрать режимы на контроллере и прочее.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Краткие характеристики получившегося аппарата для точечной сварки. Вес готового устройства вышел 5.7 кг. Переменное напряжение на вторичной обмотке МОТ-а составило 3.8 вольта. Максимальный ток зафиксированный при сварке показал 450 ампер. С этим связан один интересный эффект во время работы аппарата. Магнитное поле у проводов выходит настолько большим, что их разбрасывает друг от друга сантиметров на 20. Магнитопровод при этом довольно сильно притягивает любой рядом лежащий металл, потому тут не рекомендую использовать железный корпус для устройства, при сварке он будет издавать неприятные звуки.


Если накоротко закоротить вторичную обмотку, то даже 700 Вт МОТ способен нагрузить сеть до значений свыше 4 кВт. На сколько больше мне не известно, так как ваттметр уходит в защиту при достижении такой нагрузки. Ток вторичной обмотки при этом зашкаливает за 600 А, свыше предела измерения мультиметра. На входе первичной обмотки максимальный ток зафиксирован 21 ампер, при этом напряжение в сети проседает с 230 до 217 вольт.


При непрерывной работе сердечник у МОТ-а будет нагреваться, за 4 минуты его температура достигнет примерно 52 градуса. И это на холостом ходу без нагрузки. На практике при повышении температуры трансформатор начинает сильней варить, это может привести к прожигу аккумулятора. В этом случае справедливо обдувать трансформатор с помощью вентиляторов.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Переходим исключительно к сварке. Для начала посмотрим как должен выглядеть сигнал на осциллографе. Настройки: первый импульс один период 30 процентов, 2 периода отдыхаем, второй импульс два периода, мощность на всю катушку. Делаем сварную точку и записываем сигнал. Видим каким обрезанным выглядит период мощностью в 30 процентов. После него идет металл два периода отдыха, а затем идет мощный импульс с длительностью два периода и мощностью в сто процентов.


Контроллер благодаря отслеживанию перехода фазы через ноль, открывает симистор на 100 процентах практически в нуле роста амплитуды напряжения. При этом видно что напряжение и ток идут с небольшой задержкой относительно друг друга. При 50 процентах контролер открывает симистор только на половине полупериодов сетевого напряжения. Этот метод аналогичен с Широтно-импульсной модуляцией. Такой режим используется в регуляторах освещенности – диммерах. Яркость свечения лампы накаливания будет напрямую зависеть от площади обрезанной синусоидой. В нашем случае это нужно для всяких деликатных сварок.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Теперь наша задача довольно проста. Нужно приварить ленту для точечной сварки к аккумулятору. Но тут возникает пару вопросов. Какую ленту будем варить и к какому аккумулятору? Помните момент когда у нас сварочник с 700 Вт трансформатором отказывался приваривать никелевую ленту? Идентичная ситуация происходит с новым 900 Вт МОТ-ом.


В начале долго не мог понять в чем причина, но тут оказалось два важных момента.

Высокотоковый аккумулятор, в отличии от обычного, имеет несколько толще стенки корпуса. Возможно и металл корпуса отличается. Никелевая лента у нас тоже довольно толстая. В сумме всех этих факторов даже мощная сварка не способна дать желаемый результат.


Решение проблемы - сменить никелевую ленту на стальную. Она сверху тоже вроде как никелированная, но дальше будем ее называть просто стальной. Сварка на тех же установках что и раньше, приварила стальную ленту просто на ура. Отодрать ее кусачками без разрушений не выходит. Собранный аппарат полностью удовлетворил поставленные задачи.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Теперь разберем основные требования при точечной сварке. Длительность и мощность импульсов нужно подбирать таким образом, чтобы свариваемые места имели как можно меньше перегрев. Он проявляется в цветах побежалости вокруг точек сварки. Это не очень хорошо, так как в этих местах частично выгорает металл, что может привести к ослаблению прочностных характеристик соединения. Идеальная сварка выглядит так. Тут нет перегрева, точки белые, лента отрывается от тела аккумулятора с кусками. Именно такого результат мы должны добиться.


Подводные камни. Их очень много, в первую очередь тут нужно понимать физику протекания тока в металле. Металл в месте соприкосновения с электродами представляет току наибольшее сопротивление и потому место будет сильно нагреваться. Наша задача разогреть металл до такой степени, чтобы создалось так называемое сварочное ядро. Нагрев в этом процессе должен происходить не под самими электродами, а между листами металла. Сварные ядра при этом необходимо делать как можно быстрей, очень мощным и коротким импульсом. Если греть место сварки медленно, тепло будет разбегаться по аккумулятору кто куда, без достижения нужного результата.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Электроды, это вообще отдельный мир. Представьте вы долго варили сборку из аккумуляторов 18650 и в один момент решили их заточить. Концы вышли острые, красивые. Но при первых же сварных точках у нас выйдет пропаленный аккумулятор, так как электроды с большой вероятностью погрузятся в корпус банки. Некоторые такие аккумуляторы стоят целое состояние, и повредить один из них это недопустимо.


Что же происходит на самом деле? Дело в том, чем острей электрод, тем меньше его площадь контакта с металлом, в результате при одном и том же токе место у нас будет разогреваться быстрей. Сварное ядро образуется настолько быстро, что это приводит к расплавлению всего металла под электродом.


Еще один очень важный момент, электроды при сварке нужно держать строго перпендикулярно аккумулятору. Они не должны входить под углом. На контакте может образоваться небольшой скос, который рано или поздно приведет к прогару из-за неравномерного протеканию тока через электроды. На этом же примере становиться понятно зачем необходим первый присадочный импульс на малой мощности.


На что влияет расстояние между электродами? В теории чем дальше они разнесены друг от друга, тем лучше. Меньше потерь будет на верхней шунтирующей заготовке. Но как показала практика тут можно играть с настройками, и какое бы расстояние не было, можно добиться хорошего качества сварных точек. Тут большую роль играет с какой шириной ленты вы работаете.


В общем настройки длительности и мощности импульсов решают все. У меня получалось приваривать 0.2 мм. ленту с такими прочностными характеристиками, что она отрывалась вместе с фрагментами корпуса аккумулятора. Все батареи в фильме были разряжены если что.


Рекомендации при выборе настроек сварки. В этом деле много факторов влияющих на конечный результат. К примеру: вы подобрали режим, который хорошо работает с одной и той же лентой и аккумуляторами. Но, если что-то одно поменяете, настройки тоже возможно придется менять. А теперь представьте что у вас кучка разношерстных аккумуляторов, как будете варить? Мощность и время сварки нужно настраивать от меньшего к большему. Поставили точку, лента оторвалась, ничего страшного, поднимаем мощность и смотрим. Теперь лента отрывается с потрохами. То что нужно. Ну что, вы все поняли?

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Думаю стоит еще раз перечислить все факторы, которые могут на влиять на конечный результат точечной сварки.


Электропроводка в квартире. Специально для фильма был сделан удлинитель с сечением провода в 2.5 квадрата. Даже смотря на это, слабенький 700 Вт МОТ умудрялся просаживать сеть под нагрузкой.


Основные сварочные характеристики зависят от мощности трансформатора, от сечения силового провода, его длинны, количества витков, качества соединительных узлов с контактной ручной.


Важную роль играет материала электродов, расстояние между ними, заточка и сила прижима. Много определяет материал ленты для контактной сварки, его толщина, ширина и форма. Тип аккумулятора и толщина его стенок. Даже температуру МОТа стоит брать во внимание.


Исходя из всего вышеперечисленного, в каждом индивидуальном случае подбираются настройки для первого и второго импульса на контроллере для получения наилучших сварных ядер с наименьшими цветами побежалости.


Собранный аппарат для контактной сварки получился довольно компактным и универсальным. Он собирался только ради того, чтобы сварить аккумуляторы для шуруповёрта и паяльника с Китая, которому нужно питание 24 вольта. Часто при ремонтах не хватает портативного инструмента. Конструктор в виде ячеек под аккумуляторы 18650 мы печатали на 3D принтере, они упрощают задачу при формирования сборок с разными напряжениями и ёмкостями, позволяя складывать элементы в любой последовательности. Сборки соединяются между собой специальными пазами. Теперь самостоятельно перепаковать свой старый самокат не составит никакого труда.

Точечная сварка под микроскопом Точечная сварка, Электроника, Сварка, Аккумулятор 18650, Своими руками, Физика, Видео, Длиннопост

Для справки. Съемка этого выпуска заняла чуть больше 2-х месяцев. Когда брался за изучение данной темы, даже подумать не мог что тут окажется так много нюансов. По стоимости бюджет фильма перевалил за предполагаемые границы, так как покупать запчастей пришлось практически на 2 сварочных аппарата. В общей сложности было израсходовано 3 метра никелевой ленты и испорчено 2 хороших аккумулятора. Пущено в расход два десятка плохих.

Ну все, видео озвучил, теперь можно идти бухать и готовится к следующему выпуску.



Как сказал Мастер Йода:
Тебя послушать - так сложно все. Слышишь, что сказал я?
― Ты должен чувствовать силу, она между тобой, мной и камнем, везде...
― Да...нооо нет

Архив с гербер-файлами и прочими полезностями

Наш Instagram

Показать полностью 23 1
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: