854

Активные протуберанцы на тихом Солнце.

Активные протуберанцы на тихом Солнце. Солнце, Протуберанцы, Пятна на солнце, Астрономия, Космос, Вселенная

Солнце входит в период времени, известный как Солнечный минимум, оно, как и ожидалось, показывает меньше солнечных пятен и активных областей, чем обычно.

Этот снимок был сделан три недели назад и показывает, что наше Солнце занято даже в тихий день. Проявления горячей плазмы, некоторые из которых больше Земли, постоянно танцуют и наиболее легко видны по краю.

Найдены возможные дубликаты

+13

Для понимания масштаба можно было Землю пририсовать

раскрыть ветку 32
+34

Вот пара картинок, для понимания масштаба.

Иллюстрация к комментарию
Иллюстрация к комментарию
раскрыть ветку 30
+37
Вот еще для сравнения.
Иллюстрация к комментарию
раскрыть ветку 19
+7

Заебешься в кругосветку на машине по солнцу ехать.

раскрыть ветку 4
0

Похоже на лысину дедульки с пушком волос. Это если не читать описание

0

О.. как раз собираюсь на балконе себе нарисовать в масштабе.

-3

Зачем к слову период добавлять "времени". Маслянисто. А так занимательно

раскрыть ветку 2
-6
Ты всё равно не поймёшь
ещё комментарий
+53

Активные протуберанцы, злые кравчуки..

+15
Просто поражает эта мощь, когда задумаешся сколько энергии выделяет солнце ежесекундно, в течении уже 5 миллиардов лет!
А иногда становится страшно, ведь солнце на удивление очень тихая и спокойная звезда, это не типичное поведение для звёзд, один только чих с ее стороны и земля обуглится или просто сдует атмосферу.
Еще видео близкое по теме:
https://youtu.be/7bLW3XzGYo8
раскрыть ветку 3
+3
В коменты к видео на тытрубе лучше не заходить.. Сколько негатива в людях. Видео класс
раскрыть ветку 1
+1
Это точно, я даже пожалел, думал сейчас люди будут там делится мнением типа какая звезда была бы круче и эпичней светить, и т.д. а в итоге никаму никакие звёзды не нужны, тонны политичекого кала.
0
А ещё кто нибудь задумывался как звучит Солнце?! Мне кажется там в фотосфере должен стоять адский грохот, так как по сути звезда это один большой термоядерный взрыв, ну или много взрывов в ядре, там где идёт термоядерный синтез.
+7
Показалось это пух или волосы на пальце
раскрыть ветку 1
+1

Блядская шерсть моей пушистой собаки!!!

+5

Мне почему-то солнце на этом фото напомнило яйцеклетку)))

раскрыть ветку 4
+5

Фрактальность Вселенной))

+4

А мне скруглённый угол какой-то мебели, к которой кто-то приложился сладкой ватой, ну или просто ватой

+1
А кометы - сперматозоиды. 🤔
0
А потом прилетает огромный межгалактический хуище и зарождается новая планета
+5

Славься!

Иллюстрация к комментарию
раскрыть ветку 1
0

О! Ярило!

+2

Вот как это фото было снято:

Иллюстрация к комментарию
раскрыть ветку 1
0

ну слава богу я не один такой озабоченный!

+1

Если кому интересно, есть отличный фильм на ютубе «Путешествие к краю Вселенной», или можно просто набрать в поиске «фильм про космос», он там первый будет. Без всяких нудных комментариев и отступлений, очень красиво сделано, рекомендую

раскрыть ветку 3
0

Да есть такой, потрясающий фильм. Вот: https://www.youtube.com/watch?v=vcCpS9z6bIc

раскрыть ветку 2
0
спасибо за фильм) очень познавательный)
Иллюстрация к комментарию
раскрыть ветку 1
+1

Вот посмотрите какие размеры и расстояния: https://pikabu.ru/story/vselennaya_razmeryi_kosmicheskogo_pr...

раскрыть ветку 2
+1

Вот тут еще масштаб солнечной системы, наглядно

http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.h...

раскрыть ветку 1
+1
Круто! Спасибо за эту ссылку.
+1

Минимум солнечной активности? Значит, зима будет холодной, а лето прохладным

0
Заголовок звучит как новый фильм михалкова
раскрыть ветку 1
0

+

0
Всё детство думал, что протуберанец это какой-то неизведанный тип пришельцев...
Интернеты-то были дороги(
0
Похоже на угол моего дивана... Кот когти точит, такая же белая хрень торчит
0

И вот в этом году я взял отпуск, что бы поехать на север и посмотреть северное сияние(

0

Больше похоже на снимок сделаный в 3dmax, а не на реальный снимок.

раскрыть ветку 1
+1
Охуенный зум.
0

Пушистое Солнце =)

0
Что такое протуберанцы? объясните кто нить
раскрыть ветку 3
+5

языки пламени такие, которые из Солнца вырываются

раскрыть ветку 1
0
Это не пламя, раскаленная плазма. Это разные вещи.
0

Это раса из масс эффекта

-1

Пролистывая прочитал активные петербуржцы на тихом солнце, мозг запнулся, решил уточнить.

-1
Показалось "активные петербуржцы"
-4
Осень, солнце становится холоднее. Шах и мат, шароебы.
раскрыть ветку 1
0

Не осень, а вечером просто снимали

-5

Вот же протуберанцы, нет?

Иллюстрация к комментарию
раскрыть ветку 1
+1

Хах, это Преторианская гвардия)

ещё комментарии
-1

На фото диван или все-таки сиська в свитере?...

-1
Завораживающая красота. А если вспомнить какая там сила притяжения, температура и масштабы, то мурашки по коже...
-1
Не знаю, что там за протуберанцы, но на фото жопа, обгорающая на пляже...
-1

сначала подумал что это сосок при большом увеличении

-1
Да ладно, это на самом деле макро снимок головки спички и немного ваты
-1

когда от астрономии далёк, но что-то у "протуберанцах" слышал...

https://www.youtube.com/watch?v=7czROkTSEJE

-2
Вы все врети! Солнце тоже плоское
-3

это разве не плечо Амбридж?

-3
А реально звучит, как римские протерианцы прям))
-3

почему то подумалось о мурашках от любимого трека)

Похожие посты
737

Астрономы не понимают, что является источником половины света во Вселенной

Перед мировой наукой возникла новая фундаментальная проблема – астрономическая задача, решить которую пока никто не может. Анализируя данные миссии New Horizons, ученые пришли к выводу, что в видимой части Вселенной слишком много света. Точнее, известные им источники не могут обеспечить и половины из наблюдаемого уровня освещения в космосе.


Парадокс со светом был обнаружен, когда пять лет назад аппарат миссии New Horizons пролетел мимо Плутона и начал двигаться через пояс Койпера. На таком расстоянии от Солнца его свет уже не является доминирующим в Солнечной системе, плюс практически нет отражения этого света от космической пыли. И вот в этой условной темноте ученые начали при помощи инструментов на борту аппарата измерять и анализировать уровень света во Вселенной без тех помех, с которыми сталкиваются наблюдатели на Земле.


Потребовалось немало времени, чтобы все измерить и подсчитать объемы света, идущего от видимых галактик, звезд и других объектов, но его оказалось слишком мало. Приборы New Horizons показывают – космос освещен вдвое ярче, чем должен быть, исходя из наших познаний. Получается парадокс, когда пространство внутри наполненных яркими звездами галактик освещено в числовом эквиваленте так же, как и межгалактическая пустота между ними. Астрономы честно признаются, что пока понятия не имеют, что может быть источником этого света.

https://www.techcult.ru/space/9048-astronomy-ne-ponimayut-ch...

UPD #comment_185484130

60

КУДА пропала ближайшая ЧЕРНАЯ ДЫРА? Вода на освещенной стороне Луны | Атvосфера спутника Юпитера Ио

Новое исследование не подтвердило присутствие фосфина в атмосфере Венеры. Ученые провели повторные анализы, перепроверив данные предыдущего исследования и пришли к выводу, что фофсфин отсутствует в атмосфере второй планеты солнечной системы. Более подробно вы сможете узнать об этом, перейдя по ссылке в описании, а сейчас давайте перейдем к основным темам нашего видео.

Сегодня мы поговорим об актуальных новостях из мира науки, а именно: Откуда берется атмосфера спутника Юпитера Ио? Куда пропала ближайшая к нам черная дыра? Подтверждено наличие воды на луне?

1 новость:

Спутник Юпитера Ио — самое вулканически активное тело во всей Солнечной системе. Площадь его поверхности в 10-12 раз меньше, чем у Земли, однако на ней насчитывается более 400 активных вулканов. Они постоянно выбрасывают сернистые газы, большая часть которых быстро замерзает, придавая ледяной коре спутника желтовато-красные оттенки.

Ученые получили изображения спутника под прямыми солнечными лучами, а также в моменты его прохождения в тени Юпитера, когда здесь становится особенно холодно и испарение замерзших сернистых веществ невозможно. Полученные снимки с комплекса радиотелескопов в пустыне Атакама - во время затмений, показали, что вулканы производят выброс в атмосферу спутника моно- и диоксида серы напрямую от 30 до 50%. Однако во время, когда спутник находится на солнечной стороне, поток газов оказывается в два-три раза интенсивнее, чем в периоды «затмений».

Источники:

https://arxiv.org/abs/2009.07729

http://www.sci-news.com/astronomy/alma-volcanic-plumes-jupit...

https://www.space-travel.com/reports/ALMA_shows_volcanic_imp...

https://naked-science.ru/article/astronomy/astronomy-obyasni...

2 новость:

Ближайшая к Земле черная дыра на самом деле может не быть черной. Недавно ученые обнаружили самую близкую к Земле черную дыру, но теперь их одолевают сомнения. После повторного анализа данных они пришли к выводу, что никакой черной дыры на самом деле нет.

Что все-таки произошло, куда она исчезла?

Тройная система HR 6819, расположенная примерно в 1120 световых годах от нашей планеты, долгое время была чем-то вроде загадки для ученых.

Поначалу этот объект считали одиночной звездой — не слишком массивной, но горячей и быстровращающейся, окруженной диском выброшенной материи. Однако затем в системе удалось различить присутствие второй звезды. И это еще не все. Выяснилось, что, имея примерно равные массы — по шесть солнц, — звезды вращаются не вокруг общего центра. Одна звезда вращается вокруг другой, совершая полный оборот примерно за 40 суток. В результате астрономы заключили, что обе они движутся под влиянием третьего, невидимого объекта — черной дыры примерно в пять солнечных масс.

Однако, в новом исследовании ученые из Университета штата Джорджия, говорят о том,что предыдущие работы неверно оценивали размеры звезд.

Источники:

Старая статья: https://www.aanda.org/articles/aa/full_html/2020/05/aa38020-...

Новая статья: https://iopscience.iop.org/article/10.3847/2041-8213/aba51c

https://arxiv.org/abs/2006.11974?from=article_link

https://www.sciencealert.com/the-closest-black-hole-to-earth...

3 новость:

Вода и Луна… Как Вы думаете они могут быть связаны?

Стратосферная обсерватория инфракрасной астрономии НАСА (SOFIA) обнаружила молекулы воды (H2O) в кратере Клавиуса, который расположен в южном полушарии Луны. Это один из крупнейших кратеров, видимых с Земли.

При помощи своей инфракрасной камеры SOFIA смогла уловить определенную длину волны, уникальную для молекул воды (в 6,1 микрон).

Данные показывают, что в лунной поверхности содержится вода в концентрациях от 100 до 412 частей на миллион, что примерно равна бутылке с водой объемом 350 мл, находящейся в кубическом метре почвы. Результаты опубликованы в последнем выпуске журнала Nature Astronomy.

https://www.nasa.gov/press-release/nasa-s-sofia-discovers-water-on-sunlit-surface-of-moon/#:~:text=SOFIA has detected water molecules,relative, hydroxyl (OH)

https://earthsky.org/space/nasa-moon-announcement-monday-oct...

https://naked-science.ru/article/astronomy/nalichie-vody-na-...

Показать полностью
940

За пределами Млечного Пути нашли необъяснимо много света — вдвое больше, чем могут излучать известные и предполагаемые галактики

Благодаря анализу снимков, сделанных на камеру аппарата New Horizons, удалось обнаружить неожиданно много видимого света во Вселенной. Причем непонятно, что его излучает. Исследование этого феномена может серьезно скорректировать существующие модели строения мира.

За пределами Млечного Пути нашли необъяснимо много света — вдвое больше, чем могут излучать известные и предполагаемые галактики Космос, Вселенная, Галактика, Свет, New Horizons, Длиннопост, Астрономия

На Земле телескопам мешают рассеяние света в атмосфере и световое загрязнение от построенной человеком инфраструктуры. Но и на орбите не все так просто. Даже за пределами газовой оболочки нашей планеты чувствительность орбитальных оптических обсерваторий ограничена далеко не возможностями оптики. Дело в Солнце. Излучаемые светилом лучи отражаются не только от других тел Солнечной системы, но и от пыли. А ее, по космическим меркам, довольно много между орбитами Земли и Юпитера.

В арсенале современных астрономов самый удаленный от нашей планеты оптический инструмент находится на борту зонда New Horizons. Сейчас эта автоматическая межпланетная станция (АМС) находится уже на расстоянии в 7,4 миллиарда километров (49,46 астрономической единицы) от Земли. Что почти в полтора раза больше, чем «Новые горизонты» пролетели до своей встречи с Плутоном в 2015 году.

Измерения с целью определения неизвестных источников видимого излучения происходили по снимкам, сделанным на расстоянии 42-45 астрономических единиц от Земли. И на таком удалении небо примерно в десять раз чернее, чем может увидеть телескоп «Хаббл» в наилучших условиях. Научная работа по наблюдениям за космическим оптическим фоновым излучением (Cosmic Optical Background, COB) будет опубликована в Astrophysical Journal. Ее препринт доступен на портале arXiv. Анализ проводили три десятка специалистов из американских университетов и научных учреждений NASA.

Чтобы понять, насколько в космосе на самом деле темно, астрономы отобрали те снимки, где почти не было ярких объектов. Фотографии были сделаны камерой Long-Range Reconnaissance Imager (LORRI) в диапазоне чуть большем, чем видимый свет (длина волны от 0,4 до 0,9 микрометра). Затем ученые удалили с них все известные источники излучения: звезды, галактики и рассеянный свет от Млечного Пути. Дополнительно к этому в ходе обработки удалили все возможные шумы матрицы и артефакты изображения, вызванные искажениями или повреждениями оптики.

За пределами Млечного Пути нашли необъяснимо много света — вдвое больше, чем могут излучать известные и предполагаемые галактики Космос, Вселенная, Галактика, Свет, New Horizons, Длиннопост, Астрономия

После всех вышеописанных манипуляций на снимках все равно оставалось очень много света. Он был слабым, и невооруженным глазом такое не увидеть, но для камеры — не проблема. На следующем этапе обработки авторы исследования удалили с кадров все излучение, которое могут производить объекты, наличие которых только предполагается теоретически. В итоге на снимках по-прежнему осталось много света. Фактически его количество было равно тому, что исходит от всех известных галактик.

По мнению ученых, которые проводили исследование, объяснений такому феномену может быть несколько. В первую очередь, свет могут испускать ранее не обнаруженные карликовые галактики, и блуждающие звезды. Земными инструментами их обнаружить крайне сложно, поэтому подтвердить или опровергнуть данную версию получится нескоро. Еще одной причиной может быть все та же пыль, количество которой за пределами Солнечной системы ученые могли недооценивать.

Наконец, наиболее маловероятная, но при этом и многообещающая версия — неизвестный пока феномен. Предположительно, он может быть даже связан с темной материей, так что его изучение раскроет и другие тайны Вселенной. В любом случае, космос, конечно, очень темный. Но даже в такой кромешной тьме нашлось больше света, чем ученые могли предполагать за последнее столетие.

https://naked-science.ru/article/astronomy/slishkom-mnogo-sv...

Показать полностью 1
78

Как мы наблюдали метеорный поток Леониды

В ночь с 17 на 18 ноября в Вологде прояснилось, что крайне редко в наших широтах в ноябре! И у нас появилась возможность понаблюдать легендарный метеорный поток Леониды. Холодная погода и сильнейший ветер не помешали нам получить "хороший улов". О том, как это было в новом выпуске моего видеоблога.

907

Какого цвета космос?

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

В нашем восприятии романтический оттенок космического пространства чаще всего располагается в сине-голубой цветовой палитре. Во многом это связано с тем, что именно этих цветов недостает в нашей земной жизни — мало в ней синих и голубых предметов. Но подняв взор вверх мы видим бескрайнее голубое небо. Оно для нас — проявление космоса. И чем глубже в него уходит наш пытливый взгляд, тем более темные и насыщенные оттенки мы ассоциируем с ним на более далеких расстояниях от Земли.


Когда угасает вечерняя заря, мы видим умопомрачительный градиент цветовых переходов от бирюзового (у самого горизонта) до глубокого ультрамарина в зените. Это для нас цвет космоса — великое множество не поддающихся словесному описанию оттенков от бирюзового и изумрудного до темно-синих и фиолетовых глубин.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Вместе с этим, сказать, какого цвета загораются звезды в этой вечерней мгле, на это уже не все из нас способны. Некоторые люди отчетливо определяют цвета лишь у самых ярких звезд. Некоторым требуется подсказка — “Смотри, вот эта звезда голубая, а та — красная. А над нами сияет желтая — Капелла”“О! И правда. Никогда раньше не замечал, что они разноцветные!”


Да, многие люди даже и не думали, что у каждой звезды свой цвет.


Но для слабых звезд это уже не работает. Какого цвета едва видимые глазом звезды, или хотя бы звезды средней яркости, большинство людей уже не скажут. И только астрономы — не теоретики, а практики — имеющие в зачете тысячи бессонных ночей обладают этой суперспособностью — видеть какого цвета практически все звезды — даже самые слабые. Но стоит добавить, что при наблюдении звезд в телескоп их цвета видны более отчетливо.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Какие из них преобладают — Красные, синие, может быть желтые?


Кстати, зеленых звезд, почему-то во вселенной нет. Хотя, некоторые из них могут таковыми казаться — за счет цветовой иллюзии. Например, при наблюдении двойной звезды Альбирео в созвездии Лебедя одна из звезд этой двойной системы может показаться зеленоватой, но это спровоцировано близостью более яркой оранжевой звезды. На самом деле показавшаяся зеленой звездочка голубая.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Есть еще и белые звезды. И может показаться, что они бесцветны. Но на самом деле они просто не имеют светового перевеса в какую либо сторону — в синюю или красную — в своем спектре, и лишь нашему глазу кажутся белыми. Максимум их цветового излучения приходится на середину воспринимаемого нами диапазона цветов.


Строго говоря, любой цвет во Вселенной — очень субъективная характеристика. Вселенная ничего не знает о цветах, равно как и о нотах. Светит и звучит как ей представляется возможным, не думая о гармоничности конечного результата. Но поскольку все эталоны наших ощущений черпаются из созерцания окружающего мира, то сегодняшний скриншот вселенского величия воспринимается нами как пример красоты и гармонии, к чему мы сами неустанно стремимся в создаваемых нами картинах, конструкциях, музыке и литературных произведениях — даже в них мы описывает Вселенную, как предел совершенства.


Будьте осторожны!


Вселенная очень изменчива. И завтра она без предупреждения изменить свой облик, порушив тем самым все ваши идеалы. не привязывайтесь к ним.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Звезды не всю жизнь такого цвета, какого мы видим на небе сегодня. иногда эти перемены довольно скоротечны. и внимательный наблюдатель может в пределах одной своей человеческой жизни увидеть как звезда меняет свой цвет. Иногда даже многократно.

В первую очередь это касается переменных звезд — как физически меняющих яркость, так и затменных, где она звезда экранирует своим телом свет другой звезды, и если их спектры, то цветовой акцент для земного наблюдателя может заметно измениться — буквально на несколько часов или суток.


Бывают вспышки новых и сверхновых звезд. В этом случае цвет звезды меняется кардинально и молниеносно.


В истории известны случаи, когда светила себе и светила звезда каким-то постоянным своим цветов. И вдруг стала светить совершенно другим — назад не вернулась — так и осталась своем новом оттенке.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Из-за этой постоянной изменчивости очень трудно сказать, каких звезд больше — голубых, белых, желтых, оранжевых или красных. За время свой жизни звезды проходят практически сквозь весь диапазон видимых от инфракрасного на этапе конденсации межзвездного газа, прежде чем зажечься синим огнем новорожденно светила. По мере выгорания водорода в недрах звезды, её температура понижается — звезда белеет, потом желтеет. Все оранжевые или красные гиганты — старые звезды.


Не все звезды стартуют из “синей зоны”. Карлики — типа нашего Солнца — с самого начала были белыми или желтыми. И с годами (миллиардами лет) лишь все более желтеют. Но их светимость относительно мала — они не определяют цвет Вселенной.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Интересно, что в большинстве Галактики звезды разного цвета не распределены равномерно и имеют свои зоны обитания. Синие и голубые (молодые) звезды преимущественно живут в спиральных рукавах. Желтые, оранжевые и красные (старые) сосредоточены ближе к галактическому ядру. Но, конечно, это не жесткое разделение. И звезды самых разных спектров присутствуют во всех галактических зонах. Просто в на периферии галактического диска больше молодых звезд, а в центре — старых. Кстати, такая тенденция в чем-то свойственна и земным городам. Не зря Галактику иногда называют “звездным городом”.


Может быть, при взгляде с Земли в сторону галактического ядра мы будем видеть больше красных и старых звезд, а оглянувшись в сторону галактической окраины увидим преимущественно молодые — голубые и белые?

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

На самом деле — нет. Возможно, при исследовании полной статистики с включением в неё самых слабых и многочисленных звезд, такая тенденция и обнаружится. но глазом мы видим в основном самые близкие к нам звезды, и в этой небольшой наблюдаемой глазом зоне пока еще не проявляется описанное распределение звезд по цветам. И на летнем небе (северного полушария) обращенном в сторону центра Галактики, и на зимнем небе, обращенном во внешние области нашего “звездного города” красных, оранжевых, желтых, белых и голубых звезд примерно поровну. Вот синие — действительно редкость — и там и тут. Это потому, что ярко-выраженным синим оттенком для нашего глаза обладают исключительно горячие и молодые звезды, температуры поверхностей которых превышают 20 тысяч градусов (у Солнца только 5,5 — это для сравнения) — такие звезды должны быть очень массивны, что редкость само по себе, и стадию синей звезды проходят довольно быстро.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

И вообще яркие звезды — с высокой абсолютной светимостью — долго не живут. Миллионы лет — вот характерный срок жизни крупной звезды. Но всякая мелочь, типа нашего Солнца — может жить в тысячу раз дольше — миллиарды лет. и они — это звезды карлики — могут преспокойно тлеть своим желтым цветом стабильно разбодяживая глобальный оттенок Вселенной своим низкотемпературным спектром.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Но только ли звезды определяют цвет Вселенной?


Звезды порождают львиную долю излучения во Вселенной. Фактически все во вселенной пронизано звездным светом. Планеты, кометы, туманности — газовые и пылевые — видны нам лишь потому, что отражают, переизлучают или поглощают свет порожденный звездами.


Есть горячие туманности, которые еще не остыли после взрыва звезды, породившей их. Но по сути своей они представляют собой верхние слои умершей звезды — ту её часть, которая избежала гравитационного коллапса — не превратилась в белый карлик, нейтронную звезду или черную дыру. Фактически их можно назвать частью звезды, которая избрала иную судьбу. И свет от этих туманностей в какой-то мере тоже является звездным светом. Ну, немного другой его разновидности.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Слабо тлеют в инфракрасном диапазоне сжимающиеся протозвездные облака — глазом их свечение не видно — даже в телескоп. Их видят только радиотелескопы и инфракрасные телескопы, работающие в дальнем конце инфракрасной зоны шкалы электромагнитных излучений. Когда-нибудь из этих облаков уплотняющегося водорода образуются новые горячие звезды, они зальют свои светом окружающее их космическое пространство, которое по мере разбегания фотонов прочь будет окрашиваться все далее в оттенок этих звезд. Но пока вклад в глобальный цвет Вселенной от таких межзвездных облаков практически нулевой.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Светятся своим собственным светом аккреционные диски вокруг черных дыр и нейтронных звезд. Их температуры очень высоки, а спектры как правило лежат далеко в ультрафиолетовых областях, и даже в рентгене — глазу они недоступны, хотя в фильмах нередко рисуют их ядовито-оранжевыми тонами. Наверное какая-то часть их излучения лежит и в видимом глазом отрезке спектра. Весь вопрос в том — какая? Это явно не оранжевая гамма. Но — если вообразить космонавта, пролетающего поблизости от черной дыры, окруженной таким диском — лучше ему не смотреть на это вселенское чудовище без специального защитного фильтра.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Я перечислил практически все источники видимого света во Вселенной — наши электрические лампочки, лесные пожары и раскаленную лаву истекающую из жерла вулканов, грозовые молнии давайте исключим, как не совсем небесную иллюминацию.


Что еще я не упомянул?


Метеоры и болиды врезающиеся с космическими скоростями в атмосферу Земли (наверняка и других планет тоже) создают красивую иллюзию падающих звезд. Они бывают самых разных оттенков — от глубоко красных до ослепительно-фиолетовых. Кстати вот среди них попадаются и зеленые — прямо буквально изумрудные. но тут все зависит от минерального состава космического камешка, встретившегося нам на орбите Земли.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Можно вспомнить и о полярных сияниях, которые во-первых являются исключительно небесным явлением, поскольку порождаются солнечным и (наверняка) звездными ветрами, заряженные частицы которых по силовым линиям магнитных полей планет попадают в атмосферы полярных регионов, ионизируя молекулы газов этих атмосфер. В какой-то мере они тоже — звездный свет, так как основная доля энергии, участвующая в порождении таких сияний — это энергия звезды, создающей этот поток заряженных частиц. Во-вторых, полярные сияния обнаружены в атмосферах планет гигантов Солнечной системы. Наверное они есть и на внесолнечных планетах. И разнообразие их оттенков даже на Земле довольно велико, что уж говорить о возможном разнообразии их цветов где-то еще во Вселенной.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

К сожалению или к счастью, но вклад метеоров, болидов и полярных сияний в излучение вселенной крайне мал. И здесь я упомянул о них лишь ради того, чтобы хоть что-то противопоставить гегемонии звездного света. Увы, но серьезно противопоставить ей совершенно нечего.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Сейчас самое время вернуться к туманностям, которые хоть и являются слабосветящимися, отражающими или переизлучающими звездный свет, но очень разнообразными по своему виду, чего не скажешь о звездах, которые для наблюдателей Земли всего лишь точки.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Будет интересным отметить, что большинство туманностей состоят из водорода — первозданного материала всей вселенной. Даже планетарные туманности — остатки погибших, сбросивших свою оболочку звезд — тех, что практически истратили свой водород, тоже состоят из водорода. Это может кого-то удивить, но ведь звезда сбрасывает лишь поверхностные слои, а смерть её наступает из-за истощения водородных запасов в ядре звезды. Во внешних её слоях водорода еще хватает, да только использовать — как то переместить более легкий химический элемент с поверхности в ядро — против конвективных потоков — звезда уже никак не может.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Поэтому из туманностей отживших свое звезд предыдущих поколений могут формировать новые звезды следующих поколений — изначально богатые более тяжелыми элементами периодической системы Менделеева. Но все-таки основная доля в составе даже таких туманностей — водород.


Вселенная буквально заполнена водородом. Внутренние пространства галактик и даже межгалактическая среда заполнены этим элементом. Другое дело, что плотность его может быть очень невысокой — от нескольких атомов или молекул на кубический сантиметр — в межзвездном пространстве, то нескольких молекул или атомов в на кубический метр — в межгалактическом. Но как бы то не было, а водород наполняет всё Мироздание.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Сам по себе он невидим. особенно — молекулярный. Это просто темнота, если говорить о холодном водороде.Его можно детектировать наблюдая Вселенную в радиодиапазоне на длине волны 21 см, но вряд ли тут можно говорить о цвете. Однако, вблизи (близость тут относительная — тоже космическая) ярких и горячих — молодых — звезд водород ионизируется. И тогда он сам начинает светиться в линии Hα (Аш-альфа) — это основная спектральная линия в излучении Вселенной. И вот тут оказывается, что вся Вселенная светится глубоким красным цветом. Можно, наверное назвать его бордовым. И это повсеместный её оттенок.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Всюду, где еще происходит звездообразование в водородных туманностях — а это постоянный процесс в спиральных рукавах большинства галактик — где молодые синие, голубые звезды пронизывают пространство своими лучами, чувствительные астрокамеры видят беспрерывное волокнистое темно-красное свечение водорода. Оно охватывает галактики целиком. Оно наполняет весь пролившийся по земному небу Млечный путь. Оно обволакивает целые созвездия — Орион тому яркий пример. И если звезды на картине Вселенной — лишь тонкие мазки, то тусклое свечение водородных облаков — холст, на котором все нарисовано, и из которого все состоит.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Возможно это будет для кого-то крушением иллюзий. Но Космос, Вселенная, Метагалактика, все Мироздание — они красные. Не синие, голубые, ультрамариновые, как мы привыкли видеть на популярных картинках, столь часто встречающихся в сети Интернет. Глубокий темно-красный цвет — будто кровь Вселенной, которая струится по её жилам, перетекая из одной артерии в другую, чтобы где-то дать жизнь новой звезде и проявиться пронзительно-синим, голубым, белым или желтым — это уж как придется. Но исходный — непроявленный — цвет Вселенной — красный.


К этому открытию добавляет силы красное доплеровское смещение спектров в излучении разбегающихся прочь галактик. Вселенная неумолимо расширяется. И хотя относительно геометрии этого расширения нет еще однозначного понимания — во всяком случае в любительской астрономической среде, но за счет огромных скоростей и увеличения расстояния между галактиками, наиболее далекие из них кажутся нам несколько более красными — чем дальше от нас галактика, тем она краснее. Это сказывается не каких-то отдельных составляющих её объектов, а всего излучения достигающего нас.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Самые далекие из наблюдаемых галактики — находящихся буквально на горизонте видимой части Вселенной — исключительно красные, а скорость разбегания у них близка к световой — относительно нашего Млечного пути. А поскольку чем дальше мы смотрим, тем больше галактики мы видим, то мы в конечном итоге упираемся в сплошное красное зарево переднего края Вселенной, которое огненным фронтом рождает новое пространство на своем пути для возможности своего расширения в грядущее.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

Это удивительная иллюзия, согласно которой воображаемый наблюдатель смотрящий на нас из тех дальних миров видит, как мы, объятые пламенем столкновения материи и её отсутствия расширяем его Мир. И ничего кроме красного цвета в нашей галактике он не увидит. хотя мы по прежнему наблюдаем в ней полную разнообразия цветовую палитру.


Из всего этого можно сделать вполне ожидаемый вывод: В нашем мире все относительно — и пространство, и время, и даже цвет, которым нарисована картина Мироздания. И она будет очень и очень разная для каждого наблюдателя и одновременно героя этого полотна.

Какого цвета космос? Астрономия, Космос, Вселенная, Звёзды, Центр Галактики, Водород, Красный, Видео, Длиннопост

В завершении статьи я оставляю Вам, мои невероятно целеустремленные читатели — дочитавшие до конца — музыкальную иллюстрацию: мой альбом 2017 года «Старгейзер», для которого я вчера создал новую обложку — несколько лет он существовал с другой — менее научно обоснованной. В процессе обдумывания дизайна CD альбома «Старгейзер» и родилась эта статья. Слушайте и читайте под музыку.

Показать полностью 23 1
129

Астрохобби #10

Впервые за 2 месяца словили пару хороших ночей. Собрали 4 часа света по туманности Розетка, хотя она больше похожа на череп, и +8 часов на туманность Кокон. Кокон выложу чуть попозже, надо собрать вместе примерно 16 часов по ней, обработка в процессе.
А сейчас розетка (NGC 2237 Rosette nebula):

Астрохобби #10 Туманность, Телескоп, Астрофото, Астрономия, Космос

Сильно порадовался в очередной раз, что сетап радиоуправляемый, потому что прыгать всю ночь вокруг телескопа в -10 занятие то ещё =)

Орининал фотографии и техническую информацию можно найти тут:
https://deepskyhosting.com/BwFYnzE

2192

«Столпы Творения» уже разрушились, но еще пару тысяч лет мы будем их видеть

«Столпы Творения», фотография части туманности Орла, является одним из самых знаковых изображений, сделанных телескопом Хаббл. Но Столпы скорее всего уже давно разорваны на части далеким взрывом. Фотографии, которые мы делаем сегодня, являются высокотехнологичными и современными, но изображения отстают на 7 тысяч лет.

«Столпы Творения» уже разрушились, но еще пару тысяч лет мы будем их видеть Космос, Наука, Астрономия, Туманность, Звёзды, NASA, Длиннопост

Оригинальное фото Столпов 1995 года (слева) и обновленное фото 2014 года (справа)


Круг жизни


Туманность Орла – привлекательное облако газа. Этот газ группируется вместе, становясь все плотнее и плотнее, пока не превратится в сферические объекты, которые превращают водород в гелий. Нам нравится называть эти объекты звездами. Но по мере взросления эти звезды облучают область ультрафиолетовым светом.


Банда этих молодых звезд живет прямо над Столпами. Их ультрафиолетовое излучение сжигает прекрасный газ и уносит его электроны. Их ветры врезаются в Столпы и, как песчаная буря, обрушивающаяся на здание, этот процесс размывает края. Когда-нибудь не останется ничего, что можно было бы разрушить. Даже руин не будет.


Но затем звезды умрут, превратившись в новые туманности, внутри которых зародятся новые звезды, которые затем развернутся и разрушат туманности. Вот что значит быть Вселенной.


Назад в будущее


Столпы Творения могли исчезнуть, и не только из-за молодых неблагодарных звезд. Около 6000 лет назад взрывная волна от близлежащей сверхновой, вероятно, врезалась в них, измельчив и смыв их вместе с молодыми звездами. Но мы сможем наблюдать, как они тускнеют и исчезают до 3015 года (плюс-минус).


Видите ли, Столпы находятся в 7000 световых лет от Земли. Свет, который мы видим от них – свет, который ученые космического телескопа Хаббл использовали для создания изображений – покинул туманность примерно в 5000 году до нашей эры, двигался со скоростью света к нам и прибыл сюда 7000 лет спустя. Таким образом, мы видим туманность такой, какой она была 7000 лет назад.


А 7000 лет назад с Столпами все было в порядке. Но изображения, сделанные космическим телескопом Spitzer и выпущенные в 2007 году, похоже, показывают их неминуемую кончину.

«Столпы Творения» уже разрушились, но еще пару тысяч лет мы будем их видеть Космос, Наука, Астрономия, Туманность, Звёзды, NASA, Длиннопост

Инфракрасное изображение, полученное телескопом Spitzer. Красный цвет означает более горячую пыль, а Столпы Творения выделены контуром и вставкой. Источник: НАСА


Судя по скорости взрывной волны сверхновой, она врезалась в Столпы, возможно, повалив их, около 6000 лет назад. Столпы Творения, от которых мы продолжаем падать в обморок, могут больше не существовать. Мы не узнаем, сколько ущерба было нанесено, до тех пор, пока через тысячи лет не дойдет до нас свет от крушения.


Одинокий в ловушке настоящего


У нас никакого способа увидеть как сейчас выглядят Столпы Творения или что-либо во Вселенной. Мы видим галактики на расстоянии 3 миллиардов световых лет так, как они выглядели 3 миллиарда лет назад. Мы видим Солнце таким, каким оно выглядело 8,5 минут назад. Да что уж там, то, что вы видите сейчас, это прошлое, поэтому ваш мозг предсказывает настоящее.


Источник - https://4everscience.com/2020/08/07/stolpy-tvoreniya/

Показать полностью 1
59

Европейцы одобрили проект космического телескопа ARIEL

Европейское космическое агентство официально одобрило проект нового космического телескопа ARIEL и разрешило начать процесс его создания. Ожидается, что телескоп будет запущен в 2029 году и проведет первое крупномасштабное исследование атмосфер тысячи экзопланет самых разных типов, сообщается на сайте агентства.

ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) стал четвертым космическим аппаратом для исследования экзопланет, который Европейское космическое агентство выбрало в 2018 году в рамках программы Cosmic Vision. Телескоп должен провести обзорные исследования атмосфер около тысячи экзопланет в оптическом и инфракрасном диапазонах, чтобы определить их химический состав, структуру, климатические условия, альбедо, распределение температуры в зависимости от высоты и наличие облаков. Предполагается, что это поможет разобраться в механизмах формирования и эволюции экзопланет, от скалистых суперземель до газовых гигантов, вращающихся вокруг звезд самых разных спектральных классов.

Европейцы одобрили проект космического телескопа ARIEL Телескоп, Космонавтика, Космос, Esa, Ariane 6, Ракета-Носитель, Астрономия, Технологии, Европа, Длиннопост

Стартовая масса телескопа составляет примерно 1300 килограммов, он состоит из двух термически изолированных друг от друга частей: служебного модуля (SVM) и модуля полезной нагрузки (PLM). В модуле SVM будут находиться топливный бак, солнечные панели, двигатели, работающие на гидразине, и антенна с высоким коэффициентом усиления.

В модуле PLM разместятся телескоп системы Кассегрена, а также инфракрасный спектрометр AIRS, работающий в диапазоне длин волн 1,95–7,8 микрометра, и система точного наведения, включающая трехканальный фотометр и спектрометр низкого разрешения, работающий в ближнем инфракрасном диапазоне. Главное зеркало телескопа будет иметь форму эллипса, с размерами примерно 1,1 на 0,7 метра, и сделано из алюминия. За счет пассивной системы охлаждения рабочая температура элементов телескопа будет поддерживаться на уровне около 55 кельвинов.

12 ноября 2020 года Европейское космическое агентство на заседании Комитета по научной программе официально одобрило разработанный проект телескопа — и ARIEL перешел в стадию создания. В ближайшие месяцы будут оформлены заявки на поставку элементов телескопа, а летом следующего года выберут главного подрядчика, который займется его сборкой.

Европейцы одобрили проект космического телескопа ARIEL Телескоп, Космонавтика, Космос, Esa, Ariane 6, Ракета-Носитель, Астрономия, Технологии, Европа, Длиннопост

В космос телескоп должен отправиться в 2029 году при помощи ракеты-носителя Ariane 6 с космодрома Куру, вместе с ним может полететь аппарат Comet Interceptor. ARIEL будет работать на гало-орбите вокруг второй точки Лагранжа в системе «Солнце–Земля», ожидается, что срок службы составит не менее 4 лет.

Источник: https://nplus1.ru/news/2020/11/18/ariel-now-realising

Показать полностью 1
107

Американские астрономы предложили вернуться к идее Предельно большого телескопа на Луне

Ученые из Техасского университета в Остине предложили воскресить концепцию, впервые предложенную более десяти лет тому назад. Речь идет о крупном телескопе, установленном на Луне. Свои соображения по поводу реализации этой идеи исследователи изложили в статье для издания Astrophysics of Galaxies.

«На протяжении всей истории астрономии телескопы непрерывно становятся мощнее, что позволяет нам исследовать источники [излучения] из более ранних космических времен — все ближе и ближе к Большому взрыву, — говорит один из авторов статьи Фолькер Бромм. — Будущий космический телескоп Джеймса Уэбба (JWST) покажет нам то время, когда галактики впервые сформировались». Однако теория предсказывает, что был более ранний этап развития Вселенной, когда галактик еще не существовало и формировались лишь отдельные звезды (так называемые звезды III населения). Эти первые звезды нашего мира сформировались около 13 миллиардов лет назад. Они «рождены» из смеси водорода и гелия и, вероятно, в десятки или сотни раз больше Солнца. Исследование этих объектов выходит за рамки возможностей JWST. Чтобы их изучать, нужен более мощный и совершенный исследовательский инструмент.

Американские астрономы предложили вернуться к идее Предельно большого телескопа на Луне NASA, Телескоп Джеймса Уэбба, Телескоп, Луна, Астрономия, Звёзды, Космонавтика, Космос, США, Технологии, Длиннопост

Такой инструмент был впервые предложен в 2008 году исследовательской группой под руководством Роджера Эйнджела из Аризонского университета. Концептом, который назвали Лунным жидкостным зеркальным телескопом, заинтересовались в NASA. Однако тогда понимание того, что можно сделать в плане изучения самых ранних звезд, было слишком туманным, и проект телескопа, установленного на Луне, так и остался на уровне идеи.

Авторы новой работы утверждают, что сейчас настало время для реализации этих планов. Новый концепт получил название Ultimately Large Telescope — Предельно большой телескоп. Он будет иметь зеркало диаметром 100 метров и сможет работать автономно с поверхности Луны, получая энергию посредством солнечных панелей. Собранные данные телескоп будет передавать через спутник на лунной орбите.

Американские астрономы предложили вернуться к идее Предельно большого телескопа на Луне NASA, Телескоп Джеймса Уэбба, Телескоп, Луна, Астрономия, Звёзды, Космонавтика, Космос, США, Технологии, Длиннопост

Само зеркало Предельно большого телескопа будет являть собой большую чашу, наполненную жидкостью вроде ртути. Эта чаша будет вращаться непрерывно, чтобы поверхность жидкости имела правильную параболоидную форму и могла выполнять функции зеркала. Расположится телескоп внутри кратера на северном или южном полюсе Луны.

«Это ключевой вопрос [для астрономии], как начиналось звездообразование на раннем этапе космического развития, — говорит Фолькер Бромм. — Появление первых звезд знаменует собой переломный момент в истории Вселенной, когда изначальные условия, установленные Большим взрывом, уступили место процессу постоянного увеличения энтропии, в итоге приведшему к появлению жизни и <…> существ вроде человека».

Источник: https://naked-science.ru/article/astronomy/predelno-bolshoj-...

Показать полностью 1
1065

Галактика Андромеды

Один снимок с выдержкой 10 минут.

Галактика Андромеды Астрофото, Туманность Андромеды, Галактика, Космос, Звёзды, Вселенная, Canon

Обычно в астрофотографии делают так: снимают десятки (а то и сотни) кадров, в специальной программе обрабатывают их, уменьшая шумы, затем проявляют детали. Но в ту ночь мне стало интересно: а что можно получить из одного-единственного кадра, снятого с большой выдержкой? И естественно жертвой этого эксперимента стала соседняя галактика. Надеюсь, Андромедяне (Андромедянцы, Андромедцы, не знаю как правильно) меня простят, ведь, на мой взгляд, получилось неплохо.


Теперь о снимке:

Снято 10 октября 2020 года в Рязанской области.

Камера Canon 600D, объектив Sigma 70-200mm f/2.8 II APO EX DG Macro, компенсация вращения Земли - монтировка Sky-Watcher Star Adventurer (дальше для тех, кто в теме) с гидированием, камера-гид ZWO 120MC-S под управлением PHD2 Guiding, съемка через Astrophotography Tool.

Выдержка 10 минут, ISO 800, фокусное расстояние около 135 мм, диафрагма f/5.

Обработка в Photoshop.


Фото в высоком разрешении как всегда по ссылке на диске.

Больше ночных фотографий и астрофотографий в моем инстаграме.

Показать полностью
119

Сегодня ночью максимум активности метеорного потока Леониды!

Радиант находится в созвездии Льва. Ожидается до 15 метеоров в час. Метеоры быстрые, их скорость 71 км/с.

Леониды породила комета 55Р/Темпеля-Туттля. Этот поток известен тем, что в прошлом давал мощнейшие метеорные дожди - в 1833, 1866, 1966, 1999, и 2001 годах.

Если у вас ясно - не забудьте посмотреть! Лучшее время для наблюдений - после полуночи и до рассвета, когда созвездие Льва поднимается повыше над горизонтом.

Сегодня ночью максимум активности метеорного потока Леониды! Астрономия, Космос, Леониды
1484

Теория Эйнштейна о Солнце доказана с высочайшей точностью

Исследователи измерили гравитационное красное смещение Солнца с высочайшей точностью, подтвердив теоретическое предсказание, сделанное Эйнштейном в 1920 году.

Теория Эйнштейна о Солнце доказана с высочайшей точностью Наука, Космос, Солнце, Астрономия, Длиннопост, Красное смещение

Художественное изображение Солнца, Земли и Луны с кривизной пространства-времени общей теории относительности Эйнштейна в спектре солнечного света, отраженного от Луны(в цветах от синего до красного). Иллюстрация: Грабриэль Перес Диас



Фотоны – это частицы света, на которые действуют гравитационное поле. Путь фотонов может искривляться плотными телами, а их длина волны может увеличиваться, когда они выбираются из гравитационной потенциальной ямы. Эта длина волны света, выходящего из гравитационной ямы, немного смещена в сторону красного цвета и называется гравитационным красным смещением. Как сообщается в исследовании, опубликованном в прошлом месяце в журнале Astronomy & Astrophysics, эффект невелик, но измерим даже для Солнца.


Эйнштейн писал столетие назад: «Для Солнца предсказанное теоретическое красное смещение составляет примерно две миллионных длины волны. Существует ли этот эффект на самом деле – вопрос открытый, и в настоящее время астрономы прилагают все усилия, чтобы разрешить его».


Измерение гравитационного красного смещения Солнца потребовало гениального подхода. Первым шагом было посмотреть на солнечный спектр. Проще говоря, это похоже на использование призмы и раскрытие всех цветов, составляющих свет Солнца. В спектре есть темные линии, созданные элементами Солнца, атомы которых поглощают свет на определенных частотах.

Теория Эйнштейна о Солнце доказана с высочайшей точностью Наука, Космос, Солнце, Астрономия, Длиннопост, Красное смещение

Видимая часть солнечного спектра. Из статьи “Солнечный спектр


Гравитационное красное смещение перемещает эти линии в сторону более длинных волн(ближе к красному), чем они могут показаться в лаборатории. Команда сосредоточилась на некоторых линиях и использовала свет, отражающийся от Луны, чтобы сделать измерения. В качестве инструмента они использовали высокоточный искатель планет с радиальными скоростями (HARPS), откалиброванный с помощью современной лазерной частотной гребенки, позволяющей проводить чрезвычайно точные измерения.


Измерения очень хорошо согласуются с теоретическими предсказаниями солнечного гравитационного красного смещения.


«Объединив точность прибора HARPS с гребенкой частоты лазера, мы смогли с высокой точностью измерить положение линий железа в солнечном спектре», – говорит в заявлении ведущий автор доктор Джонай Гонсалес Эрнандес из Института астрофизики Канарских островов. «Это позволило нам проверить одно из предсказаний общей теории относительности Эйнштейна, гравитационное красное смещение, с точностью до нескольких метров в секунду».


Феномен гравитационного красного смещения также был подтвержден для звезд, вращающихся вокруг сверхмассивной черной дыры в центре Млечного Пути, что было частью работы лауреатов Нобелевской премии по физике 2020 года Райнхарда Гензеля и Андреа Гез.


Источник - 4everScience

Показать полностью 1
124

Солнечное пятно AR2781 через обычный телескоп и хромосферный, 11 ноября 2020 года

Солнечное пятно AR2781 через обычный телескоп и хромосферный, 11 ноября 2020 года Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор, Гифка

Набор оборудования № 1:

-апертурный светофильтр Baader Astrosolar Photo

-телескоп Celestron NexStar 8 SE

-светофильтр Baader Solar Continuum (540 nm)

-камера QHY5III178m.


Набор оборудования № 2:

-телескоп Celestron 102 SLT

-гомаль НПЗ

-хромосферный телескоп Coronado PST H-alpha 40 mm (656.28nm)

-монтировка Celestron Nexstar SE.

-светофильтр Deepsky IR-cut

-камера QHY5III178m.


Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

482

Солнце в линии H-alpha, 8 ноября 2020 года, 10:38

Солнце в линии H-alpha, 8 ноября 2020 года, 10:38 Солнце, Астрономия, Астрофото, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-хромосферный телескоп Coronado PST H-alpha 40 mm

-монтировка Meade LX85

-светофильтр Deepsky IR-cut

-астрокамера QHY5III178m.

Место съемки: Анапа, двор.

Объект чуть ниже центра - солнечное пятно AR2781.

Мой космический Instagram: star.hunter

498

Солнечное пятно AR2781, 5 ноября 2020 года

Солнечное пятно AR2781, 5 ноября 2020 года Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-апертурный фильтр Baader Astrosolar Photo

-телескоп Celestron NexStar 8 SE

-фильтр Baader Solar Continuum

-камера QHY5III178m.

В ультрафиолетовых лучах:

Солнечное пятно AR2781, 5 ноября 2020 года Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-апертурный фильтр Baader Astrosolar Photo

-телескоп Celestron NexStar 8 SE

-фильтр ZWB2

-фильтр НПЗ СЗС-22

-камера QHY5III178m.

Место съемки: Анапа, двор.
Мой космический Instagram: star.hunter

151

Кратеры вблизи экватора Титана оказались засыпанными органическими веществами

Карта Титана, построенная по данным инструмента VIMS, с нанесенными на ней положениями кратеров, исследованных в работе.

A. Solomonidou et al. / Astronomy&Astrophysics, 2020

Кратеры вблизи экватора Титана оказались засыпанными органическими веществами Космос, Вселенная, Галактика, Солнечная система, Спутник, Титан, Открытие, Планеты и звезды, Астрономия, Видео, Длиннопост


Планетологи благодаря межпланетной станции «Кассини» смогли найти зависимость состава кратеров на Титане от их расположения. Оказалось, что кратеры в экваториальной части спутника практически не содержат льда, зато богаты органическими веществами. Это, по мнению ученых, означает, что Титан — до сих пор активный мир, где целый ряд процессов постоянно изменяет состав и свойства поверхностного слоя. Статья опубликована в журнале Astronomy & Astrophysics.

Титан — второе (помимо Земли) небесное тело, на поверхности которого находятся жидкие озера, реки и моря, состоящие, в основном, из метана и этана; также это единственный спутник планет с плотной непрозрачной атмосферой. Рельеф спутника похож на земной, на нем есть горы, дренажные сети и дюны. За формирование структуры поверхности на Титане ответственны ветра и гидрологический цикл на основе углеводородов, а также криовулканизм. Еще одно сходство с Землей — ограниченное количество ударных кратеров на поверхности Титана, которая этим сильно отличается от поверхностей других спутников Сатурна.

Группа планетологов во главе с Анезиной Соломониду (Anezina Solomonidou) из Европейского космического агентства опубликовала результаты анализа данных, полученных при помощи радарного инструмента, инфракрасного спектрометра VIMS (Visible and Infrared Mapping Spectrometer) и системы камер ISS (Imaging Science Subsystem) станции «Кассини». Ученых интересовали ударные кратеры Титана, которые могут дать информацию о процессах выветривания на спутнике и примерном составе подповерхностных слоев, а также понять, зависит ли эволюция кратеров от их географического положения на Титане.

Кратеры вблизи экватора Титана оказались засыпанными органическими веществами Космос, Вселенная, Галактика, Солнечная система, Спутник, Титан, Открытие, Планеты и звезды, Астрономия, Видео, Длиннопост

Изображения ударных кратеров на Титане, изучавшихся в работе. Красные квадраты отмечают выброшенный из кратеров материал, желтые — сами кратеры.

A. Solomonidou et al. / Astronomy&Astrophysics, 2020


В общей сложности ученые исследовали девять ударных кратеров на Титане. Оказалось, что кратеры, расположенные в экваториальной части Титана, где преобладают дюны, могут содержать много органических веществ и крайне мало водяного льда, а кратеры на равнинах в средних широтах спутника оказались богаты водяным льдом, смешанным с органическими веществами.

При этом ученые не нашли льда из NH3 или CO2. Это согласуется с более ранними наблюдениями, показавшими, что самые верхние слои аллювиальных конусов средних широт, равнинные области и лабиринты состоят из смеси органических веществ и водяного льда, в то время как экваториальные равнины, холмистые районы и дюны покрыты смесью темного вещества и толинов.

Предполагается, что в средних широтах хорошо работает механизм очищения поверхности от песчаных отложений за счет речной эрозии или дождей, а в экваториальной части спутника кратеры быстро покрываются слоями песка за счет эоловых процессов. Таким образом, Титан может считаться активным миром, где целый ряд процессов постоянно изменяет состав и свойства поверхностного слоя.

Ожидается, что в 2026 году к Титану будет отправлен октокоптер Dragonfly, который, начиная с 2034 года, будет заниматься изучением поверхности и атмосферы спутника.

Источник: https://nplus1.ru/news/2020/11/05/craters-of-titan

Показать полностью 1
228

Солнце в линии H-alpha, 5 ноября 2020 года, 10:36

Солнце в линии H-alpha, 5 ноября 2020 года, 10:36 Солнце, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-хромосферный телескоп Coronado PST H-alpha 40 mm

-монтировка Meade LX85

-светофильтр Deepsky IR-cut

-астрокамера QHY5III178m.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

116

Что такое быстрые радиовсплески

Астрофизики смогли определить механизм возникновения быстрых радиовсплесков — сигналов, природа которых до сих пор была неизвестна, так что некоторые даже считали, что они могут быть сигналами инопланетных цивилизаций. Судя по всему, быстрые радиовсплески формируются в окрестностях нейтронных звезд. Об этом рассказал Сергей Попов из Государственного астрономического института имени Штернберга МГУ, автора книги о нейтронных звездах «Суперобъекты», об истории исследования быстрых радиовсплесков и о том, какие гипотезы об их природе выдвигали ученые.

Что такое быстрые радиовсплески Космос, Вселенная, Астрономия, Астрофизика, Галактика, Звёзды, Магнитар, Радиовсплеск, Длиннопост

Bill Saxton, NRAO/AUI/NSF; Hubble Legacy Archive, ESA, NASA

В этом посте речь идет об источнике FRB121102. Это пока единственный повторяющийся источник быстрых радиовсплесков.

Быстрые радиовсплески — новый загадочный астрофизический феномен (продвинутый читатель может посмотреть свежий небольшой обзор на английском языке). Их исследование началось всего лишь 10 лет назад, когда в 2007 году Дункан Лоример и его коллеги объявили об обнаружении первого очень мощного, но при этом короткого (несколько миллисекунд) радиовсплеска, пришедшего «из ниоткуда». То есть, как это было почти полвека назад с космическими гамма-всплесками, вспышка не наблюдалась больше ни в каком диапазоне спектра, а кроме того, не представлялось возможным точно локализовать, с чем она связана.

Первый всплеск, как и большинство последующих, был обнаружен при обработке архивных данных телескопа из обсерватории «Паркс» (Parkes Observatory) в Австралии. Эта 64-метровая антенна предназначена, в первую очередь, для исследования радиопульсаров. Всплеск получил обозначение FRB 010724, где FRB — Fast radio burst, а 010724 — дата: 24 июля 2001 года.

Если инструмент фиксирует короткий одиночный всплеск радиоизлучения, то его координаты можно определить лишь с точностью порядка 10 угловых минут. Это примерно треть лунного диска. С астрономической точки зрения — большая площадка, так как, например, крупный оптический телескоп увидит там большое количество объектов. Но при этом ничего выдающегося в области локализации первого всплеска не наблюдалось. Источник мог находиться или совсем близко (даже в магнитосфере Земли!), или очень далеко. Однако второе представлялось более вероятным, так как всплеск характеризовался большой мерой дисперсии.

Дело в том, что это только в вакууме скорость света одна и та же. Если же электромагнитное излучение распространяется в среде, то скорость волн разной длины будет отличаться. Именно поэтому призма дает радужную полоску спектра. Радиосигналы на двух разных частотах, распространяясь в космической плазме, имеют разные скорости. А потому сигнал на более высокой частоте приходит к нам раньше. Вот эта величина «сдвига» времени прихода сигнала в зависимости от частоты волны и характеризуется мерой дисперсии. Она тем больше, чем больше плотность зарядов в среде, в которой распространяется сигнал, и чем большее расстояние в этой среде сигнал проходит.

В случае лоримеровского всплеска FRB 010724 дисперсию нельзя было объяснить межзвездной средой нашей Галактики — ее не хватало. Значит, источник внегалактический, а мера дисперсии связана или с межгалактической средой, или со средой вокруг источника в другой галактике. Если дело в межгалактической среде, то расстояние до источника получалось порядка миллиардов световых лет! Тогда у источника колоссальная радиосветимость — миллиард светимостей Солнца. Такого никогда не видели, и это непросто объяснить.

Но это еще не все. Поскольку всплеск был открыт в рамках обработки архива обзорных наблюдений, то можно было оценить, как часто происходят такие события. Получалось, что на земном небе мы должны были бы видеть тысячи всплесков в день. Проблема, однако, в том, что радиотелескопы обычно смотрят лишь на маленький пятачок неба, да к тому же трудно выделить отдельную короткую вспышку, если она не повторяется, а точные координаты (и идентификация с известным источником) неизвестны. Вот и получалось, что до 2007 года мы не знали, что на небе все время виден радиофейерверк: яркая вспышка каждую минуту.

О втором событии отрапортовали лишь в 2012 году. Поэтому теоретики не бросились строить модели. Правда, еще в 2007 году Константин Постнов и я предложили модель, в которой вспышки были связаны с гипервспышками магнитаров — молодых активных нейтронных звезд с очень сильными магнитными полями. Кроме того, в нашей работе мы обратили внимание, что темп вспышек совпадает с темпом рождения магнитаров, а также что если пульсары с большими потерями энергии вращения могут давать вспышки, подобные гигантским импульсам пульсара в Крабовидной туманности, но только более мощные во столько же раз, во сколько раз больше энергопотери, то это тоже будет похоже на FRB. Были высказаны и другие предположения, в том числе довольно экзотические, в которых вспышки FRB связывались с космическими струнами.

Ситуация изменилась летом 2013 году, когда Торнтон и его соавторы сообщили сразу о четырех новых вспышкам. Все поняли, что дело серьезное.

За несколько месяцев теоретики предложили пару дюжин моделей для объяснения быстрых радиовсплесков. Там были и сливающиеся белые карлики, и испаряющиеся черные дыры, и необычные двойные системы, и одиночные компактные объекты, на которые падают астероиды. Не забыли, конечно, и инопланетян. «Все побывали тут», — сказал бы Михаил Юрьевич.

Но самые реалистичные модели были связаны с нейтронными звездами. Мы знаем, что эти объекты дают короткие радиоимпульсы. Мы знаем, что во вспышке нейтронные звезды могут за доли секунды выделять колоссальную энергию. Однако выбрать одну модель не получалось. И даже отбросить ряд моделей было непросто.

Появлялись новые данные наблюдений. За несколько лет было открыто около 30 источников (их каталог можно найти здесь). Для них измерялись различные параметры. Ввиду большой значимости проблемы статьи нередко публиковались в Science и Nature. Но ясности не было.

Важной вехой стало открытие источника FRB121102 — героя новой публикации. Это был первый всплеск, открытый на 300-метровой антенне в Аресибо (Пуэрто-Рико). Дальнейшие наблюдения показали, что от источника приходят новые всплески. Причем много — сотни! Стало ясно, что FRB — это не катастрофа. То есть, это не испарение черной дыры, не образование кварковой звезды, не какой-то вид сверхновой, не слияние нейтронных звезд и так далее. На первый план окончательно вышли модели с молодыми нейтронными звездами.

Что такое быстрые радиовсплески Космос, Вселенная, Астрономия, Астрофизика, Галактика, Звёзды, Магнитар, Радиовсплеск, Длиннопост

Участок неба, на котором зафиксировали FRB121102

Gemini Observatory/AURA/NSF/NRC


Наблюдения повторных всплесков, в том числе одновременно несколькими радиотелескопами, позволили очень точно определить координаты источника. Кроме того, был обнаружен постоянный радиоисточник, с ним связанный. В конце концов, смогли разглядеть и галактику, в которой источник расположен, а значит, стало возможным точное определение энергетики вспышек, так как теперь было известно точное расстояние. Оказалось, что объект находится в небольшой галактике с мощным звездообразованием. Молодые нейтронные звезды «любят» такие места.

И в модели молодого магнитара (в данном случае речь идет о выделении энергии магнитного поля), и в модели молодого мощного радиопульсара (который испускает энергию своего вращения) можно объяснить все основные свойства FRB121102. Новая статья, пожалуй, подтверждает это.

В ней авторы смогли узнать кое-что новое о среде вокруг источника. Они измерили линейную поляризацию радиоизлучения — она оказалось 100-процентной, — а также смогли определить так называемую меру вращения. При распространении в плазме с магнитным полем плоскость поляризации электромагнитной волны поворачивается. Чем больше поле и чем больше в плазме свободных электронов, тем заметнее эффект. У FRB121102 измерена очень большая мера вращения, выделяющая его на фоне известных пульсаров, магнитаров и других источников быстрых радиовсплесков, для которых была установлена эта величина. Данные говорят о том, что источник всплесков находится в довольно плотной среде со значительным магнитным полем.

С одной стороны, авторы обращают внимание на то, что такие условия мы наблюдаем в окрестности сверхмассивных черных дыр. С другой, аналогичные условия могут быть и в очень молодых остатках сверхновых в областях звездообразования. А значит, мы снова возвращаемся к тому, что источники быстрых радиовсплесков связаны с молодыми нейтронными звездами.

Важным предсказанием моделей молодых нейтронных звезд, окруженных плотной туманностью, является эволюция свойств туманности на временах порядка нескольких лет. Соответственно, дальнейшие наблюдения вскоре должны проверить это.

В такой модели высокая активность FRB121102 может объясняться особой молодостью объекта. Скажем, десятки лет против сотен или тысяч лет у других источников. Со временем темп расходования (диссипации) и вращательной, и магнитной энергии неизбежно падает, — что подтверждают и наблюдения радиопульсаров и магнитаров, и теоретические расчеты, — соответственно и время между повторными всплесками должно возрастать. Для типичного магнитара оно должно составлять десятки или даже сотни лет, а потому мы и не видим повторных всплесков от других известных источников.

Сейчас в строй введены (FAST, UTMOST, ASKAP) или вводятся (CHIME, а в будущем — SKA) новые радиотелескопы. Будем надеяться, что это даст новые важные результаты, которые позволят решить загадку быстрых радиовсплесков в ближайшие несколько лет.

https://nplus1.ru/blog/2018/01/10/about-fast-radio-bursts

Показать полностью 1
201

Быстрый радиовсплеск мог возникнуть внутри магнитосферы магнитара

Быстрый радиовсплеск мог возникнуть внутри магнитосферы магнитара Астрономия, Космос, Вселенная, Галактика, Звёзды, Астрофизика, Магнитар, Длиннопост

Астрономы опубликовали результаты анализа данных наблюдений за магнитаром SGR 1935+2154, который породил первый известный быстрый радиовсплеск FRB 200428, возникший в пределах Млечного Пути. Ученые пришли к выводу, что магнитары действительно могут быть источником подобных всплесков, при этом излучение, скорее всего генерируется внутри магнитосферы нейтронной звезды. Статьи (1, 2, 3, 4, 5) опубликованы в журнале Nature.

Впервые быстрый радиовсплеск был зарегистрирован в 2007 году. Они представляют собой короткие, но крайне мощные радиоимпульсы. В дальнейшем стало ясно, что их источники имеют внеземную природу, их связывали с нейтронными звездами, блицарами, распадом аксионных мини-кластеров и даже другими цивилизациями. В 2018 году выяснилось, что повторяющиеся радиовсплески от источника FRB 121102 могли возникнуть в намагниченной среде вблизи вращающегося пульсара или черной дыры. Затем последовал ряд случаев отождествления источников повторяющихся всплесков, которые, в частности, находились в областях активного звездообразования в далеких галактиках или в массивных галактиках с умеренным темпом звездообразования.

До недавнего времени самым близким к Земле источником быстрых радиовсплесков считался FRB 180916.J0158+65, расположенный в спиральной галактике с красным смещением z = 0,0337. Однако 28 апреля 2020 года стало известно о регистрации радиовсплеска FRB 200428, морфология которого напоминала быстрый радиовсплеск, от магнитара SGR 1935+2154, находящегося в нашей Галактике, на расстоянии 30 тысяч световых лет от Солнца в созвездии Лисички. Примечательно, что радиовсплеск совпал с рентгеновской вспышкой магнитара.

Быстрый радиовсплеск мог возникнуть внутри магнитосферы магнитара Астрономия, Космос, Вселенная, Галактика, Звёзды, Астрофизика, Магнитар, Длиннопост

Положение короткого радиовсплеска от магнитара на диаграмме «Поток излучения–расстояние до источника».The CHIME/FRB Collaboration / Nature, 2020

В серии новых работ астрономы представили результаты анализа данных, собранных как наземными, так и космическими обсерваториями, следившими за магнитаром в рентгеновском, радио- и гамма-диапазонах длин волн. Радиовсплеск FRB 200428 состоял из двух суб-всплесков, длившихся 0,58 и 0,33 миллисекунды и разделенных интервалом в 28,91 миллисекунды, при этом среднее значение потока излучения составило 1,5×106 Янских в миллисекунду. Энергия всплеска на частотах от 400 до 800 мегагерц составляет примерно 3×1034 эрг, что на три порядка выше, чем энергия миллисекундных радиовсплесков, которые ранее наблюдались от источника в Млечном Пути, однако меньше, чем энергия внегалактических быстрых радиовсплесков. Тем не менее, если бы подобный всплеск произошел в близкой к нам галактике, на расстоянии менее 12 мегапарсек, то он был бы неотличим от типичного быстрого радиовсплеска. Ученые отмечают, что подобные всплески не наблюдались у других известных магнитаров, а сам SGR 1935+2154 не обладает какими-то необычными характеристиками.

Быстрый радиовсплеск мог возникнуть внутри магнитосферы магнитара Астрономия, Космос, Вселенная, Галактика, Звёзды, Астрофизика, Магнитар, Длиннопост

Схема двух возможных механизмов генерации быстрых радиовсплесков.Bing Zhang / Nature, 2020

Модели, в которых магнитары выступают как источники быстрых радиовсплесков, предполагают два сценария. В первом радиоимпульс генерируется внутри магнитосферы активного магнитара, во втором сценарии генерация электромагнитного излучения происходит в туманности, окружающей нейтронную звезду. В случае FRB 200428 ученые склоняются к первому сценарию, на это, по их мнению, указывают характеристики рентгеновской вспышки, произошедшей одновременно с радиовсплеском, а также редкость подобных событий.

Как отметил астрофизик Сергей Попов в беседе с N+1, недавно опубликованный препринт работы, посвященной исследованию повторяющихся радиовсплесков от источника FRB 180301, также говорит в пользу версии о том, что они генерируются внутри магнитосферы нейтронной звезды, а открытие FRB 200428 по праву может считаться главным астрономическим событием года.


Источник https://nplus1.ru/news/2020/11/04/magnetar-frb

Показать полностью 2
96

В Млечном Пути может находиться до 300 миллионов потенциально обитаемых планет

Ученые уточнили один параметр из уравнения Дрейка.

Международная группа ученых из Института SETI, NASA и других организаций определила, что в нашей галактике может существовать до 300 миллионов потенциально обитаемых планет. Новое исследование добавляет ключевые данные к уравнению Дрейка, которое призвано оценить, сколько внеземных обитаемых миров может существовать в Млечном Пути.


Это уравнение было сформулировано доктором Фрэнком Дональдом Дрейком в 1960 году. Оно содержит семь переменных, в число которых входят такие параметры, как количество звезд, образующихся в год в нашей галактике; доля солнцеподобных звезд, обладающих планетами и вероятность зарождения жизни на планете с подходящими условиями.


Проблема заключается в том, что ни один из этих факторов в точности неизвестен. Некоторые данные мы знаем только приблизительно, а другие являются исключительно предположениями. В результате уравнение Дрейка оценивает возможное количество технологических цивилизаций в нашей галактике от одной до ста миллионов.

«Знание того, насколько распространены разные типы планет, чрезвычайно важно для разработки предстоящих миссий по поиску экзопланет», — Мишель Кунимото, соавтор исследования.

В Млечном Пути может находиться до 300 миллионов потенциально обитаемых планет Космос, Вселенная, Млечный путь, Планета

Исследователи решили получить более надежную оценку одного фактора в уравнении — количества пригодных для жизни планет в галактике. В их работе были рассмотрены экзопланеты примерно размером с Землю, которые вращаются вокруг солнцеподобных звезд и находятся в потенциально обитаемой зоне, где может существовать жидкая вода.


Это исследование было похоже на предыдущие, но на этот раз ученые уточнили фактор обитаемой зоны, включив туда не только расстояние от звезды, но и количество света, которое получает планета. Это было достигнуто путем объединения данных телескопа Кеплер, специализирующегося на поиске экзопланет, с данными миссии Gaia, которая измеряет количество энергии, излучаемой родительской звездой.


В результате ученые выяснили, что в Млечном Пути может существовать до 300 миллионов потенциально обитаемых планет, причем некоторые из них находятся на расстоянии 30 световых лет от Земли. Однако это число может быть увеличено или уменьшено по мере нашего дальнейшего понимания того, как атмосфера планеты влияет на ее способность поддерживать жидкую воду. Исследователи заявили, что они использовали консервативную оценку этого атмосферного воздействия.

https://nat-geo.ru/science/universe/v-mlechnom-puti-mozhet-n...

Показать полностью
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: