sigmatau

sigmatau

пикабушник
Оставь надежду, всяк входящий деградировать.
пол: мужской
поставил 814 плюсов и 337 минусов
отредактировал 1 пост
проголосовал за 1 редактирование
7434 рейтинг 480 подписчиков 415 комментариев 10 постов 8 в "горячем"
365

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает.

В прошлых постах мы договорились строить термоядерный реактор (см. здесь). Штука получилась довольно мощная, от сотни мегаватт и выше. Как выглядят самые продвинутые на сегодня термоядерные бублики ловушки, показано в посте про токамаки (тут). Общий их смысл в том, что полностью ионизированная плазма удерживается в магнитном поле, свёрнутом в тор. Концов у тора нет, поэтому сквозь них не улетает ни вещество, ни энергия.

Если так, куда могут деться те самые сотни мегаватт?

Краткий ответ: они создают проблемы.


На рис. 1 показан схематичный токамак. Силовые линии, что начинаются внутри красной области («Core plasma»), возвращаются в неё же. Частицы на этих линиях живут долго, сталкиваются между собой, производят энергию: в общем, делают всё то, что мы хотим.

Силовые линии, идущие в жёлтой области СОЛа («SOL», scrape-off layer), через несколько оборотов утыкаются в покрашенные голубым цветом кирпичи. Всё, что здесь оказывается, быстро улетает вдоль силовых линий и поглощается стенкой [1].

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Представьте себе леммингов, танцующих на вершине небоскрёба. Те, что в середине, дрейфуют от лемминга к леммингу, находят себе друзей и подруг-леммингов, выделяют тепло — и, по своим меркам, живут долго.

Стоит леммингу добраться до самого края — и он почти мгновенно, не сказав «ПИ» ни одной живой душе, уходит из системы и уносит всю энергию с собой (рис. 2, [2]).

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

В строящемся (самом большом) токамаке ИТЭР сборка дивертора, принимающего на себя весь поток леммингов мощности, выглядит так [3]:

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

И составлена из кассет. Десятитонных, больше человеческого роста.

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Проблемы начинаются из-за того, что полоска леммингов у основания небоскрёба оказывается очень узкой. Частицы, покинувшие область удержания, уносятся на стенку слишком быстро и не успевают растечься слишком далеко от границы СОЛа. Для масштабов ИТЭРа сто мегаватт непрерывно вылетают в две кольцевые полоски шириной чуть больше миллиметра и длиной по сорок метров. Перемножив эти числа, можно получить плотность мощности около гигаватта  на квадратный метр.

Это примерно 10000 станков для лазерной резки, нацеленных в одну точку. Материала, который бы выстоял под такой нагрузкой, не существует.

Чтобы дать стенке какой-то шанс, её наклоняют под острым углом к набегающему потоку. Это позволяет подставить под падающих леммингов в тридцать раз бо́льшую площадь, и настолько же снизить удельную нагрузку (на рисунке: пункты 3 и 7, встречающие красный поток [4]):

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Чтобы как-то размыть узкую полоску леммингов, перед стенкой можно создать завесу из газа. Плазма, сталкиваясь с газом, излучит часть энергии в свете, который будет прогревать камеру более-менее равномерно. И — что полезно — поток плазмы сдует газ обратно к стенке, не дав ему добраться до центральной области удержания. Лемминги на вершине небоскрёба не пострадают. На фотографии углерод высвечивает энергию перед стенкой токамака TCV [5]:

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Прочие геометрические ухищрения и частично обоснованные надежды позволяют говорить о потоке мощности в духе 10 МВт/м². Это сто лазерных резаков в каждой точке, но с этим уже можно как-то пытаться жить.

Материалов, достаточно тугоплавких для приёма такой мощности, мало. Тугоплавких материалов, мало-мальски пристойно ведущих себя в интенсивном нейтронном излучении и при наличии радиоактивного трития, ещё меньше. По большому счёту, список сужается до одного вольфрама (про него подробно рассказал многоуважаемый @Mircenall).

Вольфрам, волчара, мог бы вынести такие нагрузки, если бы ими всё ограничивалось. Но токамаки с транспортными барьерами (см. подпорные стенки в четвёртом посте) любят за миллисекунду выполнять секундную норму поставки энергии в дивертор. Такие события называются ЭЛМами (ELM, edge-localized mode). Если на пальцах — подпорная стенка ненадолго проседает, и всё, что было над ней насыпано, вылетает наружу. Во всё те же два тонких колечка.

Борьба с ЭЛМами — одна из наиболее активно решаемых сейчас задач. Потому что нагрузка, эквивалентная ЭЛМу, делает с чертовски тугоплавким и чертовски высококипящим вольфрамом вот такое [6]:

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Да, это разлетаются капли закипевшего вольфрама. Вот ещё:

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Даже если тепловая нагрузка будет не настолько высокой, и поверхность вольфрама не расплавится, тепловой удар с быстрым нагревом и охлаждением приводит к трещинам на поверхности [7]:

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост
Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

А уже края трещин, оторванные от металла, перегреваются и плавятся.

Ситуация выходит довольно напряжённой. Чтобы вольфрамовые плазмоприёмные пластины ИТЭРа работали без разрушений, за ближайшие 10 лет нужно научить токамак не плеваться энергией и выдавать спокойный широкий поток плазмы. Использовать получится только те режимы, где крупных ЭЛМов действительно не будет. Другими словами,

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Есть другой выход.

Ваша стенка не расплавится, если она уже расплавлена. Поверхность можно покрыть легкоплавким, но тяжелоиспаряемым металлом. Например, литием (привет токамаку Т-11М). В повреждённые импульсной нагрузкой места литий затечёт сам. Можно лить по твёрдой стенке тонкую плёнку, можно пропитывать литием вольфрамовую вату [8]:

Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост
Пара слов об УТС и плазме, часть 6. Вольфрам подгорает. Наука, Физика, Плазма, Вольфрам, Термоядерный синтез, Термоядерный реактор, Длиннопост

Литий создаёт свои проблемы, от него сложно избавиться, если он попал в плазму...

Но, как минимум, такое решение изящно.

Источники иллюстраций:

[1] https://www.york.ac.uk/physics/ypi/research/divertor/

[2] http://comicsia.ru/collections/nichtlustig/2/tags/%D0%BB%D0%...

[3] https://www.iter.org/mach/Divertor

[4] https://www.sciencedirect.com/science/article/pii/S092037961...

[5] https://www.differ.nl/research/plasma-edge-physics-and-diagn...

[6] https://indico.inp.nsk.su/event/5/session/4/contribution/60

[7] http://www.inp.nsk.su/press/novosti/1874-uchenye-smodelirova...

[8] http://vant.iterru.ru/vant_2017_3/1.pdf

Показать полностью 12
9

Фотографии Апрельской революции в Португалии

Вчера была 45-я годовщина «Революции гвоздик» в Португалии. 25.04.1974 быстрым военным переворотом, фактически не встретившим сопротивления, закончился режим «Нового государства». Пикабу ещё ждёт своего рассказчика об этих событиях (и это не я). Но я наткнулся на отличную подборку фотографий от непосредственного участника событий и не смог не принести её сюда.

Автор репортажа — Jorge Da Silva Horta (больше фотографий по ссылке). Знатоки португальского наверняка смогут найти в комментариях в альбому у автора информацию о местах и людях.

Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Фотографии Апрельской революции в Португалии Историческое фото, Португалия, Лиссабон, Революция, Революция гвоздик, Военные, 25 апреля 1974, 1974, Длиннопост
Показать полностью 23
64

Ваша плазменная пушка не стреляет: что делать?

Представьте, что вы взяли в руки любимую плазменную пушку, а она шипит и выплёвывает слишком мало слишком медленной плазмы. «Никуда не годится!» — подумаете вы, и будете правы. Нужно чинить.

Самый важный метод поиска неисправностей в уникальном оборудовании — раскрутить и посмотреть глазами. Начинаем:

Корпус (нержавейка) возле катодной сборки изъеден разрядом и запылён металлическими хлопьями. Неприятно, но не должно на что-то влиять.

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Позади катода следы дуг. Вот такие снежинки на поверхности:

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Подбираемся к аноду. Стальной корпус возле изоляторов местами оплавлен. Похоже, временами изоляторы пробивались со всеми положенными спецэффектами.

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост
Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

А вот и задняя поверхность анода. Не очень подходящий цвет для меди.

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост
Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Керамические изоляторы. Судя по цвету — запылены нержавейкой.

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Такое поведение недостойно уважающего себя изолятора!

(Не является рекламой мультиметров Pluke)

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

В общем, первичный диагноз ясен. После пяти тысяч выстрелов пушку нужно чистить.

Керамику протравливаем кислотой:

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Корпус обшиваем молибденовой фольгой:

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Что можно почистить — чистим высокотехнологичной наждачкой:

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост
Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост
Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Что оплавлено — оставляем как есть:

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Собираем обратно:

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Возвращаем на место.

Здесь можно видеть две руки ответственного старшего научного сотрудника, занимавшиеся сборкой-разборкой. Руки других научных сотрудников разного возраста и лаборантов, применённые к пушке при чистке, условно не показаны.

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Архивное, двухлетней давности: пушка в сборе и катодный узел.

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост
Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост

Ps. Каюсь перед подписчиками — пропал! Зажал рассказ о плазме и том, что она делает с подвернувшимися тугоплавкими металлами. У этого прискорбного факта масса причин, от очередной Звенигородской конференции до постройки скворечников.

Ну, и сборка-разборка пушки.

Обещаю исправиться.


Pps. Большое спасибо попутчику с рейса 177 Москва–Новосибирск за книжку. Первые главы выглядят многообещающими.

Ваша плазменная пушка не стреляет: что делать? Наука, Физика, Плазма, Пушка, Ремонт, Длиннопост
Показать полностью 17
222

Пара слов об УТС и плазме, часть 5. Марсианские двигатели.

Всем чертовски интересно, когда и на чём мы повезём к Марсу саженцы яблонь и картошку. Об этом регулярно просят рассказать журналисты, из рассказов они делают свои заметки и репортажи, при этом часть информации неминуемо теряется (см. рис. 1).

В общем, после очередного сюжета в телевизоре учёный совет Института ядерной физики предписал мне написать про плазменные двигатели популярно. Не то, чтобы я был специалистом по космосу, у меня даже Kerbal Space Program не установлена, но что-то слышал. Будем надеяться, знатоки донесут подробностей.

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Очевидный момент: маршевый двигатель нужен космическому аппарату, чтобы изменять его скорость. Двигатель может быть тяговитым, может быть экономичным, может иметь приемлемую мощность. Как обычно, нужно выбрать два пункта из трёх.

Если отложить в сторону аэродинамические и гравитационные потери, скорость космического корабля можно определить по формуле Циолковского. Она есть в школьном курсе, поэтому я рискну и вставлю её в текст. Это последняя формула в посте, не торопитесь его закрывать. Здесь V — скорость аппарата, V_1 — скорость реактивной струи, M_1 — масса «сухого» корабля, M_2 — масса, выброшенная в реактивной струе:

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Логарифм — функция весьма неприятная, поскольку растёт медленно. Чтобы разогнать аппарат до скорости, равной скорости реактивной струи, две трети стартовой массы должно быть занято рабочим телом. Если потребуется разогнаться до вдвое большей скорости, нужно выбросить 5/6 массы; втрое — 95%. То есть, мы выбрасываем почти всё, что везём. Чтобы жить было легче, скорость реактивной струи должна быть по возможности большой.

NB: при разговоре о ракетных двигателях правильнее говорить об удельном импульсе, то есть, величине импульса (m·dV), полученной за счёт выбрасывания единицы массы рабочего тела (dm). Сферически и в вакууме, при идеальной конструкции двигателя, эта величина будет совпадать с направленной скоростью струи. Если силу тяги измерять в Ньютонах, то удельный импульс измеряется в м/с; если использовать килограммы-силы — то в секундах (нужно метры в секунду разделить на 9.8 м/с²).

Тяга двигателя — вещь простая, это удельный импульс, умноженный на выброшенную за секунду массу. Хочешь больше тяги — жги больше!

Полезная мощность из тяги и удельного импульса получается автоматически — перемножением и делением пополам. Хотите экономно расходовать массу — или снижайте тягу (разгон будет долгим), или повышайте мощность.

Хороший химический двигатель может дать удельный импульс (в м/с), несколько больший, чем скорость звука в сгорающем топливе. Можно вывернуться наизнанку, но двигатель на кислороде и керосине не даст больше 335 с (3350 м/с), а на водороде и кислороде — 430 с (4300 м/с). Возможность расходовать пару тонн топлива в секунду позволяет с их помощью красиво и эпично стартовать с поверхности Земли [1, 2]. Но речь идёт о гигаваттах и тоннах в секунду.

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост
Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Для старта с Земли нужно набрать (с учётом потерь) около 10 км/с, для перехода с низкой опорной орбиты на геостационарную или для полёта к Луне/Марсу потребуется 4–8 км/с [3]. И то, и другое — слишком много для химических двигателей. Но пока лифты, катапульты и фонтаны остаются научной фантастикой, альтернативы химическому топливу для вывода на орбиту всё равно нет.

Выше начинаются варианты. Можно повышать температуру вещества, чтобы скорость звука и истечения стала выше (вещество станет плазмой) либо ускорять частицы в электрическом и магнитном полях (вещество должно быть, опять-таки, плазмой).

В этот момент мы добираемся до электроракетных двигателей в целом и плазменных в частности. Речь здесь идёт про удельный импульс в районе 1–10 тысяч секунд (10–100 км/с) и мощность... В общем, сколько найдётся.

Если мощность фиксирована, наиболее удобное соотношение удельного импульса и тяги диктуется задачей. Для быстрого прохождения радиационных поясов полезен двигатель с бо́льшей тягой (а также меньшим импульсом и быстрой тратой рабочего тела), для марша до Юпитера эффективен высокий удельный импульс (и малая тяга с копеечным ускорением, которое может длиться месяцами на одном баке).

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Из летающих сегодня космических аппаратов самым мощным является МКС с солнечными батареями на 80 кВт [4]. Вот эти 35-метровые панели:

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

В целом, всё, что летает сейчас, может дать двигателям не больше нескольких киловатт (чаще — меньше). Разговоры о ближней перспективе — это разговоры о мегаваттных ядерных реакторах (и нескольких сотнях киловатт мощности двигателя). Например, вот этих [5, 6]:

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост
Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

На мощности до нескольких киловатт хорошо работают ионные двигатели. Идея в следующем: газ ионизируется до плазмы, из неё в зазор между двумя сеточками вытягивается поток ионов и ускоряется постоянным напряжением. После второй сетки к ним добавляется поток электронов, чтобы аппарат не заряжался отрицательно [7].

Проблемы начинаются при повышении мощности: разряд начинает быстро жрать разрушать сетку. Кроме того, двигатель становится слишком большим: при разумных полях тяга на единицу площади ограничена величиной на уровне ~0.1–0.2 гс/см² (10–20 Н/м²).

Примечание: это — не термоядерный двигатель.

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Следующий вариант, активно летающий в космосе — кольцевой разряд в магнитном поле. Плазма заперта в промежутке между цилиндрическим центральным электродом и полой бочкой. Ток по центральному электроду создаёт вокруг себя магнитное поле, направленное по окружности. На ток, текущий по радиусу (от стенки к центру), действует обычная сила Ампера, ускоряющая плазму вдоль оси центрального электрода. Подобный стационарный плазменный (он же — холловский) двигатель при том же размере может дать бо́льшую тягу, чем ионный, но его удельный импульс практически жёстко задан конструкцией.

Про эту штуку здесь уже писали, поэтому даю ссылки: первая и вторая части. Добавлю пару иллюстраций для наглядности [7]:

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

В наших краях двигателями этого типа активно занимается ОКБ «Факел» из Калининграда, выпуская двигатели для всех желающих с мощностью от сотни ватт (летает) до 15 киловатт (пока модель) [8].

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост
Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

По подобной схеме (по сути, матрёшка из вложенных один в другой 4 двигателей разного размера) для NASA делается 100-киловаттный прототип XR-100 [9].

И, да. Это — не термоядерный двигатель.

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

На сравнительно большой мощности становится адекватной возможность разгонять нагретый газ через сопло. Но три тысячи градусов — это мало. Плазму можно нагреть до гораздо более интересных температур: четыре миллиона градусов звучат как-то поубедительнее.

Чтобы она не охлаждалась о стенки, можно изолировать рабочее тело от корпуса двигателя продольным магнитным полем, а с одной из сторон сформировать из расходящихся силовых линий магнитное сопло.

(Над вами на второй космической скорости пролетит две открытые ловушки).

Важная фишка: меняя подачу газа при постоянной суммарной мощности нагрева, можно менять температуру вытекающей в сопло плазмы. А значит, и удельный импульс. А значит, с помощью одного и того же двигателя давать побольше жару тяги в поясах ван Аллена, а после экономно ускоряться/замедляться в месячном полёте до Марса.

Вся эта штука называется VASIMR и допилена до железного 200-киловаттного прототипа. (Опять-таки, и это не термоядерный двигатель).

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Двигатели ставятся парой: стрелка магнитного поля в одном направлена от источника к соплу, в другом — наоборот. В остальном поля одинаковы. Из-за этого магнитное поле быстрее спадает при удалении от среза сопла (вся сборка — квадруполь, а не диполь); это позволяет плазме в определённый момент оторваться от магнитных силовых линий и улететь куда подальше, а двигателю — собирать меньше заряженных частиц из окружающего пространства.

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

В этот момент удобно упомянуть, каким боком в этой теме оказался автор поста. Двигатель с магнитным соплом сам по себе — открытая ловушка (точнее, две). Если у нас есть многопробочная ловушка с бегущими пробками, мы можем заставить пробки бежать от входа к выходу — в таком случае поток плазмы будет не тормозить, а ускоряться. Как и в посте про открытые ловушки, магнитное поле здесь винтовое; плазма вращается; с точки зрения плазмы винт выталкивает её в нужную сторону областями сильного поля. Отличие — в шаге винта: для двигателя он обязательно должен расти от источника к соплу.

Плюсы — переменный удельный импульс, нетребовательность к рабочему телу, отсутствие сложных систем нагрева.

Минусы... Это пока даже не модель, это научная идея, из которой проглядывает что-то интересное. До лётного образца здесь лет пятнадцать с того момента, как кто-нибудь решит дать на него денег.

Да, конечно. Это не термоядерный двигатель, что бы ни писали журналисты (см. рис. 1).

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост
Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Теперь про настоящий термоядерный двигатель. Это должно быть эпично.

Размышления, конечно, из разряда научной фантастики, а не серьёзных проектов. Но и мы не в журнале Physics of Plasmas.

Двигатель на DT-топливе смысла не имеет: 80% энергии уходит во все стороны с нейтронами, не создавая тяги. Значит, нужно использовать DD или D3He (см. первый пост про УТС). Плотность мощности энерговыделения в них при разумной плотности вещества составляет примерно 1 МВт/м³, а для поддержания реакции требуется время удержания энергии на уровне нескольких секунд. Для линейной ловушки с секциями улучшенного удержания это соответствует длине от 50 (для очень хорошего удержания) до 300 (для умеренного улучшения) метров. Если мы хотим создать реактивную струю, удержание с одного из концов придётся слегка ухудшить. Пусть из-за этого длина будет 150 м.

Площадь поперечного сечения тоже не может быть сколь угодно маленькой: вращающиеся в магнитном поле ионы (рис. 1 из поста про ловушки) должны хоть как-то умещаться внутри плазмы. При разумных величинах магнитного поля сечение будет на уровне 0.3 м².

Двигатели ставим парой, как в VASIMR'е.

Всё это даёт объём термоядерной плазмы в районе 100 м³ и мощность в духе 100 МВт.

При этом 300 км/с (с учётом торможения в многопробочных секциях и добавки балластного газа в струю) — разумная оценка для скорости истечения. Расход рабочего тела выйдет на уровне 2 г/с, а тяга — 60 кгс.

По земным меркам этот космический катамаран будет разгоняться очень неспешно, но он может делать это много лет подряд [10].

Пара слов об УТС и плазме, часть 5. Марсианские двигатели. Наука, Физика, Плазма, Космос, Ракетный двигатель, Длиннопост

Рядом с таким двигателем красиво смотрятся катапульты для конвейерного вывода грузов на орбиту, обитаемые базы на лунах Юпитера и беспилотные миссии за пределы облака Оорта...

Да, чёрт возьми, всё что угодно красиво смотрится рядом с термоядерным планетолётом!

Но пока это к научной фантастике.


Ps. Привет «Факелу», если кто читает. =)


[1] https://en.wikipedia.org/wiki/RD-180

[2] https://www.youtube.com/watch?v=ccLFT0bQX0E

[3] https://en.wikipedia.org/wiki/Delta-v_budget

[4] https://habr.com/ru/post/378117/

[5] https://habr.com/ru/post/381701/

[6] https://www2.jpl.nasa.gov/jimo/technology.cfm

[7] http://tdla.ssau.ru/uop/vvedrd/module5.pdf

[8] https://fakel-russia.com/images/gallery/produczia/fakel_spd_...

[9] https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/201800...

https://www.bwxt.com/what-we-do/nuclear-thermal-propulsion-n...

[10] #comment_130281457 , иллюстрация к роману Р. Ибатуллина «Роза и Червь».

Показать полностью 18
120

Клуб названий, расширенное заседание

Когда-то тут пробегала фотография участников V Сольвеевского конгресса. Та самая, на которой 19 лауреатов Нобелевской премии.
На ней даже были подписаны фамилии, но это, по-моему, недостаточно наглядно.
Итак, отдельные штуки, названные именами основателей нескольких разделов современной физики (из нескольких вариантов выбирался в должной степени одиозный):

Клуб названий, расширенное заседание Наука, Физика, Нобелевская премия, Кот Шредингера

То же самое, но с фамилиями, было тут: https://pikabu.ru/story/velichayshie_umyi_mira_v_odnoy_karti...

Клуб названий, расширенное заседание Наука, Физика, Нобелевская премия, Кот Шредингера

Ps. Хорошо, что на фотографии не могло быть Лифшица.
Pps. Пост спровоцирован этим: https://pikabu.ru/story/klub_nazvaniy_6479718

Показать полностью 1
320

Пара слов об УТС, часть 4. Горячи бублички.

Набор постов о термояде будет заведомо неполным без рассказа про токамаки. Ну, как минимум, ссылка на 500-страничные «Физические основы» [1] оправдает наличие четвёртой части у «пары слов».

Общие задачи управляемого термоядерного синтеза были в первом посте, открытые ловушки — во втором. В тех постах был упомянут момент, с которого стоит начать этот пост: термоядерное топливо существует в виде полностью ионизированной плазмы, которая удерживается магнитным полем. Магнитное поле не даёт плазме уходить поперёк силовых линий, а вдоль них плазма растекается достаточно свободно. Идея свернуть магнитное поле в тор, чтобы плазма могла течь куда хочет и не теряться, возникла достаточно быстро. Концов у бублика нет, вытекать некуда. В салфеточном представлении авторов [2] это выглядело примерно так, по тороидальной обмотке течёт ток, силовые линии обходят тор по большому радиусу:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Были и другие салфетки, на которых силовые линии и ток менялись местами. Кольцевой ток обжимал сам себя своим магнитным полем, изолируясь от стенки. Такая салфетка имеет своё название — тороидальный пинч. Начиналось всё с таких железок (рука британского учёного Питера Тонеманна для масштаба) [3]:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Здесь для масштаба другой британский учёный, Джеймс Так, в американском Лос-Аламосе [4]. Бублик с плазмой светится малиновым:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

И та, и другая идея в чистом виде имеют общую проблему: они не работают. Пинч (не только тороидальный) неустойчив: ток пытается увеличить любой маленький изгиб плазменного шнура. Ситуация напоминает лёгкую жидкость, налитую поверх тяжёлой; или перегруженную колонну. Вот эта картинка со звездой вместо круга стала классической иллюстрацией неустойчивости шнура:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

В тороидальном поле проблема другая: чем дальше от центра, тем слабее поле. В такой конфигурации электроны дрейфуют вверх, ионы — вниз, возникает вертикальное электрическое поле, которое (за счёт дрейфа — см. картинку 1 во второй части) выталкивает плазму наружу.

Удача состоит в том, что комбинация двух методов решает обе проблемы (а не страдает от обеих сразу). Тороидальное поле стабилизирует неустойчивость тороидального тока: чтобы изогнуться, ему нужно «растянуть» силовые линии. Тороидальный ток закручивает силовые линии вокруг бублика, струйка плазмы часть времени проводит на внешней поверхности тора, а часть — на внутренней; действие спадающего магнитного поля внутри и снаружи компенсируется.

Осталось добавить вертикальное магнитное поле, которое не даст бублику изменить свой радиус (катушками или — для импульсной работы — проводящей стенкой), и получится классический токамак [5]:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Всё это называют вращательным преобразованием. Вот здесь плазма токамака MAST с помощью маленькой неустойчивости демонстрирует, как идут силовые линии магнитного поля [6]:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Подобное сочетание оказалось весьма удачным. В результате токамак Т-3 оказался первой машиной, на которой плазму нагрели до 1 кэВ (10 млн градусов) и удерживали 1/100 секунды. Результат был настолько неожиданным для 1968-го года (характерные цифры, о которых говорили до того момента, были ниже, как минимум, на порядок), что сообщество сходу не поверило. В ответ на все подозрения Арцимович (академик) и Кадомцев (чл-корр, позднее тоже академик) предложили всем желающим приехать и померить своими руками. Приехала команда из Британии с пятью тоннами лазерного оборудования. Измерила, с большими глазами села на телефон и долго инструктировала коллег, как переделать оставшийся в Калхэме стелларатор C в токамак.

Вскоре после этого момента работы по токамакам становятся более активными, чем вся остальная термоядерная деятельность вместе взятая.

В посте про открытые ловушки был шарж на команду британских учёных, здесь будет хорошо добавить к нему фотографию.

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост
Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Майк Форрест юстирует британский термометр в Курчатовском институте:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Всё это счастье устойчиво при определённых (довольно широких, впрочем) соотношениях тока по шнуру, тороидального поля, плотности и давления плазмы. Слишком высокая плотность («предел Гринвальда»), слишком высокое давление плазмы («предел по нормализованному \beta») или избыточный ток («предел по запасу устойчивости») приводят к тому, что шнур  сворачивается в непотребную фигуру и гибнет на стенке вакуумной камеры. Слишком низкая плотность плазмы тоже не годится: «сила трения» электронов о плазму становится слишком низкой, они разгоняются до больших (по сравнению с температурой) энергий и начинают плавить стенки.

Так или иначе, область, где всё работает хорошо, есть.

Рисунок: рентгеновское излучение со стенки токамака Alcator от попавших в неё убегающих электронов. [8]

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

При всей удачности тороидального поля для устранения продольных потерь, потоки тепла и частиц поперёк магнитного поля в такой системе на порядок выше, чем в прямом магнитном поле. В ситуации виноваты бананы и турбулентность.

Частица, которая летит с внешней поверхности тора на внутреннюю, видит, как увеличивается магнитное поле. Для неё ситуация похожа на классическую открытую ловушку (см. рис. 3 из части про открытые ловушки). Если поперечная скорость велика, а продольная — не очень, она может отразиться и полететь назад, не попадая на внутренний обход. Траектория оказывается вот такой, похожей в проекции на банан:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Частицы, сталкиваясь, смещаются не на диаметр спиральки, по которой они крутятся вокруг силовой линии, а на размер банана. Он больше, поэтому и перенос ионов больше.

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Теплопроводность электронов определяется турбулентностью — чем сильнее болтает электромагнитные поля в плазме, тем чаще рассеиваются электроны, тем больше они переносят энергии.

Поперечная теплопроводность настраивается сама собой. Это приводит к тому, что все поперечные профили давления и температуры в разных токамаках похожи друг на друга — различия определяются только разным соотношением размеров и полей в бублике. На картинке — 8 разных токамаков, один и тот же колокольчик.

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Здесь есть простая аналогия. Все кучи одинакового песка, независимо от размера, похожи друг на друга. Угол, под которым насыпан песок, не может быть больше определённого: как только склон становится слишком крутым, песок начинает осыпаться; и осыпается, пока склон не станет ровным. Если долго сыпать песок в одну точку, куча будет расти, но крутизна склона останется постоянной начиная от нескольких десятков песчинок и заканчивая БелАЗом.

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост
Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост
Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Кучу песка можно сделать повыше, поставив подпорную стенку. В плазме такое тоже можно сделать, если в определённой области внешние слои будут вращаться быстрее внутренних. Быстрое проскальзывание внешних слоёв нарушает связь колебаний в них, турбулентный перенос снижается, склон становится круче. Режим без транспортных барьеров традиционно называется L-модой, с «подпорными стенками» — H-модой [9]. В H-моде запасается примерно вдвое больше энергии, и они тоже похожи в разных машинах.

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост
Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Всё это приводит к тому, что параметры плазмы в токамаках хорошо предсказуемы. Две сотни токамаков набрали достаточно экспериментальных данных, чтобы предсказывать изменение температуры или времени жизни плазмы при увеличении размера бублика или мощности нагрева вдвое или в десять раз. Предсказание записывается в виде эмпирической формулы со странными коэффициентами (например, время жизни растёт как большой радиус в степени 1.97), но работает весьма хорошо:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Примерно так протягивается связь данных с токамаков в несколько разных масштабах [10]:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Т-3 здесь нужно показать крупнее:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Вид изнутри токамака DIII-D, одного из самых крупных действующих. Здесь уже человек целиком помещается внутри, и неплохо там себя чувствует.

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Горячий привет команде Глобуса-М2, если кто читает. =)

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Для наглядности — карта действующих токамаков:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост

Хотел здесь же добавить рассказ о стеллараторах и о том, как жить, если вам в стенку высаживается несколько сот мегаватт; но в лимит уже не входит. Придётся выносить отдельным постом. %)


Популярно о токамаках и УТС у @tnenergylink, link.


Источники иллюстраций:

[1] https://iopscience.iop.org/issue/0029-5515/39/12 , https://doi.org/10.1088/0029-5515/47/6/E01

[2] «Воспоминания» Сахарова.

[3] https://doi.org/10.1088/0741-3335/30/14/003

[4] http://www-users.york.ac.uk/~bd512/teaching/media/mcf_2015/l...

[5] https://en.wikipedia.org/wiki/Tokamak#/media/File:Schematic-...

[6] https://www.researchgate.net/figure/A-wide-angle-view-of-the...

[7] https://www.iter.org/newsline/102/1401

[8] https://iopscience.iop.org/journal/0741-3335/page/Special-Is...

[9] http://www-fusion-magnetique.cea.fr/gb/fusion/physique/modes...

[10] https://crustgroup.livejournal.com/53557.html

Ps. Для подписчиков, пришедших из поста про хлеб, скан рецепта бубликов:

Пара слов об УТС, часть 4. Горячи бублички. Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост
Показать полностью 24
1532

Сделай сам: плазменная установка своими руками

В прошлом году я обещал пост о том, как построить себе экспериментальную установку для исследований в области физики плазмы. Пришла пора выполнять. В посте будет мало физики, объясняемой на пальцах; совсем не будет кулинарных рецептов; зато будет много железяк. Всё будет проиллюстрировано на примере установки СМОЛА, которую автор придумывал и строил последние 4 года.

(Видео: плазма в установке СМОЛА, снятая в пяти разных точках камерой со скоростью съёмки 500 кадров в секунду. Эксперименты пристрелочные — оценивались необходимые поправки магнитного поля в новой конфигурации).

2014 год я встретил в изрядной бюрократической прострации и с опилками в голове от защиты собственной диссертации. Хотелось какого-нибудь свежака, и теоретическая идея с магнитным шнеком от магнитной мясорубки для перекачивания плазмы, предложенная буквально за год до того, выглядела в должной степени безумной. (Об удержании — в предыдущей серии).

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Основная проблема идей от теоретиков — в приписке: «Было б неплохо это как-нибудь проверить». К приписке обычно не прилагается примерного описания того, как именно это сделать. Поэтому берём в руки бумагу (чтобы увязать теоретические безразмерные величины с человеческими сантиметрами и вольтами), пару расчётных пакетов (сначала — считать магнитные поля, потом — тепловые и механические нагрузки), подборку литературы о стеллараторах (для примеров), и начинаем рисовать трубу с винтовым магнитным полем, которая бы заканчивалась парой расширителей. На следующем рисунке показана уже оптимизированная по силе пробок система; видны два винтовых проводника с током и пачка плоских катушек.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Для первой проверки упрощаем всё до предела. В идеале бы скрутить экспериментальную установку на коленке из того, что найдётся в кладовке, но тут такой вариант не подошёл.

В этот момент пока несуществующая установка начинает обрастать ограничениями. Можно сделать размер поменьше, чтобы поместиться на столе. Но тогда придётся повышать плотность плазмы, а это тянет за собой требование на усиление магнитного поля. Больше поле — тяжелее обмотки и больше шкаф с силовым питанием. Короче, установка-то будет на столе, а всё остальное — в паре больших залов.

Можно, наоборот, ослабить энергетику, но у винта из редкой плазмы в слабом поле должен быть метровый шаг и метровый же диаметр. И не построенная пока установка перестаёт куда бы то ни было помещаться.

Здесь повезло: нашлась одна «лёгкая» комбинация из длины (суммарно 6 метров), величины магнитного поля (до 0.3 Тесла) и плотности плазмы (10^19 частиц в кубометре). Шесть метров — это не стол, но это, хотя бы, влезает в комнату. Ещё более удивительный факт: комната нашлась. Совсем не удивительный факт: нашлась она в таком виде:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Предельным везением оказалось то, что на идею в итоге нашлось финансирование. Есть финансирование — есть, из чего строить; нет финансирования — рисуй рисунки. Со второй попытки, в качестве одной двадцатой от глобальной заявки всего института, и с написанными не мной планами и обязательствами, установка вписалась в грант свежесозданного РНФ (российского научного фонда).

Примерно в это же время было придумано и название СМОЛА, в первый раз озвученное в январе 15-го в названии доклада: «Спиральная Магнитная Открытая ЛовушкА: как её построить и не провалить взятые обязательства».

Ну — поехали! Готовые расчёты дают фору на первый год, это пригодится для инженерных и конструкторских дел.

Не буду влезать в поле сообщества «Строительство и ремонт», там есть более компетентные рассказчики на тему электропроектов, стройки и кидания подрядчиками их субподрядчиков. Отсек, в котором не жалко размещать новое оборудование, выглядит так:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Что нам нужно в установке?

Вакуумная система. В кубическом сантиметре плазмы в несколько миллионов раз меньше частиц, чем в кубическом сантиметре атмосферного воздуха. Да и кислород в плазменной системе ничего хорошего не сделает. Для нормальной работы нужно выкачать воздух до давления ниже 0.001 Па (десять миллиардных атмосферы), а лучше — ниже 10^-4 Па (одна миллиардная атмосферы). Рабочей лошадкой для таких давлений в сегодняшней вакуумной технике служат турбомолекулярные насосы. Суть в том, чтобы раскрутить ротор до большой скорости (в самых быстрых насосах, которые я видел — 60 тысяч оборотов в минуту); при этом лопатки движутся с заметной скоростью (~100 м/с на фоне тепловой скорости молекул 300–1500 м/с). Лопатки ротора отвешивают каждой попавшейся на дороге молекуле газа увесистый пинок в сторону выхода; лопатки статора направляют молекулы под такими углами, чтобы они встретились с ротором. Чем выше скорость вращения ротора, тем лучше откачиваются лёгкие газы вроде водорода и гелия. Наглядно — на видео, с 50 секунды.

На СМОЛе стоит пара японских насосов с пиковой производительностью 3000 литров в секунду. Два вот таких бочонка с ротором на магнитном подвесе обеспечивают давление на уровне 3×10^-5 Па, внутри установки остаётся примерно 0.001 миллиграмма воздуха:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

В одиночку, впрочем, такой насос работать не может: для старта нужен вакуум на уровне одной-двух тысячных атмосферы. Если жахнуть по раскрученному ротору воздухом при атмосферном давлении, лопатки с весёлым звоном разлетятся по насосу (впрочем, нет, не весёлым: звон символизирует, что от 300 тысяч до пяти миллионов рублей только что превратились в тыкву). Чтобы откачать бочку от атмосферного давления (100 кПа) до 1 Па, а потом поддерживать этот 1 Па на выхлопе из турбомолекулярных насосов, нужен банальный механический насос, который будет банально сжимать газ в банальном замкнутом объёме. Удобнее всего оказываются спиральные насосы, где газ заперт между двумя скользящими друг по другу спиралями. Суть на иллюстрации:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Для хорошего вакуума, помимо насосов и уплотнения, нужны чистые стенки (да здравствуют спирт и безворсовые ткани). Поверхность нержавейки, помимо прочего, адсорбирует из атмосферы всё подряд. Вакуум будет лучше и чище, если при работающих высоковакуумных насосах напылить на стенки слой титана: свежая титановая плёнка хорошо адсорбирует остаточные газы и, пока полностью не забилась, не выпускает их обратно.

(На фотографии часть плёнки ободрана перчатками при демонтаже железяки).

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Простое решение — нагреть титановую проволочку почти до температуры плавления и подождать пару минут, пока нужное количество испаряется и оседает вокруг.

Радикальное — пустить по титановой палке дугу, и сделать то же самое за десять миллисекунд.

Тут — простое:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Для ускорительных и полупроводниковых дел обычно нужен ещё более глубокий вакуум, там используют полноценную третью ступень из крио- или магниторазрядных насосов.


Дальше — магнитная система. Расчётная картинка с иллюстрации 2 — это красиво, но дальше начинается конструирование и пляски вокруг технологичности изготовления. Это на модельке можно нарисовать провод любой формы, висящий в воздухе; в реальности шина сечением 15 мм² из твёрдой меди ровно наматывается только станком и только по направляющим. «Шуба» сделана из стеклотекстолита и надета на вакуумную камеру, канавка проточена.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Однажды, когда всё железо уже было в производстве, мне показалось страшное: что я упустил число пи в плотности тока в винтовых обмотках. Будь я нормальным безумным учёным, мог бы просто, зловеще хохоча, поднять в пи раз напряжение.

Так нет! механический расчёт летит к чёрту, тепловой расчёт летит к чёрту, запланированная энергетика тоже летит к чёрту!

Адреналина хватило на следующий месяц. При тщательной проверке пи нашлось на своём месте.


Плоские катушки на этом фоне просты: стальной кожух, два блина из медной шины, изоляция.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Для фанатов больших станков фотография того, как рядом вытачивают макет запчасти для ИТЭРа:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Всё перечисленное, будучи изготовленным, с матом, бубном и лазерным уровнем выставляется на положенное место. На следующей фотографии можно заметить, что ноги у бочки растут не оттуда, но это не страшно:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

В обмотки магнитной системы нужно загнать расчётный ток от систем питания. Если осмысленная длительность эксперимента не превышает секунды, а необходимая мощность питания всех систем больше нескольких десятков кВт, то разумнее всего будет заранее накопить нужную энергию. Обычно для этого заряжают конденсаторные сборки, хотя я видел и пару генераторов с маховиками примерно на 50 тонн каждый (уже демонтированы):

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Параметры магнитной системы были при проектировании рассчитаны так, чтобы на установке нигде и никогда не было напряжений больше 1 кВ. При расчётной секундной длительности эксперимента наиболее подходящими батареями неожиданно оказались суперконденсаторные сборки от трамваев, коммутируемые силовыми IGBT-ключами. На столе показаны сборки в сумме чуть больше, чем на 200 кДж:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Важная вещь, которую с трамвая не снимешь и в магазине не купишь: плазменная пушка.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Следующая фотография — вид внутрь пушки со стороны «дульного среза». Фиолетовая шайба диаметром 50 мм — накаливаемый катод из гексаборида лантана (LaB_6), при температуре ~1500°С она эмитирует достаточно большой ток электронов. Между катодом и анодом (медное кольцо по периметру кадра; на предыдущей фотографии к нему припаяна нижняя медная трубка охлаждения) приложено 200 В, которые ускоряют электроны. Магнитное поле не даёт им напрямую попасть с катода на анод. В пространство между ними через 50-микронный капилляр задувается газообразный водород, который и ионизируется ударом электронов.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Получившаяся плазма растекается вдоль силовых линий магнитного поля, проходит через трубу с винтовым полем, после чего, расширяясь, попадает на плазмоприёмник из пяти изолированных друг от друга молибденовых пластин (виват лазерной резке!). Между пластинами можно подавать любые желаемые напряжения, чтобы раскрутить плазму радиальным электрическим полем.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

И, наконец, система управления и сбора данных. Чтобы в эксперименте был смысл, нужно что-нибудь измерить, а чтобы что-нибудь измерить, нужно, например, затолкать в плазму железяку (лучше — вольфрамовую) и измерить, как изменяется со временем ток через неё. В сегодняшних условиях все измеряемые сигналы сразу же оцифровывается. На фотографии — блок АЦП (аналогово-цифровых преобразователей) ИЯФовской же разработки; разрядность оцифровки — 12 бит на каждую точку, измеряет до 50 миллионов точек в секунду на каждый канал. Одна из главных фишек — синхронность измерения все каналов; разброс момента измерения разных сигналов составляет какие-то смешные пикосекунды и на практике считается нулевым.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Все системы запускаются световыми импульсами, раздаваемыми по оптоволокну похожей коробочкой блока синхронизации.

Впрочем, там, где нет особо суровых требований по точности и/или синхронности, можно использовать и более простые вещи.

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Вот, к примеру, блок управления зарядными устройствами, скрученный на копеечной ардуине:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Внешний вид установки на сегодня:

Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост
Сделай сам: плазменная установка своими руками Наука, Физика, Плазма, Своими руками, Самоделки, Техника, Видео, Длиннопост

Раздел благодарностей: чёрта с два бы что-то было сделано без гранта РНФ, конструкторских/производственных мощностей ИЯФа и команды установки СМОЛА.

Все фотографии автора, видео с насосами найдено ютубом.

Показать полностью 21 2
1979

Рецепты хлеба 1940 года

Прошу прощения у полутора сотен подписчиков. Этот пост не про науку: в комментах попросили запилить рецепты хлеба.

Рецепты хлеба 1940 года Хлеб, Рецепт, Хлебопечка, Длиннопост

Однажды в соседнем магазине перестали продавать вкусный хлеб. Жена, заметив мою тоску и печаль, нашла и подарила мне хлебопечь. «Отлично!» — подумал я в предвкушении свежего и вкусного. Попробовали испечь что-нибудь по прилагавшейся книжке рецептов. А там было всякое: и с тыквой, и с травами, и с фруктам, и с прочими изысками.


Первая булка вышла несъедобной. Гномий боевой хлеб явно был бы более пригоден для употребления человеком в пищу.


Хотел бы я написать, что вторая была лучше. Но это была бы неправда: вторая просто не вызывала тошноты. Плотность была как у кирпича, вкус и запах — тоже.


Третья... В общем, на третьей я начал впадать в ещё большее уныние. Аппарат есть, результата нет.


Примерно в этот момент я, разгребая завалы на жёстком диске, наткнулся на артефакт, неизвестно когда и где попавшийся в интернетах: скан книжки «350 сортов хлебо-булочных изделий» 1940 года, изданной наркоматом пищевой промышленности (доступен по ссылке). Что меня дёрнуло её сохранить — понятия не имею, но это оказалось спасением.

Рецепты хлеба 1940 года Хлеб, Рецепт, Хлебопечка, Длиннопост

В книжке было всё: от технологии до метода поиска ошибок по внешнему виду булки. Более того, материал был изложен так, чтобы понял выпускник седьмого класса.

Единственное — каждый рецепт начинается со строки: «Мука, 100 кг».

Вот тут-то и началось счастье.


Лучший, на мой взгляд, результат выходит при двух- или трёхэтапном техпроцессе выпечки. Это, конечно, требует больше возни, чем «засыпал–запустил», но и хлеб выходит в полтора раза выше (а потому приятнее на ощупь и вкус).


1. Заварка. Актуально для ржаного и полубелого хлеба. Солод и ржаная мука заливаются кипятком и подогреваются в течение часа для осахаривания. Интересным вариантом для домашнего использования будет залить компоненты кипятком в термосе; но я обычно использую стандартный режим печки («тесто»).

2. Опара. Размножение дрожжей в среде без соли. Этап также хорошо проходит в режиме «тесто».

3. Собственно, замес и выпечка. Для лучшего результата полезно поэкспериментировать с конкретной партией муки и скорректировать количество воды и время расстойки до начала выпекания. Идеально поймать момент, когда тесто перестало подниматься, если его упустить — верхушка булки провалится, если не дождаться — будет сильно выпуклой и надорвётся над краем формы.


Пора переходить от предыстории к паре рецептов.

«Карельский» (фотография в заголовке)

1. Заварка.

Солод — 25 г.

Ржаная мука, просеянная — 50 г.

Кипяток — 50+125 г.

Солод и мука заливаются небольшим количеством кипятка, замешиваются, после чего в получившуюся массу вливается оставшийся кипяток. Чем горячее вода — тем лучше.

Уходим на полтора часа.

2. Опара.

К заварке добавляются

Дрожжи обычные (можно сухие, развести по инструкции) — 10 г.

Вода — 65 г.

Белая мука, просеянная, 1 сорт (можно высший, но 1 вкуснее) — 200 г.

Опять запускаем «тесто», занимаемся своими делами полтора часа. Когда опара начинает опадать, делаем

3. Тесто.

Докидываем

Белая мука — 225 г.

Соль — 7 г.

Сахар — 20 г.

Вода — 30–35 г. (Читатели вчерашнего коммента — осторожно! эту строчку я вчера забыл, без неё выйдет ерунда :)

Мёд — 20 г.

Кориандр — 3 г.

Сушёная клюква (в оригинале изюм. Но клюква явно ближе к Карелии, и зашла как родная) — 50 г.

Всё. Осталось запустить автоматику, чтобы печь всё замешала, расстояла, сколотила, ещё раз расстояла и выпекла.


«Морской»

1. Заварка.

Ржаная мука, просеянная — 65 г.

Горячее молоко — 200 г.

2. Опара.

Добавляются

Ржаная мука — 125 г.

Молоко — 50 г.

Дрожжи — 15 г. (Тут в оригинале использована ещё и закваска, но с ней слишком много плясок)

3. Тесто.

К опаре добавляем

Ржаная мука — 50 г.

Белая мука — 250 г.

Соль — 7 г.

Сахар — 15 г.

Вода — 65–70 г.

Спиртовая настойка на апельсиновой цедре — 5 г.

Выпекаем.


«Боярский»

1. Опара

Белая мука, просеянная — 250 г.

Вода — 175 г.

Дрожжи — 10 г.

1.5 часа в тепле.

2. Тесто

Белая мука — 250 г.

Соль — 7 г.

Сахар — 35 г.

Вода — 60–65 г.

Масло — 20 г.

Изюм — 50 г.

По лентяйству всё добавляется одновременно, без отдельной переделки.


Ps. Хлебопечь была изношена, вскрыта, препарирована, пережила замену некоторых запчастей на неродные (включая специально для неё выточенные на ближайшем токарном станке), изношена ещё раз и заменена на новую.

Рецепты хлеба 1940 года Хлеб, Рецепт, Хлебопечка, Длиннопост
Рецепты хлеба 1940 года Хлеб, Рецепт, Хлебопечка, Длиннопост

Pps. Надеюсь, пост не выглядит слишком унылым, банальным или непонятным на фоне управляемого термоядерного синтеза. =)

Показать полностью 3
547

Как и зачем работают открытые ловушки

Предыдущий пост собрал уйму подписчиков. Попробую снова нарушить планы зашедших сюда подеградировать; тем более, в нём был фактически анонсирован рассказ о линейных ловушках.

Надеюсь, найдутся сильные духом люди, способные дочитать этот пост до конца.


Итак, мы хотим удерживать плазму температурой 100 миллионов градусов (10 кэВ) достаточно долго для того, чтобы термоядерное топливо успело прореагировать. Мы знаем, что плазма состоит из заряженных частиц, которые в магнитном поле движутся по спирали, навитой на силовую линию. Движение выглядит примерно так (направление магнитного поля показано стрелкой с буквой B, здесь ещё добавлено электрическое поле E):

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Сила, действующая на заряженную частицу, перпендикулярна направлению магнитного поля и направлению движения частицы. Там, где поле усиливается, силовые линии сближаются, поэтому перпендикуляр к ним слегка наклонён в сторону более слабого поля. То есть, приближение к области сильного поля тормозит частицу. Торможение тем сильнее, чем выше компонента скорости, направленная поперёк магнитного поля.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

В итоге области сильного поля отражает частицы с достаточно высокой поперечной и достаточно низкой продольной скоростью. Частицы, летящие под небольшим углом к магнитному полю, вылетают наружу и теряются.

Схема проста, как бабушкин топор, в предельном случае требует двух круглых катушек с током.

После столкновений частицы летят в среднем куда придётся; в том числе и вдоль силовых линий. Чтобы рассеяние случалось пореже, и частиц терялось поменьше, исходно предлагалось удерживать достаточно редкую плазму.

Такая (и только такая!) конфигурация называется пробкотроном (или простым пробкотроном, или пробкотроном Будкера-Поста по фамилиям тех, кто её исходно предложил); области сильного магнитного поля — пробками; соотношение самого слабого и самого сильного магнитного поля — пробочным отношением; область в пространстве скоростей, в которой частицы не удерживаются — конусом потерь.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Идея пробкотрона родом из 50-х годов, и тогда же в первый раз была проверена (прим.: работает). Найти в доступных источниках фотографию первой советской установки, на которой была показана работоспособность пробкотрона (ловушки Родионова, [5]), не получается. Поэтому пусть здесь будут фотографии установок ОГРА (1959 год, Институт атомной энергии, сегодня — Курчатовский) и Ц-1 (1963 год, Институт ядерной физики, сегодня — имени Будкера).

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост
Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

NB: примерно в это же время эксперименты с пробкотроном провернули в Ливерморской лаборатории. Фотография есть тут. Авторы друг о друге не знали, об этом есть замечательная приписка от редакции в конце статьи:

Как нам стало известно, аналогичные эксперименты проводились Гибсоном и Лауэром. Подробности работы не опубликованы.

В простом пробкотроне, впрочем, был обнаружен ряд проблем. Во-первых, хорошо удерживаются в нём одиночные частицы. Плазма из большого числа частиц ведёт себя в нём подобно леммингам из легенд о леммингах: перестаёт быть круглой в сечении, выбрасывается на стенку и погибает. Эту проблему потребовала небольшого усложнения в духе подобной конфигурации (на рисунке катушки с геометрией «инь-ян»). Плазма не будет искривляться, если она заранее искривлена нужным образом:

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Вторая проблема: пустой конус потерь вызывает в плазме раскачку волн, которые рассеивают частицы и помогают им потеряться.

А самое неприятное — нельзя одновременно потребовать, чтобы частицы сталкивались достаточно редко (и не рассеивались) и достаточно часто (для термоядерной реакции). Даже в идеальном простом пробкотроне мощность термоядерной реакции оказывается всего вдвое больше, чем требуемая мощность нагрева. Кроме того, стабильные геометрии (инь-ян и ему подобные) приводили к повышенным поперечным потерям.

Все эти проблемы накопились как раз к тому моменту, когда на токамаках показали температуру 1 кэВ (10 млн градусов).

Рисунок исторический: британские учёные по приглашению (тогда ещё не академика, а член-корреспондента) Б. Б. Кадомцева едут в Москву измерять электронную температуру плазмы в токамаке Т-3 [6]:

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Модными стали токамаки. Кто-то забросил открытоловушечную деятельность, кто-то остался придумывать, как поправить эти проблемы.

Базовые методы улучшенного удержания были придуманы в 70-х и проверены в районе 80-х. Они проиллюстрированы на следующем рисунке [7] (да простят меня модераторы):

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Что забавно, на этой картинке уже забыт один из методов. Суть его в том, чтобы раскрутить плазменный шнур до скоростей выше тепловой скорости частиц и скорости распространения возмущений магнитного поля. В этом случае центробежная «сила» не даёт плазме ни потерять круглую форму (возмущение растёт медленнее, чем замазывается вращением), ни уйти к пробкам (радиус плазменного шнура в них меньше!).

На фотографии — установка ПСП-2, на которой более или менее было показано центробежное удержание.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Следующий вариант был чертовски изящен. Электроны легче ионов, и поэтому из плазмы теряются быстрее. Любая плазма, если с ней ничего специально не делают, заряжается положительно; и потенциал (называемый амбиполярным) тем выше, чем горячее электроны. Можно построить одну длинную линейную ловушку, с каждой стороны к ней пристыковать по маленькому пробкотрону, а электроны в концевых пробкотронах перегреть. Концевые секции зарядятся положительно, ионы не смогут в них залететь, а значит, и не потеряются.

Образно говоря, по краям плазмы бульдозером нагребаются две больших кучи снега, через которые ничего потеряться не может. Чем больше соотношение длин центральной секции и концевых пробкотронов, тем сильнее нам наплевать на потери перегретых электронов из них.

В качестве примера — кажется, первая амбиполярная ловушка Gamma-6 (г. Цукуба, Япония):

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост
Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Единственная проблема амбиполярных ловушек — феерическая невезучесть. Нагляднее всего будет пример установки MFTF-B, которая была построена (330 миллионов долларов в ценах 80-х годов, на минуточку), сдана и на следующий день по политическим мотивам закрыта. На установке произведено 0 (ноль) экспериментальных выстрелов, что даёт абсолютный рекорд удельной стоимости секунды эксперимента.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост
Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

На этом фоне установка АМБАЛ (не достроена до конца и не доведена до ума из-за 90-х) требует упоминания исключительно за стильность названия.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Следующий метод — многопробочное удержание. В нём в цепочку выстраивается не три пробкотрона, а столько, сколько влезет в зал. Внутрь запускается плазма такой плотности, чтобы ион рассеивался на расстоянии, примерно равном расстоянию между соседними пробками. Частица, вылетающая из области удержания, может захватиться отдельным пробкотроном, поболтаться от пробки к пробке и снова рассеяться в произвольном направлении. Тем, кому приходилось учить мат.статистику, эта задача известна как задача о пьяном матросе: время, которое матросу частице потребуется на путь от начала ловушки до её конца, квадратично растёт с ростом длины. Делаем ловушку в десять раз длиннее, а удержание улучшается в сто раз.

На иллюстрации синей и зелёной линиями в пэйнте показаны траектории частиц [9].

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Эксперименты показали, что дела обстоят даже лучше, чем в исходной идее. Любая возникающая в плазме волна рассеивает частицы. Только теперь это приводит не к увеличенным потерям, как в простых пробкотронах, стеллараторах или токамаках, а к улучшению удержания: длина свободного пробега частиц за счёт рассеяния автоматически подгоняется к расстоянию между пробками, и метод работает даже при таких плотностях, при которых он этого делать не должен.

Для иллюстрации первые гофрированные (многопробочные) ловушки ЩЕГОЛ и ГОЛ-1.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Занятный факт, который ещё всплывёт к концу поста: одновременно с многопробочным удержанием было предложено двигать пробки, чтобы тащить захваченные частицы обратно к области удержания. Это выглядит как эскалатор, который едет навстречу потоку людей: наружу выйдут только самые везучие и подготовленные. Об этом был написан один абзац ровно. Видимо, после этого авторы посчитали, сколько мощности надо для создания бегущих пробок, получили что-то в духе 20 или 100 ГВт и задвинули идею куда подальше.

Пруф:

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Последний из старых методов улучшенного удержания в линейных ловушках — газодинамический. Если в классический пробкотрон набить побольше частиц, чтобы они сталкивались раньше, чем долетают до пробки, то попадание в конус потерь не будет означать, собственно, потерь. Ситуацию можно сравнить со станцией метро в час пик: человек в центре станции, может, и хочет выйти наружу, но ему бы ещё до эскалатора добраться. Если длина перрона — километр, то он плюнет и поедет обратно на работу.

В такой плазме может жить без неустойчивостей популяция быстрых ионов с энергиями около 10 кэВ, которые и будут вступать в термоядерную реакцию с ионами плазмы. Время удержания линейно растёт с ростом пробочного отношения.

Пока что в мире построена одна ловушка газодинамического типа (называется, собственно, газодинамической ловушкой, сокращённо ГДЛ). На фотографиях — её вид в 1988 и 2018 году. Кое-что добавилось.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост
Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

ГДЛ показала более хорошее удержание, чем закладывалось в её проект. Этот путь был долгим. Первой проблемой была устойчивость, уже упомянутая в абзаце о леммингах.

Нет смысла говорить о термоядерных перспективах открытых ловушек. ГДЛ никогда не сможет достичь, хотя бы, 100 электронвольт из-за проблем с МГД-устойчивостью и продольной теплопроводностью.


С. В. М-ов, руководитель одного из токамачных проектов, Звенигородская конференция по физике плазмы, где-то в начале 90-х.

.

Нет смысла говорить о термоядерных перспективах открытых ловушек. ГДЛ никогда не сможет достичь, хотя бы, 300 электронвольт из-за проблем с МГД-устойчивостью и продольной теплопроводностью.


С. В. М-ов, руководитель одного из токамачных проектов, Звенигородская конференция по физике плазмы, где-то в конце 90-х.

По очереди было найдено несколько методов стабилизации. Самый качественный из них напомнит читателю об экспериментах с вращающейся плазмой: если внешний слой плазмы вращается быстрее внутренних, любой всплывающий плазменный пузырь будет размазан в симметричную относительно оси трубу. Труба уже никуда не денется.

Метод был назван вихревым удержанием. 400 эВ на ГДЛ были получены лет десять назад.

Нет смысла говорить о термоядерных перспективах открытых ловушек. ГДЛ никогда не сможет достичь, хотя бы, 1 килоэлектронвольта из-за проблем с продольной теплопроводностью.


С. В. М-ов, руководитель одного из токамачных проектов, Звенигородская конференция по физике плазмы, 2010 и некоторые другие годы.

Другой проблемой было то, что плазма вдоль силовых линий очень хорошо проводит тепло. Сложно греть штуку с теплопроводностью меди, которая двумя концами упирается в холодную массивную железку. На установках линейки ГОЛ проблема решалась возбуждением сильно турбулентнах колебаний электронов вокруг ионов. Аналогия — пожар в сумасшедшем доме: пока доктор электрон выйдет наружу и вынесет энергию, он столько раз столкнётся с бегающими куда попало людьми электромагнитными полями, что этот факт будет уже не важен. Пожарный холодный электрон же внутрь попасть не сможет — всё занято. Была мысль сделать так же на ГДЛ, и этот эксперимент когда-нибудь будет сделан, но всё оказалось гораздо проще.

Теплопроводность пропадает в той точке, где поле уменьшается в ~40 раз (если быть точнее, в корень из соотношения масс иона и электрона). Температура расширяющегося в пустоту потока плазмы падает. Амбиполярный потенциал становится меньше (вспоминаем перегретые электроны в АМБАЛе), и это создаёт потенциальный барьер для электронов. Возникают те же снеговые кучи, через которые никто никакую энергию не переносит.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Должная степень расширения и сравнительно маломощный СВЧ-нагрев позволили в 2016 году получить на ГДЛ 1 кэВ.

К этому моменту уже было предложено собрать все фишки газодинамического и многопробочного удержания, добавить к центру ГДЛьного типа гофрированные секции и тем самым повысить качество удержания раз в 10. Если DT-реактор на основе обычного ГДЛ должен быть длиной 1–3 км, то ГДЛ+многопробки — уже разумные 100–300 м. Схема такой ловушки идёт в прошлом посте десятым рисунком. Чтобы не приходилось листать, продублирую:

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Помимо того, было предложено ещё два метода: винтовое и диамагнитное удержание.

Винтовое напоминает, с одной стороны, идею с движущимися пробками из 70-х. С другой — мясорубку.

Многопробочное поле стоит на месте, но пробки смещены по винту. Плазма, вращаясь, вкручивается в этот винт и движется туда, куда нужно. Из её системы отсчёта кажется, что движутся сами пробки, нам остаётся только крутить.

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Суть диамагнитного в том, чтобы надуть пузырь из плазмы. Для этого нужно, чтобы её давление приблизилось к давлению магнитного поля. Поле будет почти полностью вытеснено из пузыря, минимальное поле уменьшится, максимальное останется тем же — то есть, пробочное отношение вырастет. А с ним и время удержания [10].

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Нет смысла говорить о термоядерных перспективах открытых ловушек, поскольку они не имеют преимуществ перед токамаками.


С. В. М-ов, руководитель одного из токамачных проектов, Звенигородская конференция по физике плазмы, 2018 год.

Всё это вместе даёт шанс уложить DD-реактор в сотню-другую метров.


Собирая вместе все аналогии, получается следующее:

Длинная станция метро в час пик, заполненная пьяными пассажирами. Все эскалаторы едут сверху вниз. На выходе с эскалаторов работают бульдозеры. Никто никуда не уходит.


Токамак для DD-реакции имеет схожие размеры: диаметр «бублика» для него должен быть примерно 60-метровым. И тут есть нюанс.

Линейная ловушка длиной 100 метров собирается из отдельных «бочек», выстроенных в ряд. Самая большая из них по сегодняшним представлениям должна иметь диаметр 4–5 метров вместе с криостатом и длину, допустим, метров десять или пятнадцать.

Это можно перевезти по железной дороге.

Отдельные катушки токамака уже сегодня нельзя перевезти разумным транспортом, нужно строить рядом с будущим токамаком цех и наматывать их там [11]:

Как и зачем работают открытые ловушки Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Гифка, Длиннопост

Примерно поэтому мы и утверждаем, что DD-реактор нужно делать линейным.


В следующей серии: как собрать свою маленькую плазменную установку (шесть метров длиной, три тонны массой), если есть достаточно нервов и большой грант РНФ.

Источники иллюстраций:

[1] Пусть будет https://www.litres.ru/igor-kotelnikov/lekcii-po-fizike-plazm...

[2] https://doi.org/10.3367/UFNr.2016.09.037967

[3] http://vant.iterru.ru/vant_2018_2/3.pdf

[4] http://www.inp.nsk.su/images/pdf/books/50-Years-of-BINP-book...

[5] http://elib.biblioatom.ru/text/atomnaya-energiya_t6-6_1959/g...

[6] https://www.bl.uk/voices-of-science/interviewees/michael-for...

[7] Сборник к 30-летнему юбилею ИЯФ

[8] https://en.wikipedia.org/wiki/Mirror_Fusion_Test_Facility

[9] https://ufn.ru/ru/articles/2018/6/c/

[10] https://doi.org/10.1007/s10894-018-0174-1

[11] https://www.iter.org/construction/SiteFabricationPFcoils

Показать полностью 23
1209

Пара слов об управляемом термоядерном синтезе

«Ещё в 1958 году на II Международной конференции по мирному использованию атомной энергии в Женеве казалось, что до осуществления термоядерного синтеза рукой подать — нужно пройти небольшой путь между двумя точками; потом оказалось, что надо не пройти, а проехать на велосипеде; потом — что проехать на велосипеде, но по канату; потом оказалось, что велосипед одноколёсный; потом — что ехать нужно с завязанными глазами; и наконец — что ехать необходимо задом наперёд».

Л. А. Арцимович

Два поста на тему управляемого термоядерного синтеза, опубликованных за два дня, не оставляют мне выбора. Придётся писать третий, чтобы, по возможности, сделать непонятные моменты понятными.

Вопрос, который всегда задают одним из первых — зачем это всё нужно. Долгая история термоядерных исследований, на каждом шагу которой казалось, будто бы крутить педали осталось совсем чуть-чуть (см. эпиграф), многих сделала скептиками.


Проблема в том, что деваться нам всем всё равно некуда.

На рисунке 1 — прогноз потребления энергии (для всех нужд — электричество, транспорт, отопление и т.д.) на сто лет вперёд. Широкой тёмно-зелёной полосой в нём обозначены новые источники энергии. Кто-то полностью закрашивает эту полоску солнечной энергетикой, кто-то предлагает ядерные реакторы с замкнутым топливным циклом.

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Наиболее корректным, впрочем, будет сказать, что никто толком не знает, чем закрывать эту дырку после 2060 года. Чем больше способов выработки энергии будет проверено, тем больше шансов, что какой-нибудь из них сработает и позволит закрыть недостачу, сравнимую с половиной всей сегодняшней генерации.


Теперь о том, почему и как это работает.

Протоны и нейтроны в ядре «склеены» сильным взаимодействием. Разницу между энергиями покоя отдельных протонов и нейтронов и собранного из них атомного ядра мы можем забрать себе. Насколько она велика, показано на рисунке 2. Здесь можно обратить внимание на две вещи:

— все хотят стать никелем;

— делать 4He выгодно для получения энергии, он лежит намного выше всех своих соседей.

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Топливо для термоядерных реакций можно найти вблизи от гелия. На следующем рисунке перечислены термоядерные реакции, наиболее полезные в жизни котика обычного человека. Большая часть из них — термоядерные реакции в звёздах. Ещё несколько (с 6Li) были использованы, чтобы показать возможность термоядерного синтеза на земле (рисунок 3, [2]).

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост
Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

В то же время, ядра заряжены положительно и поэтому отталкиваются электростатически. Это можно представить себе как горку, которую надо преодолеть (или сквозь которую нужно туннелировать), чтобы упасть в яму и в ней выделить энергию [3].

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

То есть, вещество нужно нагреть, чтобы ядра двигались быстро и могли вступить в реакцию. Для наиболее простой реакции D+T эта температура составляет 10 кэВ (а лучше 30). В человеческих единицах  это чуть больше 100 миллионов градусов; любое вещество при этом будет полностью ионизированной плазмой.


D+T топливо легче всего зажигать, но 80% энергии термоядерной реакции уносится нейтронами, которые греют, активируют и разрушают конструкцию реактора и не греют плазму. Кроме того, тритий — на редкость неприятное в плане безопасности использования вещество.

Реакция D+D оставляет больше энергии в плазме и не требует опасных материалов, но безнейтронной не является. У неё есть два почти равновероятных канала:

D+D→n+3He (есть нейтрон!)

D+D→p+T, при этом тритий сразу же вступает в реакцию D+T→4He+n (есть второй нейтрон!)

С топливом D+3He почти можно избавиться от нейтронов. Почти — потому что дейтерий будет реагировать не только с гелием, но и с другим дейтерием. С нейтронным выходом из прошлого абзаца. От нейтронов спасёт только топливная смесь, в которой бо́льшая часть — гелий, к которому добавлена малая примесь дейтерия.


Кроме того, плазма должна пробыть горячей достаточно долго, чтобы ядра успели встретиться и прореагировать (фактически, здесь работает произведение концентрации частиц на время удержания). К примеру, для D+T плазмы с давлением 3 атмосферы необходимое время удержания составляет полсекунды.

Тем самым, у нас есть две задачи: нагреть и удержать.


Можно попробовать сжать вещество до таких концентраций, чтобы необходимое время удержания было мало и плазма просто не успевала никуда разлететься. Подобный способ называется инерционным удержанием. В целом, термоядерная бомба работает именно так. В приложении к управляемому синтезу нагрев и сжатие осуществляется за счёт облучения полусантиметровой мишени 192 эпически мощными лазерами [4]. Основная проблема при использовании этого метода для энергетики в том, что стрелять по мишеням нужно 100 раз в секунду с выделением нескольких МДж, а можно только дважды в день и несколько десятков кДж. Военные о таких мелочах не беспокоятся и просто моделируют на установках инерциального синтеза бомбы.

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Другой вариант — поместить плазму в магнитное поле. Плазма не может вытечь поперёк магнитных силовых линий слишком быстро. Если же магнитное поле замкнуть в «бублик», то и вдоль силовых линий она никуда не улетит. Получится тороидальная магнитная ловушка.

Впрочем, просто поставить несколько катушек кольцом мы не сможем. Величина магнитного поля возле «дырки от бублика» в этом случае выше, чем на его внешнем краю. Плазма (будучи диамагнетиком) из магнитного поля выталкивается, поэтому для равновесия частицы должны часть времени проводить возле «дырки», а часть — снаружи. То есть, силовые линии должны «навиваться на бублик» (чёрные стрелки на левом рисунке, зелёная линия на правом). Сделать это можно или разогнав по плазменному шнуру ток (токамаки), или сделав внешние катушки упоротой тщательно оптимизированной геометрии (стеллараторы).

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Строящийся сейчас во Франции ITER является именно токамаком. Стоит как авианосец, для постройки потребовал создания отдельных отраслей промышленности в отдельных странах. В целом, токамаки на сегодняшний день сильнее всех продвинулись в сторону термоядерной энергии.

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Самым крупным на сегодня стелларатором является Wendelstein-7X. О нём был подробный пост [6], поэтому приведу только картинку.

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Есть другая возможность — создать магнитное поле, симметричное относительно прямой или  почти прямой оси. Получится открытая (или линейная) магнитная ловушка. Плазма будет вылетать из двух концов, но эти потоки можно тем или иным способом подавить (об этом я могу написать пост не меньших размеров, поэтому пока не буду вдаваться в подробности). До недавнего времени существовало более-менее обоснованное мнение, что с их помощью нельзя получить температур выше нескольких сот эВ (нескольких миллионов градусов). Не так давно, впрочем, было показано, что можно получить и больше. Плюсы такой концепции — в большей технологичности и лучшей масштабируемости (в первую очередь, в область топлив без трития).

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Теперь про энергобаланс. Наиболее мощным каналом потери энергии из горячей плазмы является тормозное излучение (горячие электроны, пролетающие мимо ядер, ярко светятся в рентгеновском диапазоне). На следующей картинке показана мощность разных термоядерных реакций в одном кубометре горячей равновесной плазмы с концентрацией 10^20 м^-3. Фиолетовой прямой (угол не в счёт) показан уровень потерь на тормозное излучение. Энергию можно вырабатывать там, где чёрная кривая выше фиолетовой прямой.

Тут можно посмотреть на основные термоядерный топлива и p11B. Последний лежит близко к уровню потерь, что заставляет выдумывать хитрые конфигурации с неравновесной плазмой вплоть до использования топлива, поляризованного по ядерному спину, включительно.

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

Чтобы не множить сущностей, возьму уже посчитанные другими людьми для ИТЭРа цифры. Расклад по энергиям получается таким:


В плазму вкладывается 73 МВт от внешних источников. Из них 33 МВт — пучки быстрых нейтральных атомов, 20 МВт — СВЧ-волна на частоте вращения электронов (170 ГГц), 20 МВт — ВЧ-волна на частоте вращения ионов (40–50 МГц).

В термоядерной реакции выделяется ~500 МВт, из них 400 МВт получают нейтроны, а 100 МВт остаётся в альфа-частицах и нагревает плазму.


Теперь потери.

400 МВт мощности, переносимой нейтронами, тут же уходят из плазмы и нагревают воду в каналах охлаждения.

Тормозное излучение уносит около 120 МВт.

Небольшая часть энергии (от нескольких единиц до нескольких десятков МВт — в зависимости от того, насколько устойчивой получилась плазма) уходит с быстрыми ионами, плохо удерживаемыми плазмой, и нагревают пластины первой стенки.


Остальные 100–150 МВт уносятся плазмой, вытекающей из области удержания, и нагревают специально предназначенные для этого пластины дивертора в нижней части камеры (см. рисунок — словом plasma там обозначена область удержания, вытекающий из неё поток идёт вдоль силовых линий, нарисованных чёрным, на оранжевые приёмные пластины).

Пара слов об управляемом термоядерном синтезе Наука, Физика, Термоядерный синтез, Термоядерный реактор, Альтернативная энергетика, Длиннопост

С пользой можно использовать либо нейтроны (только как кипятильник), либо поток плазмы, вытекающий из области удержания в дивертор (или кипятильник, или, теоретически, МГД-генератор. Впрочем, схем МГД-генератора для токамаков я не видел).


И последний вопрос: когда?

Я на него всегда отвечаю: «Когда потребуется». Скажем, китайская термоядерная программа предполагает запуск демонстрационного энергетического реактора в 30-х годах (да, они хотят начать строить его до того, как будут получены внятные результаты ИТЭРа). В принципе, если не будет ограничений в ресурсах, они могут справиться.

Всех остальных припрёт в 50-х.


Ps. Надеюсь, пост получился информативным, но не переусложнённым. В принципе, обо всём этом можно рассказать и проще (но без деталей), и сложнее (там столько всего интересного!)

Источники иллюстраций:

[1] https://www.sciencedirect.com/science/article/pii/S235285401...

[2] https://ru.wikipedia.org/wiki/%D0%A6%D0%B0%D1%80%D1%8C-%D0%B... , https://pikabu.ru/story/kuzkina_mat_sssr_istoriya_sozdaniya_...

[3] https://pikabu.ru/story/gorochka_5957504

[4] https://lasers.llnl.gov/science/icf

[5] https://www.iter.org/doc/www/content/com/Lists/Machine/Attac... tkm_cplx_final_plasma2013-07.jpg

[6] https://habr.com/post/399993/

[7] http://iopscience.iop.org/issue/0029-5515/47/6

Показать полностью 11

Мы ищем frontend-разработчика

Мы ищем frontend-разработчика

Привет!)


Мы открываем новую вакансию на позицию frontend-разработчика!

Как и в прошлые разы для backend-разработчиков (раз, два), мы предлагаем небольшую игру, где вам необходимо при помощи знаний JS, CSS и HTML пройти ряд испытаний!


Зачем всё это?

Каждый день на Пикабу заходит 2,5 млн человек, появляется около 2500 постов и 95 000 комментариев. Наша цель – делать самое уютное и удобное сообщество. Мы хотим регулярно радовать пользователей новыми функциями, не задерживать обещанные обновления и вовремя отлавливать баги.


Что надо делать?

Например, реализовывать новые фичи (как эти) и улучшать инструменты для работы внутри Пикабу. Не бояться рутины и командной работы (по чатам!).


Вам необходимо знать современные JS, CSS и HTML, уметь писать быстрый и безопасный код ;) Хотя бы немножко знать о Less, Sass, webpack, gulp, npm, Web APIs, jsDoc, git и др.


Какие у вас условия?

Рыночное вознаграждение по результатам тестового и собеседования, официальное оформление, полный рабочий день, но гибкий график. Если вас не пугает удаленная работа и ваш часовой пояс отличается от московского не больше, чем на 3 часа, тогда вы тоже можете присоединиться к нам!


Ну как, интересно? Тогда пробуйте ваши силы по ссылке :)

Если вы успешно пройдете испытание и оставите достаточно информации о себе (ссылку на резюме, примеры кода, описание ваших знаний), и если наша вакансия ещё не будет закрыта, то мы с вами обязательно свяжемся по email.

Удачи вам! ;)

Показать полностью
Отличная работа, все прочитано!